Merge branch 'main' into merge_lock_with_key
This commit is contained in:
commit
207f0a7f2a
11 changed files with 1006 additions and 11 deletions
|
|
@ -30,7 +30,7 @@
|
|||
<a href="https://github.com/HKUDS/LightRAG/issues/285"><img src="https://img.shields.io/badge/💬微信群-交流-07c160?style=for-the-badge&logo=wechat&logoColor=white&labelColor=1a1a2e"></a>
|
||||
</p>
|
||||
<p>
|
||||
<a href="README_zh.md"><img src="https://img.shields.io/badge/🇨🇳中文版-1a1a2e?style=for-the-badge"></a>
|
||||
<a href="README-zh.md"><img src="https://img.shields.io/badge/🇨🇳中文版-1a1a2e?style=for-the-badge"></a>
|
||||
<a href="README.md"><img src="https://img.shields.io/badge/🇺🇸English-1a1a2e?style=for-the-badge"></a>
|
||||
</p>
|
||||
</div>
|
||||
|
|
|
|||
35
README.md
35
README.md
|
|
@ -860,6 +860,41 @@ rag = LightRAG(
|
|||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary> <b>Using Memgraph for Storage</b> </summary>
|
||||
|
||||
* Memgraph is a high-performance, in-memory graph database compatible with the Neo4j Bolt protocol.
|
||||
* You can run Memgraph locally using Docker for easy testing:
|
||||
* See: https://memgraph.com/download
|
||||
|
||||
```python
|
||||
export MEMGRAPH_URI="bolt://localhost:7687"
|
||||
|
||||
# Setup logger for LightRAG
|
||||
setup_logger("lightrag", level="INFO")
|
||||
|
||||
# When you launch the project, override the default KG: NetworkX
|
||||
# by specifying kg="MemgraphStorage".
|
||||
|
||||
# Note: Default settings use NetworkX
|
||||
# Initialize LightRAG with Memgraph implementation.
|
||||
async def initialize_rag():
|
||||
rag = LightRAG(
|
||||
working_dir=WORKING_DIR,
|
||||
llm_model_func=gpt_4o_mini_complete, # Use gpt_4o_mini_complete LLM model
|
||||
graph_storage="MemgraphStorage", #<-----------override KG default
|
||||
)
|
||||
|
||||
# Initialize database connections
|
||||
await rag.initialize_storages()
|
||||
# Initialize pipeline status for document processing
|
||||
await initialize_pipeline_status()
|
||||
|
||||
return rag
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
## Edit Entities and Relations
|
||||
|
||||
LightRAG now supports comprehensive knowledge graph management capabilities, allowing you to create, edit, and delete entities and relationships within your knowledge graph.
|
||||
|
|
|
|||
|
|
@ -21,3 +21,6 @@ password = your_password
|
|||
database = your_database
|
||||
workspace = default # 可选,默认为default
|
||||
max_connections = 12
|
||||
|
||||
[memgraph]
|
||||
uri = bolt://localhost:7687
|
||||
|
|
|
|||
10
env.example
10
env.example
|
|
@ -134,13 +134,14 @@ EMBEDDING_BINDING_HOST=http://localhost:11434
|
|||
# LIGHTRAG_VECTOR_STORAGE=QdrantVectorDBStorage
|
||||
### Graph Storage (Recommended for production deployment)
|
||||
# LIGHTRAG_GRAPH_STORAGE=Neo4JStorage
|
||||
# LIGHTRAG_GRAPH_STORAGE=MemgraphStorage
|
||||
|
||||
####################################################################
|
||||
### Default workspace for all storage types
|
||||
### For the purpose of isolation of data for each LightRAG instance
|
||||
### Valid characters: a-z, A-Z, 0-9, and _
|
||||
####################################################################
|
||||
# WORKSPACE=doc—
|
||||
# WORKSPACE=space1
|
||||
|
||||
### PostgreSQL Configuration
|
||||
POSTGRES_HOST=localhost
|
||||
|
|
@ -179,3 +180,10 @@ QDRANT_URL=http://localhost:6333
|
|||
### Redis
|
||||
REDIS_URI=redis://localhost:6379
|
||||
# REDIS_WORKSPACE=forced_workspace_name
|
||||
|
||||
### Memgraph Configuration
|
||||
MEMGRAPH_URI=bolt://localhost:7687
|
||||
MEMGRAPH_USERNAME=
|
||||
MEMGRAPH_PASSWORD=
|
||||
MEMGRAPH_DATABASE=memgraph
|
||||
# MEMGRAPH_WORKSPACE=forced_workspace_name
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@ STORAGE_IMPLEMENTATIONS = {
|
|||
"Neo4JStorage",
|
||||
"PGGraphStorage",
|
||||
"MongoGraphStorage",
|
||||
"MemgraphStorage",
|
||||
# "AGEStorage",
|
||||
# "TiDBGraphStorage",
|
||||
# "GremlinStorage",
|
||||
|
|
@ -57,6 +58,7 @@ STORAGE_ENV_REQUIREMENTS: dict[str, list[str]] = {
|
|||
"NetworkXStorage": [],
|
||||
"Neo4JStorage": ["NEO4J_URI", "NEO4J_USERNAME", "NEO4J_PASSWORD"],
|
||||
"MongoGraphStorage": [],
|
||||
"MemgraphStorage": ["MEMGRAPH_URI"],
|
||||
# "TiDBGraphStorage": ["TIDB_USER", "TIDB_PASSWORD", "TIDB_DATABASE"],
|
