LightRAG/docker-compose.test.yml
clssck ef7327bb3e chore(docker-compose, lightrag): optimize test infrastructure and add evaluation tools
Add comprehensive E2E testing infrastructure with PostgreSQL performance tuning,
Gunicorn multi-worker support, and evaluation scripts for RAGAS-based quality
assessment. Introduces 4 new evaluation utilities: compare_results.py for A/B test
analysis, download_wikipedia.py for reproducible test datasets, e2e_test_harness.py
for automated evaluation pipelines, and ingest_test_docs.py for batch document
ingestion. Updates docker-compose.test.yml with aggressive async settings, memory
limits, and optimized chunking parameters. Parallelize entity summarization in
operate.py for improved extraction performance. Fix typos in merge node/edge logs.
2025-11-29 10:39:20 +01:00

136 lines
4.4 KiB
YAML

name: lightrag-entity-resolution-test
services:
postgres:
container_name: lightrag-postgres
build:
context: ./docker/postgres-age-vector
dockerfile: Dockerfile
environment:
POSTGRES_DB: lightrag
POSTGRES_USER: lightrag
POSTGRES_PASSWORD: lightrag_pass
ports:
- "5433:5432" # Use 5433 to avoid conflict with agent-sdk postgres
volumes:
- pgdata_test:/var/lib/postgresql/data
command: |
postgres
-c shared_preload_libraries='vector,age'
-c max_connections=150
-c shared_buffers=768MB
-c work_mem=32MB
-c checkpoint_completion_target=0.9
-c effective_cache_size=2GB
-c maintenance_work_mem=192MB
-c wal_compression=on
-c checkpoint_timeout=10min
-c max_wal_size=1GB
-c random_page_cost=1.1
-c effective_io_concurrency=200
-c max_worker_processes=12
-c max_parallel_workers_per_gather=4
-c max_parallel_workers=8
-c max_parallel_maintenance_workers=4
-c jit_above_cost=50000
-c jit_inline_above_cost=250000
-c jit_optimize_above_cost=250000
-c default_statistics_target=200
-c hash_mem_multiplier=4
healthcheck:
test: ["CMD-SHELL", "pg_isready -U lightrag -d lightrag"]
interval: 5s
timeout: 5s
retries: 5
mem_limit: 2g
lightrag:
container_name: lightrag-test
build:
context: .
dockerfile: Dockerfile
ports:
- "9622:9621" # Use 9622 to avoid conflict
volumes:
- ./data/rag_storage_test:/app/data/rag_storage
- ./data/inputs_test:/app/data/inputs
environment:
# Server
- HOST=0.0.0.0
- PORT=9621
- LOG_LEVEL=DEBUG
# LLM (OpenAI)
- LLM_BINDING=openai
- LLM_MODEL=gpt-4o-mini
- LLM_BINDING_HOST=https://api.openai.com/v1
- LLM_BINDING_API_KEY=${OPENAI_API_KEY}
# Embedding
- EMBEDDING_BINDING=openai
- EMBEDDING_MODEL=text-embedding-3-small
- EMBEDDING_DIM=1536
- EMBEDDING_BINDING_HOST=https://api.openai.com/v1
- EMBEDDING_BINDING_API_KEY=${OPENAI_API_KEY}
# Storage Configuration - Full PostgreSQL!
# Custom postgres image has pgvector + Apache AGE
- LIGHTRAG_KV_STORAGE=PGKVStorage
- LIGHTRAG_VECTOR_STORAGE=PGVectorStorage
- LIGHTRAG_GRAPH_STORAGE=PGGraphStorage
- LIGHTRAG_DOC_STATUS_STORAGE=PGDocStatusStorage
- POSTGRES_HOST=postgres
- POSTGRES_PORT=5432
- POSTGRES_USER=lightrag
- POSTGRES_PASSWORD=lightrag_pass
- POSTGRES_DATABASE=lightrag
# Entity Resolution - ENABLED!
- ENTITY_RESOLUTION_ENABLED=true
- ENTITY_RESOLUTION_FUZZY_THRESHOLD=0.85
- ENTITY_RESOLUTION_VECTOR_THRESHOLD=0.5
- ENTITY_RESOLUTION_MAX_CANDIDATES=3
# Processing - Aggressive settings from agent-sdk
- MAX_ASYNC=96
- MAX_PARALLEL_INSERT=10
- EMBEDDING_FUNC_MAX_ASYNC=16
- EMBEDDING_BATCH_NUM=48
# Gunicorn - 8 workers x 4 threads = 32 concurrent handlers
- GUNICORN_CMD_ARGS=--workers=8 --worker-class=gthread --threads=4 --worker-connections=1000 --timeout=120 --keep-alive=5 --graceful-timeout=30
# Extraction Optimization - Reduce Orphan Nodes
- CHUNK_SIZE=800 # Smaller chunks for focused extraction
- CHUNK_OVERLAP_SIZE=400 # 50% overlap captures cross-boundary relationships
- MAX_GLEANING=1 # Enable gleaning refinement pass
- FORCE_LLM_SUMMARY_ON_MERGE=4 # More aggressive entity consolidation
# Orphan Connection - Self-healing graph
- AUTO_CONNECT_ORPHANS=true # Run orphan connection after each doc
- ORPHAN_CONNECTION_THRESHOLD=0.3 # Vector similarity pre-filter threshold
- ORPHAN_CONFIDENCE_THRESHOLD=0.7 # LLM confidence required for connection
- ORPHAN_CROSS_CONNECT=true # Allow orphan-to-orphan connections
depends_on:
postgres:
condition: service_healthy
entrypoint: []
command:
- python
- /app/lightrag/api/run_with_gunicorn.py
- --workers
- "8"
- --llm-binding
- openai
- --embedding-binding
- openai
healthcheck:
test: ["CMD-SHELL", "curl -f http://localhost:9621/health || exit 1"]
interval: 10s
timeout: 5s
retries: 10
start_period: 60s
mem_limit: 2g
volumes:
pgdata_test: