Enhance entity extraction with better structured prompts:
- Reorganize prompt format for improved clarity and consistency
- Add XML-style formatting tags for better LLM parsing
- Include language parameter in keywords extraction cache key
- Fix language parameter usage in keywords_extraction prompt
Improve rerank module with chunking fixes:
- Fix top_n behavior to limit documents instead of chunks
- Add Cohere reranker support with proper chunking
- Improve error handling for rerank API responses
Update operate.py:
- Better entity extraction parsing and validation
- Improved cache key generation for multilingual support
Add comprehensive test suites for prompt evaluation:
- test_prompt_accuracy.py: 365 lines testing prompt extraction accuracy
- test_prompt_quality_deep.py: 672 lines for deep quality analysis
- Refactor prompt.py to consolidate optimized variants (removed prompt_optimized.py)
- Apply ruff formatting and type hints across 30 files
- Update pyrightconfig.json for static type checking
- Modernize reproduce scripts and examples with improved type annotations
- Sync uv.lock dependencies
Format entire codebase with ruff and add type hints across all modules:
- Apply ruff formatting to all Python files (121 files, 17K insertions)
- Add type hints to function signatures throughout lightrag core and API
- Update test suite with improved type annotations and docstrings
- Add pyrightconfig.json for static type checking configuration
- Create prompt_optimized.py and test_extraction_prompt_ab.py test files
- Update ruff.toml and .gitignore for improved linting configuration
- Standardize code style across examples, reproduce scripts, and utilities
Add citation tracking and display system across backend and frontend components.
Backend changes include citation.py for document attribution, enhanced query routes
with citation metadata, improved prompt templates, and PostgreSQL schema updates.
Frontend includes CitationMarker component, HoverCard UI, QuerySettings refinements,
and ChatMessage enhancements for displaying document sources. Update dependencies
and docker-compose test configuration for improved development workflow.
Implement automatic orphan entity connection system that identifies entities with
no relationships and creates meaningful connections via vector similarity + LLM
validation. This improves knowledge graph connectivity and retrieval quality.
Changes:
- Add orphan connection configuration parameters (thresholds, cross-connect settings)
- Implement aconnect_orphan_entities() method with 4-step validation pipeline
- Add SQL templates for efficient orphan and candidate entity queries
- Create POST /graph/orphans/connect API endpoint with configurable parameters
- Add orphan connection validation prompt for LLM-based relationship verification
- Include relationship density requirement in extraction prompts to prevent orphans
- Update docker-compose.test.yml with optimized extraction parameters
- Add quality validation test suite (run_quality_tests.py) for retrieval evaluation
- Add unit test framework (test_orphan_connection_quality.py) with test cases
- Enable auto-run of orphan connection after document processing
- Refactor query prompt handling to separate user prompts in system context
- Simplify user_query to only contain query
- Apply changes to both kg_query and naive_query
- Increase max references from 5 to 8
- Merge citations by file_path
- Remove inline citations from body
- Add reference section examples
- Update citation prefixes (KG→EN, RE)
- Expand bracket tolerance to support additional characters: < > " '
- Implement symmetric handling for both leading and trailing characters
- Replace simple string matching with robust regex-based pattern detection
- Maintain full backward compatibility with existing bracket formats
- Add system/user prompt separation
- Set max tokens for endless output fix
- Improve extraction error logging
- Update cache type from extract to summary