||||
"AGEStorage": [
|
||||
"AGE_POSTGRES_DB",
|
||||
|
|
@ -111,6 +113,7 @@ STORAGES = {
|
|||
"PGDocStatusStorage": ".kg.postgres_impl",
|
||||
"FaissVectorDBStorage": ".kg.faiss_impl",
|
||||
"QdrantVectorDBStorage": ".kg.qdrant_impl",
|
||||
"MemgraphStorage": ".kg.memgraph_impl",
|
||||
}
|
||||
|
||||
|
||||
|
|
|
|||
906
lightrag/kg/memgraph_impl.py
Normal file
906
lightrag/kg/memgraph_impl.py
Normal file
|
|
@ -0,0 +1,906 @@
|
|||
import os
|
||||
from dataclasses import dataclass
|
||||
from typing import final
|
||||
import configparser
|
||||
|
||||
from ..utils import logger
|
||||
from ..base import BaseGraphStorage
|
||||
from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
|
||||
from ..constants import GRAPH_FIELD_SEP
|
||||
import pipmaster as pm
|
||||
|
||||
if not pm.is_installed("neo4j"):
|
||||
pm.install("neo4j")
|
||||
|
||||
from neo4j import (
|
||||
AsyncGraphDatabase,
|
||||
AsyncManagedTransaction,
|
||||
)
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# use the .env that is inside the current folder
|
||||
load_dotenv(dotenv_path=".env", override=False)
|
||||
|
||||
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
|
||||
|
||||
config = configparser.ConfigParser()
|
||||
config.read("config.ini", "utf-8")
|
||||
|
||||
|
||||
@final
|
||||
@dataclass
|
||||
class MemgraphStorage(BaseGraphStorage):
|
||||
def __init__(self, namespace, global_config, embedding_func, workspace=None):
|
||||
memgraph_workspace = os.environ.get("MEMGRAPH_WORKSPACE")
|
||||
if memgraph_workspace and memgraph_workspace.strip():
|
||||
workspace = memgraph_workspace
|
||||
super().__init__(
|
||||
namespace=namespace,
|
||||
workspace=workspace or "",
|
||||
global_config=global_config,
|
||||
embedding_func=embedding_func,
|
||||
)
|
||||
self._driver = None
|
||||
|
||||
def _get_workspace_label(self) -> str:
|
||||
"""Get workspace label, return 'base' for compatibility when workspace is empty"""
|
||||
workspace = getattr(self, "workspace", None)
|
||||
return workspace if workspace else "base"
|
||||
|
||||
async def initialize(self):
|
||||
URI = os.environ.get(
|
||||
"MEMGRAPH_URI",
|
||||
config.get("memgraph", "uri", fallback="bolt://localhost:7687"),
|
||||
)
|
||||
USERNAME = os.environ.get(
|
||||
"MEMGRAPH_USERNAME", config.get("memgraph", "username", fallback="")
|
||||
)
|
||||
PASSWORD = os.environ.get(
|
||||
"MEMGRAPH_PASSWORD", config.get("memgraph", "password", fallback="")
|
||||
)
|
||||
DATABASE = os.environ.get(
|
||||
"MEMGRAPH_DATABASE", config.get("memgraph", "database", fallback="memgraph")
|
||||
)
|
||||
|
||||
self._driver = AsyncGraphDatabase.driver(
|
||||
URI,
|
||||
auth=(USERNAME, PASSWORD),
|
||||
)
|
||||
self._DATABASE = DATABASE
|
||||
try:
|
||||
async with self._driver.session(database=DATABASE) as session:
|
||||
# Create index for base nodes on entity_id if it doesn't exist
|
||||
try:
|
||||
workspace_label = self._get_workspace_label()
|
||||
await session.run(
|
||||
f"""CREATE INDEX ON :{workspace_label}(entity_id)"""
|
||||
)
|
||||
logger.info(
|
||||
f"Created index on :{workspace_label}(entity_id) in Memgraph."
|
||||
)
|
||||
except Exception as e:
|
||||
# Index may already exist, which is not an error
|
||||
logger.warning(
|
||||
f"Index creation on :{workspace_label}(entity_id) may have failed or already exists: {e}"
|
||||
)
|
||||
await session.run("RETURN 1")
|
||||
logger.info(f"Connected to Memgraph at {URI}")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to connect to Memgraph at {URI}: {e}")
|
||||
raise
|
||||
|
||||
async def finalize(self):
|
||||
if self._driver is not None:
|
||||
await self._driver.close()
|
||||
self._driver = None
|
||||
|
||||
async def __aexit__(self, exc_type, exc, tb):
|
||||
await self.finalize()
|
||||
|
||||
async def index_done_callback(self):
|
||||
# Memgraph handles persistence automatically
|
||||
pass
|
||||
|
||||
async def has_node(self, node_id: str) -> bool:
|
||||
"""
|
||||
Check if a node exists in the graph.
|
||||
|
||||
Args:
|
||||
node_id: The ID of the node to check.
|
||||
|
||||
Returns:
|
||||
bool: True if the node exists, False otherwise.
|
||||
|
||||
Raises:
|
||||
Exception: If there is an error checking the node existence.
