Combined entity and edge processing tasks and optimize merging with semaphore

This commit is contained in:
yangdx 2025-07-11 16:34:54 +08:00
parent 207f0a7f2a
commit ef4870fda5
2 changed files with 72 additions and 67 deletions

View file

@ -1078,7 +1078,6 @@ class LightRAG:
# Semphore is released here
# Concurrency is controlled by graph db lock for individual entities and relationships
if file_extraction_stage_ok:
try:
# Get chunk_results from entity_relation_task

View file

@ -1016,7 +1016,7 @@ async def _merge_edges_then_upsert(
)
for need_insert_id in [src_id, tgt_id]:
if (await knowledge_graph_inst.has_node(need_insert_id)):
if await knowledge_graph_inst.has_node(need_insert_id):
# This is so that the initial check for the existence of the node need not be locked
continue
async with get_graph_db_lock_keyed([need_insert_id], enable_logging=False):
@ -1124,7 +1124,6 @@ async def merge_nodes_and_edges(
llm_response_cache: LLM response cache
"""
# Collect all nodes and edges from all chunks
all_nodes = defaultdict(list)
all_edges = defaultdict(list)
@ -1145,92 +1144,99 @@ async def merge_nodes_and_edges(
# Merge nodes and edges
async with pipeline_status_lock:
log_message = (
f"Merging stage {current_file_number}/{total_files}: {file_path}"
)
log_message = f"Merging stage {current_file_number}/{total_files}: {file_path}"
logger.info(log_message)
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
# Process and update all entities at once
log_message = f"Updating {total_entities_count} entities {current_file_number}/{total_files}: {file_path}"
# Process and update all entities and relationships in parallel
log_message = f"Updating {total_entities_count} entities and {total_relations_count} relations {current_file_number}/{total_files}: {file_path}"
logger.info(log_message)
if pipeline_status is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
# Get max async tasks limit from global_config for semaphore control
llm_model_max_async = global_config.get("llm_model_max_async", 4)
semaphore = asyncio.Semaphore(llm_model_max_async)
async def _locked_process_entity_name(entity_name, entities):
async with get_graph_db_lock_keyed([entity_name], enable_logging=False):
entity_data = await _merge_nodes_then_upsert(
entity_name,
entities,
knowledge_graph_inst,
global_config,
pipeline_status,
pipeline_status_lock,
llm_response_cache,
)
if entity_vdb is not None:
data_for_vdb = {
compute_mdhash_id(entity_data["entity_name"], prefix="ent-"): {
"entity_name": entity_data["entity_name"],
"entity_type": entity_data["entity_type"],
"content": f"{entity_data['entity_name']}\n{entity_data['description']}",
"source_id": entity_data["source_id"],
"file_path": entity_data.get("file_path", "unknown_source"),
async with semaphore:
async with get_graph_db_lock_keyed([entity_name], enable_logging=False):
entity_data = await _merge_nodes_then_upsert(
entity_name,
entities,
knowledge_graph_inst,
global_config,
pipeline_status,
pipeline_status_lock,
llm_response_cache,
)
if entity_vdb is not None:
data_for_vdb = {
compute_mdhash_id(entity_data["entity_name"], prefix="ent-"): {
"entity_name": entity_data["entity_name"],
"entity_type": entity_data["entity_type"],
"content": f"{entity_data['entity_name']}\n{entity_data['description']}",
"source_id": entity_data["source_id"],
"file_path": entity_data.get("file_path", "unknown_source"),
}
}
}
await entity_vdb.upsert(data_for_vdb)
return entity_data
tasks = []
for entity_name, entities in all_nodes.items():
tasks.append(asyncio.create_task(_locked_process_entity_name(entity_name, entities)))
await asyncio.gather(*tasks)
# Process and update all relationships at once
log_message = f"Updating {total_relations_count} relations {current_file_number}/{total_files}: {file_path}"
logger.info(log_message)
if pipeline_status is not None:
async with pipeline_status_lock:
pipeline_status["latest_message"] = log_message
pipeline_status["history_messages"].append(log_message)
await entity_vdb.upsert(data_for_vdb)
return entity_data
async def _locked_process_edges(edge_key, edges):
async with get_graph_db_lock_keyed(f"{edge_key[0]}-{edge_key[1]}", enable_logging=False):
edge_data = await _merge_edges_then_upsert(
edge_key[0],
edge_key[1],
edges,
knowledge_graph_inst,
global_config,
pipeline_status,
pipeline_status_lock,
llm_response_cache,
)
if edge_data is None:
return None
async with semaphore:
async with get_graph_db_lock_keyed(
f"{edge_key[0]}-{edge_key[1]}", enable_logging=False
):
edge_data = await _merge_edges_then_upsert(
edge_key[0],
edge_key[1],
edges,
knowledge_graph_inst,
global_config,
pipeline_status,
pipeline_status_lock,
llm_response_cache,
)
if edge_data is None:
return None
if relationships_vdb is not None:
data_for_vdb = {
compute_mdhash_id(edge_data["src_id"] + edge_data["tgt_id"], prefix="rel-"): {
"src_id": edge_data["src_id"],
"tgt_id": edge_data["tgt_id"],
"keywords": edge_data["keywords"],
"content": f"{edge_data['src_id']}\t{edge_data['tgt_id']}\n{edge_data['keywords']}\n{edge_data['description']}",
"source_id": edge_data["source_id"],
"file_path": edge_data.get("file_path", "unknown_source"),
if relationships_vdb is not None:
data_for_vdb = {
compute_mdhash_id(
edge_data["src_id"] + edge_data["tgt_id"], prefix="rel-"
): {
"src_id": edge_data["src_id"],
"tgt_id": edge_data["tgt_id"],
"keywords": edge_data["keywords"],
"content": f"{edge_data['src_id']}\t{edge_data['tgt_id']}\n{edge_data['keywords']}\n{edge_data['description']}",
"source_id": edge_data["source_id"],
"file_path": edge_data.get("file_path", "unknown_source"),
}
}
}
await relationships_vdb.upsert(data_for_vdb)
return edge_data
await relationships_vdb.upsert(data_for_vdb)
return edge_data
# Create a single task queue for both entities and edges
tasks = []
# Add entity processing tasks
for entity_name, entities in all_nodes.items():
tasks.append(
asyncio.create_task(_locked_process_entity_name(entity_name, entities))
)
# Add edge processing tasks
for edge_key, edges in all_edges.items():
tasks.append(asyncio.create_task(_locked_process_edges(edge_key, edges)))
# Execute all tasks in parallel with semaphore control
await asyncio.gather(*tasks)
async def extract_entities(
chunks: dict[str, TextChunkSchema],
global_config: dict[str, str],