Add citation tracking and display system across backend and frontend components.
Backend changes include citation.py for document attribution, enhanced query routes
with citation metadata, improved prompt templates, and PostgreSQL schema updates.
Frontend includes CitationMarker component, HoverCard UI, QuerySettings refinements,
and ChatMessage enhancements for displaying document sources. Update dependencies
and docker-compose test configuration for improved development workflow.
- Add entity_chunks & relation_chunks storage
- Implement KEEP/FIFO limit strategies
- Update env.example with new settings
- Add migration for chunk tracking data
- Support all KV storage
- **Prompts**: Restructured prompts with clearer steps and quality guidelines. Simplified the relationship tuple by removing `relationship_strength`
- **Model**: Updated default entity types to be more comprehensive and consistently capitalized (e.g., `Location`, `Product`)
- Remove separate ENABLE_RERANK flag in favor of rerank_binding="null"
- Change default rerank binding from "cohere" to "null" (disabled)
- Update UI to display both rerank binding and model information
- Read config from selected_rerank_func when env var missing
- Make api_key optional for rerank function
- Add response format validation with proper error handling
- Update Cohere rerank default to official API endpoint
- Increase chunk_top_k from 10 to 20
- Reduce max_entity_tokens to 6000
- Reduce max_relation_tokens to 8000
- Update web UI default values
- Fix max_total_tokens to 30000
- Add env switch to toggle weighted polling vs vector-similarity strategy
- Implement similarity-based sorting with fallback to weighted
- Introduce batch vector read API for vector storage
- Implement vector store and retrive funtion for Nanovector DB
- Preserve default behavior (weighted polling selection method)
- Add ollama_server_infos attribute to LightRAG class with default initialization
- Move default values to constants.py for centralized configuration
- Refactor OllamaServerInfos class with property accessors and CLI support
- Update OllamaAPI to get configuration through rag object instead of direct import
- Add command line arguments for simulated model name and tag
- Fix type imports to avoid circular dependencies
This commit renames the parameter 'llm_model_max_token_size' to 'summary_max_tokens' for better clarity, as it specifically controls the token limit for entity relation summaries.
- Add 9 environment variables to /health endpoint configuration section
- Centralize default constants in lightrag/constants.py for consistency
- Update config.py to use centralized defaults for better maintainability