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
async with self._driver.session(
|
||||
database=self._DATABASE, default_access_mode="READ"
|
||||
) as session:
|
||||
try:
|
||||
workspace_label = self._get_workspace_label()
|
||||
query = f"MATCH (n:`{workspace_label}` {{entity_id: $entity_id}}) RETURN count(n) > 0 AS node_exists"
|
||||
result = await session.run(query, entity_id=node_id)
|
||||
single_result = await result.single()
|
||||
await result.consume() # Ensure result is fully consumed
|
||||
return (
|
||||
single_result["node_exists"] if single_result is not None else False
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error checking node existence for {node_id}: {str(e)}")
|
||||
await result.consume() # Ensure the result is consumed even on error
|
||||
raise
|
||||
|
||||
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
||||
"""
|
||||
Check if an edge exists between two nodes in the graph.
|
||||
|
||||
Args:
|
||||
source_node_id: The ID of the source node.
|
||||
target_node_id: The ID of the target node.
|
||||
|
||||
Returns:
|
||||
bool: True if the edge exists, False otherwise.
|
||||
|
||||
Raises:
|
||||
Exception: If there is an error checking the edge existence.
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
async with self._driver.session(
|
||||
database=self._DATABASE, default_access_mode="READ"
|
||||
) as session:
|
||||
try:
|
||||
workspace_label = self._get_workspace_label()
|
||||
query = (
|
||||
f"MATCH (a:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(b:`{workspace_label}` {{entity_id: $target_entity_id}}) "
|
||||
"RETURN COUNT(r) > 0 AS edgeExists"
|
||||
)
|
||||
result = await session.run(
|
||||
query,
|
||||
source_entity_id=source_node_id,
|
||||
target_entity_id=target_node_id,
|
||||
) # type: ignore
|
||||
single_result = await result.single()
|
||||
await result.consume() # Ensure result is fully consumed
|
||||
return (
|
||||
single_result["edgeExists"] if single_result is not None else False
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error checking edge existence between {source_node_id} and {target_node_id}: {str(e)}"
|
||||
)
|
||||
await result.consume() # Ensure the result is consumed even on error
|
||||
raise
|
||||
|
||||
async def get_node(self, node_id: str) -> dict[str, str] | None:
|
||||
"""Get node by its label identifier, return only node properties
|
||||
|
||||
Args:
|
||||
node_id: The node label to look up
|
||||
|
||||
Returns:
|
||||
dict: Node properties if found
|
||||
None: If node not found
|
||||
|
||||
Raises:
|
||||
Exception: If there is an error executing the query
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
async with self._driver.session(
|
||||
database=self._DATABASE, default_access_mode="READ"
|
||||
) as session:
|
||||
try:
|
||||
workspace_label = self._get_workspace_label()
|
||||
query = (
|
||||
f"MATCH (n:`{workspace_label}` {{entity_id: $entity_id}}) RETURN n"
|
||||
)
|
||||
result = await session.run(query, entity_id=node_id)
|
||||
try:
|
||||
records = await result.fetch(
|
||||
2
|
||||
) # Get 2 records for duplication check
|
||||
|
||||
if len(records) > 1:
|
||||
logger.warning(
|
||||
f"Multiple nodes found with label '{node_id}'. Using first node."
|
||||
)
|
||||
if records:
|
||||
node = records[0]["n"]
|
||||
node_dict = dict(node)
|
||||
# Remove workspace label from labels list if it exists
|
||||
if "labels" in node_dict:
|
||||
node_dict["labels"] = [
|
||||
label
|
||||
for label in node_dict["labels"]
|
||||
if label != workspace_label
|
||||
]
|
||||
return node_dict
|
||||
return None
|
||||
finally:
|
||||
await result.consume() # Ensure result is fully consumed
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting node for {node_id}: {str(e)}")
|
||||
raise
|
||||
|
||||
async def node_degree(self, node_id: str) -> int:
|
||||
"""Get the degree (number of relationships) of a node with the given label.
|
||||
If multiple nodes have the same label, returns the degree of the first node.
|
||||
If no node is found, returns 0.
|
||||
|
||||
Args:
|
||||
node_id: The label of the node
|
||||
|
||||
Returns:
|
||||
int: The number of relationships the node has, or 0 if no node found
|
||||
|
||||
Raises:
|
||||
Exception: If there is an error executing the query
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
async with self._driver.session(
|
||||
database=self._DATABASE, default_access_mode="READ"
|
||||
) as session:
|
||||
try:
|
||||
workspace_label = self._get_workspace_label()
|
||||
query = f"""
|
||||
MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
|
||||
OPTIONAL MATCH (n)-[r]-()
|
||||
RETURN COUNT(r) AS degree
|
||||
"""
|
||||
result = await session.run(query, entity_id=node_id)
|
||||
try:
|
||||
record = await result.single()
|
||||
|
||||
if not record:
|
||||
logger.warning(f"No node found with label '{node_id}'")
|
||||
return 0
|
||||
|
||||
degree = record["degree"]
|
||||
return degree
|
||||
finally:
|
||||
await result.consume() # Ensure result is fully consumed
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting node degree for {node_id}: {str(e)}")
|
||||
raise
|
||||
|
||||
async def get_all_labels(self) -> list[str]:
|
||||
"""
|
||||
Get all existing node labels in the database
|
||||
Returns:
|
||||
["Person", "Company", ...] # Alphabetically sorted label list
|
||||
|
||||
Raises:
|
||||
Exception: If there is an error executing the query
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
async with self._driver.session(
|
||||
database=self._DATABASE, default_access_mode="READ"
|
||||
) as session:
|
||||
try:
|
||||
workspace_label = self._get_workspace_label()
|
||||
query = f"""
|
||||
MATCH (n:`{workspace_label}`)
|
||||
WHERE n.entity_id IS NOT NULL
|
||||
RETURN DISTINCT n.entity_id AS label
|
||||
ORDER BY label
|
||||
"""
|
||||
result = await session.run(query)
|
||||
labels = []
|
||||
async for record in result:
|
||||
labels.append(record["label"])
|
||||
await result.consume()
|
||||
return labels
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting all labels: {str(e)}")
|
||||
await result.consume() # Ensure the result is consumed even on error
|
||||
raise
|
||||
|
||||
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
|
||||
"""Retrieves all edges (relationships) for a particular node identified by its label.
