Commit graph

5 commits

Author SHA1 Message Date
clssck
663ada943a chore: add citation system and enhance RAG UI components
Add citation tracking and display system across backend and frontend components.
Backend changes include citation.py for document attribution, enhanced query routes
with citation metadata, improved prompt templates, and PostgreSQL schema updates.
Frontend includes CitationMarker component, HoverCard UI, QuerySettings refinements,
and ChatMessage enhancements for displaying document sources. Update dependencies
and docker-compose test configuration for improved development workflow.
2025-12-01 17:50:00 +01:00
clssck
43af31f888 feat: add db_degree visibility and orphan connection UI
Graph Connectivity Awareness:
- Add db_degree property to all KG implementations (NetworkX, Postgres, Neo4j, Mongo, Memgraph)
- Show database degree vs visual degree in node panel with amber badge
- Add visual indicator (amber border) for nodes with hidden connections
- Add "Load X hidden connection(s)" button to expand hidden neighbors
- Add configurable "Expand Depth" setting (1-5) in graph settings
- Use global maxNodes setting for node expansion consistency

Orphan Connection UI:
- Add OrphanConnectionDialog component for manual orphan entity connection
- Add OrphanConnectionControl button in graph sidebar
- Expose /graph/orphans/connect API endpoint for frontend use

Backend Improvements:
- Add get_orphan_entities() and connect_orphan_entities() to base storage
- Add orphan connection configuration parameters
- Improve entity extraction with relationship density requirements

Frontend:
- Add graphExpandDepth and graphIncludeOrphans to settings store
- Add min_degree and include_orphans graph filtering parameters
- Update translations (en.json, zh.json)
2025-11-29 21:08:07 +01:00
clssck
ef7327bb3e chore(docker-compose, lightrag): optimize test infrastructure and add evaluation tools
Add comprehensive E2E testing infrastructure with PostgreSQL performance tuning,
Gunicorn multi-worker support, and evaluation scripts for RAGAS-based quality
assessment. Introduces 4 new evaluation utilities: compare_results.py for A/B test
analysis, download_wikipedia.py for reproducible test datasets, e2e_test_harness.py
for automated evaluation pipelines, and ingest_test_docs.py for batch document
ingestion. Updates docker-compose.test.yml with aggressive async settings, memory
limits, and optimized chunking parameters. Parallelize entity summarization in
operate.py for improved extraction performance. Fix typos in merge node/edge logs.
2025-11-29 10:39:20 +01:00
clssck
d2c9e6e2ec test(lightrag): add orphan connection feature with quality validation tests
Implement automatic orphan entity connection system that identifies entities with
no relationships and creates meaningful connections via vector similarity + LLM
validation. This improves knowledge graph connectivity and retrieval quality.
Changes:
- Add orphan connection configuration parameters (thresholds, cross-connect settings)
- Implement aconnect_orphan_entities() method with 4-step validation pipeline
- Add SQL templates for efficient orphan and candidate entity queries
- Create POST /graph/orphans/connect API endpoint with configurable parameters
- Add orphan connection validation prompt for LLM-based relationship verification
- Include relationship density requirement in extraction prompts to prevent orphans
- Update docker-compose.test.yml with optimized extraction parameters
- Add quality validation test suite (run_quality_tests.py) for retrieval evaluation
- Add unit test framework (test_orphan_connection_quality.py) with test cases
- Enable auto-run of orphan connection after document processing
2025-11-28 18:23:30 +01:00
clssck
48c7732edc feat: add automatic entity resolution with 3-layer matching
Implement automatic entity resolution to prevent duplicate nodes in the
knowledge graph. The system uses a 3-layer approach:

1. Case-insensitive exact matching (free, instant)
2. Fuzzy string matching >85% threshold (free, instant)
3. Vector similarity + LLM verification (for acronyms/synonyms)

Key features:
- Pre-resolution phase prevents race conditions in parallel processing
- Numeric suffix detection blocks false matches (IL-4 ≠ IL-13)
- PostgreSQL alias cache for fast lookups on subsequent ingestion
- Configurable thresholds via environment variables

Bug fixes included:
- Fix fuzzy matching false positives for numbered entities
- Fix alias cache not being populated (missing db parameter)
- Skip entity_aliases table from generic id index creation

New files:
- lightrag/entity_resolution/ - Core resolution module
- tests/test_entity_resolution/ - Unit tests
- docker/postgres-age-vector/ - Custom PG image with pgvector + AGE
- docker-compose.test.yml - Integration test environment

Configuration (env.example):
- ENTITY_RESOLUTION_ENABLED=true
- ENTITY_RESOLUTION_FUZZY_THRESHOLD=0.85
- ENTITY_RESOLUTION_VECTOR_THRESHOLD=0.5
- ENTITY_RESOLUTION_MAX_CANDIDATES=3
2025-11-27 15:35:02 +01:00