|
||||
|
||||
Args:
|
||||
source_node_id: Label of the node to get edges for
|
||||
|
||||
Returns:
|
||||
list[tuple[str, str]]: List of (source_label, target_label) tuples representing edges
|
||||
None: If no edges found
|
||||
|
||||
Raises:
|
||||
Exception: If there is an error executing the query
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
try:
|
||||
async with self._driver.session(
|
||||
database=self._DATABASE, default_access_mode="READ"
|
||||
) as session:
|
||||
try:
|
||||
workspace_label = self._get_workspace_label()
|
||||
query = f"""MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
|
||||
OPTIONAL MATCH (n)-[r]-(connected:`{workspace_label}`)
|
||||
WHERE connected.entity_id IS NOT NULL
|
||||
RETURN n, r, connected"""
|
||||
results = await session.run(query, entity_id=source_node_id)
|
||||
|
||||
edges = []
|
||||
async for record in results:
|
||||
source_node = record["n"]
|
||||
connected_node = record["connected"]
|
||||
|
||||
# Skip if either node is None
|
||||
if not source_node or not connected_node:
|
||||
continue
|
||||
|
||||
source_label = (
|
||||
source_node.get("entity_id")
|
||||
if source_node.get("entity_id")
|
||||
else None
|
||||
)
|
||||
target_label = (
|
||||
connected_node.get("entity_id")
|
||||
if connected_node.get("entity_id")
|
||||
else None
|
||||
)
|
||||
|
||||
if source_label and target_label:
|
||||
edges.append((source_label, target_label))
|
||||
|
||||
await results.consume() # Ensure results are consumed
|
||||
return edges
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error getting edges for node {source_node_id}: {str(e)}"
|
||||
)
|
||||
await results.consume() # Ensure results are consumed even on error
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Error in get_node_edges for {source_node_id}: {str(e)}")
|
||||
raise
|
||||
|
||||
async def get_edge(
|
||||
self, source_node_id: str, target_node_id: str
|
||||
) -> dict[str, str] | None:
|
||||
"""Get edge properties between two nodes.
|
||||
|
||||
Args:
|
||||
source_node_id: Label of the source node
|
||||
target_node_id: Label of the target node
|
||||
|
||||
Returns:
|
||||
dict: Edge properties if found, default properties if not found or on error
|
||||
|
||||
Raises:
|
||||
Exception: If there is an error executing the query
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
async with self._driver.session(
|
||||
database=self._DATABASE, default_access_mode="READ"
|
||||
) as session:
|
||||
try:
|
||||
workspace_label = self._get_workspace_label()
|
||||
query = f"""
|
||||
MATCH (start:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(end:`{workspace_label}` {{entity_id: $target_entity_id}})
|
||||
RETURN properties(r) as edge_properties
|
||||
"""
|
||||
result = await session.run(
|
||||
query,
|
||||
source_entity_id=source_node_id,
|
||||
target_entity_id=target_node_id,
|
||||
)
|
||||
records = await result.fetch(2)
|
||||
await result.consume()
|
||||
if records:
|
||||
edge_result = dict(records[0]["edge_properties"])
|
||||
for key, default_value in {
|
||||
"weight": 0.0,
|
||||
"source_id": None,
|
||||
"description": None,
|
||||
"keywords": None,
|
||||
}.items():
|
||||
if key not in edge_result:
|
||||
edge_result[key] = default_value
|
||||
logger.warning(
|
||||
f"Edge between {source_node_id} and {target_node_id} is missing property: {key}. Using default value: {default_value}"
|
||||
)
|
||||
return edge_result
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error getting edge between {source_node_id} and {target_node_id}: {str(e)}"
|
||||
)
|
||||
await result.consume() # Ensure the result is consumed even on error
|
||||
raise
|
||||
|
||||
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
|
||||
"""
|
||||
Upsert a node in the Neo4j database.
|
||||
|
||||
Args:
|
||||
node_id: The unique identifier for the node (used as label)
|
||||
node_data: Dictionary of node properties
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
properties = node_data
|
||||
entity_type = properties["entity_type"]
|
||||
if "entity_id" not in properties:
|
||||
raise ValueError("Neo4j: node properties must contain an 'entity_id' field")
|
||||
|
||||
try:
|
||||
async with self._driver.session(database=self._DATABASE) as session:
|
||||
workspace_label = self._get_workspace_label()
|
||||
|
||||
async def execute_upsert(tx: AsyncManagedTransaction):
|
||||
query = f"""
|
||||
MERGE (n:`{workspace_label}` {{entity_id: $entity_id}})
|
||||
SET n += $properties
|
||||
SET n:`{entity_type}`
|
||||
"""
|
||||
result = await tx.run(
|
||||
query, entity_id=node_id, properties=properties
|
||||
)
|
||||
await result.consume() # Ensure result is fully consumed
|
||||
|
||||
await session.execute_write(execute_upsert)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during upsert: {str(e)}")
|
||||
raise
|
||||
|
||||
async def upsert_edge(
|
||||
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
|
||||
) -> None:
|
||||
"""
|
||||
Upsert an edge and its properties between two nodes identified by their labels.
|
||||
Ensures both source and target nodes exist and are unique before creating the edge.
|
||||
Uses entity_id property to uniquely identify nodes.
|
||||
|
||||
Args:
|
||||
source_node_id (str): Label of the source node (used as identifier)
|
||||
target_node_id (str): Label of the target node (used as identifier)
|
||||
edge_data (dict): Dictionary of properties to set on the edge
|
||||
|
||||
Raises:
|
||||
Exception: If there is an error executing the query
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
try:
|
||||
edge_properties = edge_data
|
||||
async with self._driver.session(database=self._DATABASE) as session:
|
||||
|
||||
async def execute_upsert(tx: AsyncManagedTransaction):
|
||||
workspace_label = self._get_workspace_label()
|
||||
query = f"""
|
||||
MATCH (source:`{workspace_label}` {{entity_id: $source_entity_id}})
|
||||
WITH source
|
||||
MATCH (target:`{workspace_label}` {{entity_id: $target_entity_id}})
|
||||
MERGE (source)-[r:DIRECTED]-(target)
|
||||
SET r += $properties
|
||||
RETURN r, source, target
|
||||
"""
|
||||
result = await tx.run(
|
||||
query,
|
||||
source_entity_id=source_node_id,
|
||||
target_entity_id=target_node_id,
|
||||
properties=edge_properties,
|
||||
)
|
||||
try:
|
||||
await result.fetch(2)
|
||||
finally:
|
||||
await result.consume() # Ensure result is consumed
|
||||
|
||||
await session.execute_write(execute_upsert)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during edge upsert: {str(e)}")
|
||||
raise
|
||||
|
||||
async def delete_node(self, node_id: str) -> None:
|
||||
"""Delete a node with the specified label
|
||||
|
||||
Args:
|
||||
node_id: The label of the node to delete
|
||||
|
||||
Raises:
|
||||
Exception: If there is an error executing the query
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
|
||||
async def _do_delete(tx: AsyncManagedTransaction):
|
||||
workspace_label = self._get_workspace_label()
|
||||
query = f"""
|
||||
MATCH (n:`{workspace_label}` {{entity_id: $entity_id}})
|
||||
DETACH DELETE n
|
||||
"""
|
||||
result = await tx.run(query, entity_id=node_id)
|
||||
logger.debug(f"Deleted node with label {node_id}")
|
||||
await result.consume()
|
||||
|
||||
try:
|
||||
async with self._driver.session(database=self._DATABASE) as session:
|
||||
await session.execute_write(_do_delete)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during node deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
async def remove_nodes(self, nodes: list[str]):
|
||||
"""Delete multiple nodes
|
||||
|
||||
Args:
|
||||
nodes: List of node labels to be deleted
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
for node in nodes:
|
||||
await self.delete_node(node)
|
||||
|
||||
async def remove_edges(self, edges: list[tuple[str, str]]):
|
||||
"""Delete multiple edges
|
||||
|
||||
Args:
|
||||
edges: List of edges to be deleted, each edge is a (source, target) tuple
|
||||
|
||||
Raises:
|
||||
Exception: If there is an error executing the query
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
for source, target in edges:
|
||||
|
||||
async def _do_delete_edge(tx: AsyncManagedTransaction):
|
||||
workspace_label = self._get_workspace_label()
|
||||
query = f"""
|
||||
MATCH (source:`{workspace_label}` {{entity_id: $source_entity_id}})-[r]-(target:`{workspace_label}` {{entity_id: $target_entity_id}})
|
||||
DELETE r
|
||||
"""
|
||||
result = await tx.run(
|
||||
query, source_entity_id=source, target_entity_id=target
|
||||
)
|
||||
logger.debug(f"Deleted edge from '{source}' to '{target}'")
|
||||
await result.consume() # Ensure result is fully consumed
|
||||
|
||||
try:
|
||||
async with self._driver.session(database=self._DATABASE) as session:
|
||||
await session.execute_write(_do_delete_edge)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during edge deletion: {str(e)}")
|
||||
raise
|
||||
|
||||
async def drop(self) -> dict[str, str]:
|
||||
"""Drop all data from the current workspace and clean up resources
|
||||
|
||||
This method will delete all nodes and relationships in the Memgraph database.
|
||||
|
||||
Returns:
|
||||
dict[str, str]: Operation status and message
|
||||
- On success: {"status": "success", "message": "data dropped"}
|
||||
- On failure: {"status": "error", "message": "<error details>"}
|
||||
|
||||
Raises:
|
||||
Exception: If there is an error executing the query
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
try:
|
||||
async with self._driver.session(database=self._DATABASE) as session:
|
||||
workspace_label = self._get_workspace_label()
|
||||
query = f"MATCH (n:`{workspace_label}`) DETACH DELETE n"
|
||||
result = await session.run(query)
|
||||
await result.consume()
|
||||
logger.info(
|
||||
f"Dropped workspace {workspace_label} from Memgraph database {self._DATABASE}"
|
||||
)
|
||||
return {"status": "success", "message": "workspace data dropped"}
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error dropping workspace {workspace_label} from Memgraph database {self._DATABASE}: {e}"
|
||||
)
|
||||
return {"status": "error", "message": str(e)}
|
||||
|
||||
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
||||
"""Get the total degree (sum of relationships) of two nodes.
|
||||
|
||||
Args:
|
||||
src_id: Label of the source node
|
||||
tgt_id: Label of the target node
|
||||
|
||||
Returns:
|
||||
int: Sum of the degrees of both nodes
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
src_degree = await self.node_degree(src_id)
|
||||
trg_degree = await self.node_degree(tgt_id)
|
||||
|
||||
# Convert None to 0 for addition
|
||||
src_degree = 0 if src_degree is None else src_degree
|
||||
trg_degree = 0 if trg_degree is None else trg_degree
|
||||
|
||||
degrees = int(src_degree) + int(trg_degree)
|
||||
return degrees
|
||||
|
||||
async def get_nodes_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
|
||||
"""Get all nodes that are associated with the given chunk_ids.
|
||||
|
||||
Args:
|
||||
chunk_ids: List of chunk IDs to find associated nodes for
|
||||
|
||||
Returns:
|
||||
list[dict]: A list of nodes, where each node is a dictionary of its properties.
|
||||
An empty list if no matching nodes are found.
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
workspace_label = self._get_workspace_label()
|
||||
async with self._driver.session(
|
||||
database=self._DATABASE, default_access_mode="READ"
|
||||
) as session:
|
||||
query = f"""
|
||||
UNWIND $chunk_ids AS chunk_id
|
||||
MATCH (n:`{workspace_label}`)
|
||||
WHERE n.source_id IS NOT NULL AND chunk_id IN split(n.source_id, $sep)
|
||||
RETURN DISTINCT n
|
||||
"""
|
||||
result = await session.run(query, chunk_ids=chunk_ids, sep=GRAPH_FIELD_SEP)
|
||||
nodes = []
|
||||
async for record in result:
|
||||
node = record["n"]
|
||||
node_dict = dict(node)
|
||||
node_dict["id"] = node_dict.get("entity_id")
|
||||
nodes.append(node_dict)
|
||||
await result.consume()
|
||||
return nodes
|
||||
|
||||
async def get_edges_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
|
||||
"""Get all edges that are associated with the given chunk_ids.
|
||||
|
||||
Args:
|
||||
chunk_ids: List of chunk IDs to find associated edges for
|
||||
|
||||
Returns:
|
||||
list[dict]: A list of edges, where each edge is a dictionary of its properties.
|
||||
An empty list if no matching edges are found.
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
workspace_label = self._get_workspace_label()
|
||||
async with self._driver.session(
|
||||
database=self._DATABASE, default_access_mode="READ"
|
||||
) as session:
|
||||
query = f"""
|
||||
UNWIND $chunk_ids AS chunk_id
|
||||
MATCH (a:`{workspace_label}`)-[r]-(b:`{workspace_label}`)
|
||||
WHERE r.source_id IS NOT NULL AND chunk_id IN split(r.source_id, $sep)
|
||||
WITH a, b, r, a.entity_id AS source_id, b.entity_id AS target_id
|
||||
// Ensure we only return each unique edge once by ordering the source and target
|
||||
WITH a, b, r,
|
||||
CASE WHEN source_id <= target_id THEN source_id ELSE target_id END AS ordered_source,
|
||||
CASE WHEN source_id <= target_id THEN target_id ELSE source_id END AS ordered_target
|
||||
RETURN DISTINCT ordered_source AS source, ordered_target AS target, properties(r) AS properties
|
||||
"""
|
||||
result = await session.run(query, chunk_ids=chunk_ids, sep=GRAPH_FIELD_SEP)
|
||||
edges = []
|
||||
async for record in result:
|
||||
edge_properties = record["properties"]
|
||||
edge_properties["source"] = record["source"]
|
||||
edge_properties["target"] = record["target"]
|
||||
edges.append(edge_properties)
|
||||
await result.consume()
|
||||
return edges
|
||||
|
||||
async def get_knowledge_graph(
|
||||
self,
|
||||
node_label: str,
|
||||
max_depth: int = 3,
|
||||
max_nodes: int = MAX_GRAPH_NODES,
|
||||
) -> KnowledgeGraph:
|
||||
"""
|
||||
Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
|
||||
|
||||
Args:
|
||||
node_label: Label of the starting node, * means all nodes
|
||||
max_depth: Maximum depth of the subgraph, Defaults to 3
|
||||
max_nodes: Maxiumu nodes to return by BFS, Defaults to 1000
|
||||
|
||||
Returns:
|
||||
KnowledgeGraph object containing nodes and edges, with an is_truncated flag
|
||||
indicating whether the graph was truncated due to max_nodes limit
|
||||
|
||||
Raises:
|
||||
Exception: If there is an error executing the query
|
||||
"""
|
||||
if self._driver is None:
|
||||
raise RuntimeError(
|
||||
"Memgraph driver is not initialized. Call 'await initialize()' first."
|
||||
)
|
||||
|
||||
result = KnowledgeGraph()
|
||||
seen_nodes = set()
|
||||
seen_edges = set()
|
||||
workspace_label = self._get_workspace_label()
|
||||
async with self._driver.session(
|
||||
database=self._DATABASE, default_access_mode="READ"
|
||||
) as session:
|
||||
try:
|
||||
if node_label == "*":
|
||||
# First check if database has any nodes
|
||||
count_query = "MATCH (n) RETURN count(n) as total"
|
||||
count_result = None
|
||||
total_count = 0
|
||||
try:
|
||||
count_result = await session.run(count_query)
|
||||
count_record = await count_result.single()
|
||||
if count_record:
|
||||
total_count = count_record["total"]
|
||||
if total_count == 0:
|
||||
logger.debug("No nodes found in database")
|
||||
return result
|
||||
if total_count > max_nodes:
|
||||
result.is_truncated = True
|
||||
logger.info(
|
||||
f"Graph truncated: {total_count} nodes found, limited to {max_nodes}"
|
||||
)
|
||||
finally:
|
||||
if count_result:
|
||||
await count_result.consume()
|
||||
|
||||
# Run the main query to get nodes with highest degree
|
||||
main_query = f"""
|
||||
MATCH (n:`{workspace_label}`)
|
||||
OPTIONAL MATCH (n)-[r]-()
|
||||
WITH n, COALESCE(count(r), 0) AS degree
|
||||
ORDER BY degree DESC
|
||||
LIMIT $max_nodes
|
||||
WITH collect(n) AS kept_nodes
|
||||
MATCH (a)-[r]-(b)
|
||||
WHERE a IN kept_nodes AND b IN kept_nodes
|
||||
RETURN [node IN kept_nodes | {{node: node}}] AS node_info,
|
||||
collect(DISTINCT r) AS relationships
|
||||
"""
|
||||
result_set = None
|
||||
try:
|
||||
result_set = await session.run(
|
||||
main_query, {"max_nodes": max_nodes}
|
||||
)
|
||||
record = await result_set.single()
|
||||
if not record:
|
||||
logger.debug("No record returned from main query")
|
||||
return result
|
||||
finally:
|
||||
if result_set:
|
||||
await result_set.consume()
|
||||
|
||||
else:
|
||||
bfs_query = f"""
|
||||
MATCH (start:`{workspace_label}`)
|
||||
WHERE start.entity_id = $entity_id
|
||||
WITH start
|
||||
CALL {{
|
||||
WITH start
|
||||
MATCH path = (start)-[*0..{max_depth}]-(node)
|
||||
WITH nodes(path) AS path_nodes, relationships(path) AS path_rels
|
||||
UNWIND path_nodes AS n
|
||||
WITH collect(DISTINCT n) AS all_nodes, collect(DISTINCT path_rels) AS all_rel_lists
|
||||
WITH all_nodes, reduce(r = [], x IN all_rel_lists | r + x) AS all_rels
|
||||
RETURN all_nodes, all_rels
|
||||
}}
|
||||
WITH all_nodes AS nodes, all_rels AS relationships, size(all_nodes) AS total_nodes
|
||||
WITH
|
||||
CASE
|
||||
WHEN total_nodes <= {max_nodes} THEN nodes
|
||||
ELSE nodes[0..{max_nodes}]
|
||||
END AS limited_nodes,
|
||||
relationships,
|
||||
total_nodes,
|
||||
total_nodes > {max_nodes} AS is_truncated
|
||||
RETURN
|
||||
[node IN limited_nodes | {{node: node}}] AS node_info,
|
||||
relationships,
|
||||
total_nodes,
|
||||
is_truncated
|
||||
"""
|
||||
result_set = None
|
||||
try:
|
||||
result_set = await session.run(
|
||||
bfs_query,
|
||||
{
|
||||
"entity_id": node_label,
|
||||
},
|
||||
)
|
||||
record = await result_set.single()
|
||||
if not record:
|
||||
logger.debug(f"No nodes found for entity_id: {node_label}")
|
||||
return result
|
||||
|
||||
# Check if the query indicates truncation
|
||||
if "is_truncated" in record and record["is_truncated"]:
|
||||
result.is_truncated = True
|
||||
logger.info(
|
||||
f"Graph truncated: breadth-first search limited to {max_nodes} nodes"
|
||||
)
|
||||
|
||||
finally:
|
||||
if result_set:
|
||||
await result_set.consume()
|
||||
|
||||
# Process the record if it exists
|
||||
if record and record["node_info"]:
|
||||
for node_info in record["node_info"]:
|
||||
node = node_info["node"]
|
||||
node_id = node.id
|
||||
if node_id not in seen_nodes:
|
||||
seen_nodes.add(node_id)
|
||||
result.nodes.append(
|
||||
KnowledgeGraphNode(
|
||||
id=f"{node_id}",
|
||||
labels=[node.get("entity_id")],
|
||||
properties=dict(node),
|
||||
)
|
||||
)
|
||||
|
||||
for rel in record["relationships"]:
|
||||
edge_id = rel.id
|
||||
if edge_id not in seen_edges:
|
||||
seen_edges.add(edge_id)
|
||||
start = rel.start_node
|
||||
end = rel.end_node
|
||||
result.edges.append(
|
||||
KnowledgeGraphEdge(
|
||||
id=f"{edge_id}",
|
||||
type=rel.type,
|
||||
source=f"{start.id}",
|
||||
target=f"{end.id}",
|
||||
properties=dict(rel),
|
||||
)
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting knowledge graph: {str(e)}")
|
||||
# Return empty but properly initialized KnowledgeGraph on error
|
||||
return KnowledgeGraph()
|
||||
|
||||
return result
|
||||
|
|
@ -900,9 +900,15 @@ class LightRAG:
|
|||
# Get first document's file path and total count for job name
|
||||
first_doc_id, first_doc = next(iter(to_process_docs.items()))
|
||||
first_doc_path = first_doc.file_path
|
||||
path_prefix = first_doc_path[:20] + (
|
||||
"..." if len(first_doc_path) > 20 else ""
|
||||
)
|
||||
|
||||
# Handle cases where first_doc_path is None
|
||||
if first_doc_path:
|
||||
path_prefix = first_doc_path[:20] + (
|
||||
"..." if len(first_doc_path) > 20 else ""
|
||||
)
|
||||
else:
|
||||
path_prefix = "unknown_source"
|
||||
|
||||
total_files = len(to_process_docs)
|
||||
job_name = f"{path_prefix}[{total_files} files]"
|
||||
pipeline_status["job_name"] = job_name
|
||||
|
|
|
|||
|
|
@ -210,9 +210,18 @@ async def openai_complete_if_cache(
|
|||
async def inner():
|
||||
# Track if we've started iterating
|
||||
iteration_started = False
|
||||
final_chunk_usage = None
|
||||
|
||||
try:
|
||||
iteration_started = True
|
||||
async for chunk in response:
|
||||
# Check if this chunk has usage information (final chunk)
|
||||
if hasattr(chunk, "usage") and chunk.usage:
|
||||
final_chunk_usage = chunk.usage
|
||||
logger.debug(
|
||||
f"Received usage info in streaming chunk: {chunk.usage}"
|
||||
)
|
||||
|
||||
# Check if choices exists and is not empty
|
||||
if not hasattr(chunk, "choices") or not chunk.choices:
|
||||
logger.warning(f"Received chunk without choices: {chunk}")
|
||||
|
|
@ -222,16 +231,31 @@ async def openai_complete_if_cache(
|
|||
if not hasattr(chunk.choices[0], "delta") or not hasattr(
|
||||
chunk.choices[0].delta, "content"
|
||||
):
|
||||
logger.warning(
|
||||
f"Received chunk without delta content: {chunk.choices[0]}"
|
||||
)
|
||||
# This might be the final chunk, continue to check for usage
|
||||
continue
|
||||
|
||||
content = chunk.choices[0].delta.content
|
||||
if content is None:
|
||||
continue
|
||||
if r"\u" in content:
|
||||
content = safe_unicode_decode(content.encode("utf-8"))
|
||||
|
||||
yield content
|
||||
|
||||
# After streaming is complete, track token usage
|
||||
if token_tracker and final_chunk_usage:
|
||||
# Use actual usage from the API
|
||||
token_counts = {
|
||||
"prompt_tokens": getattr(final_chunk_usage, "prompt_tokens", 0),
|
||||
"completion_tokens": getattr(
|
||||
final_chunk_usage, "completion_tokens", 0
|
||||
),
|
||||
"total_tokens": getattr(final_chunk_usage, "total_tokens", 0),
|
||||
}
|
||||
token_tracker.add_usage(token_counts)
|
||||
logger.debug(f"Streaming token usage (from API): {token_counts}")
|
||||
elif token_tracker:
|
||||
logger.debug("No usage information available in streaming response")
|
||||
except Exception as e:
|
||||
logger.error(f"Error in stream response: {str(e)}")
|
||||
# Try to clean up resources if possible
|
||||
|
|
|
|||
|
|
@ -26,6 +26,7 @@ from .utils import (
|
|||
get_conversation_turns,
|
||||
use_llm_func_with_cache,
|
||||
update_chunk_cache_list,
|
||||
remove_think_tags,
|
||||
)
|
||||
from .base import (
|
||||
BaseGraphStorage,
|
||||
|
|
@ -1708,7 +1709,8 @@ async def extract_keywords_only(
|
|||
result = await use_model_func(kw_prompt, keyword_extraction=True)
|
||||
|
||||
# 6. Parse out JSON from the LLM response
|
||||
match = re.search(r"\{.*\}", result, re.DOTALL)
|
||||
result = remove_think_tags(result)
|
||||
match = re.search(r"\{.*?\}", result, re.DOTALL)
|
||||
if not match:
|
||||
logger.error("No JSON-like structure found in the LLM respond.")
|
||||
return [], []
|
||||
|
|
|
|||
|
|
@ -1465,6 +1465,11 @@ async def update_chunk_cache_list(
|
|||
)
|
||||
|
||||
|
||||
def remove_think_tags(text: str) -> str:
|
||||
"""Remove <think> tags from the text"""
|
||||
return re.sub(r"^(<think>.*?</think>|<think>)", "", text, flags=re.DOTALL).strip()
|
||||
|
||||
|
||||
async def use_llm_func_with_cache(
|
||||
input_text: str,
|
||||
use_llm_func: callable,
|
||||
|
|
@ -1531,6 +1536,7 @@ async def use_llm_func_with_cache(
|
|||
kwargs["max_tokens"] = max_tokens
|
||||
|
||||
res: str = await use_llm_func(input_text, **kwargs)
|
||||
res = remove_think_tags(res)
|
||||
|
||||
if llm_response_cache.global_config.get("enable_llm_cache_for_entity_extract"):
|
||||
await save_to_cache(
|
||||
|
|
@ -1557,8 +1563,9 @@ async def use_llm_func_with_cache(
|
|||
if max_tokens is not None:
|
||||
kwargs["max_tokens"] = max_tokens
|
||||
|
||||
logger.info(f"Call LLM function with query text lenght: {len(input_text)}")
|
||||
return await use_llm_func(input_text, **kwargs)
|
||||
logger.info(f"Call LLM function with query text length: {len(input_text)}")
|
||||
res = await use_llm_func(input_text, **kwargs)
|
||||
return remove_think_tags(res)
|
||||
|
||||
|
||||
def get_content_summary(content: str, max_length: int = 250) -> str:
|
||||
|
|
|
|||
|
|
@ -10,6 +10,7 @@
|
|||
- Neo4JStorage
|
||||
- MongoDBStorage
|
||||
- PGGraphStorage
|
||||
- MemgraphStorage
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue