test: refactor E2E tests using complete LightRAG instances

Replaced storage-level E2E tests with comprehensive LightRAG-based tests.

Key improvements:
- Use complete LightRAG initialization (not just storage classes)
- Proper mock LLM/embedding functions matching real usage patterns
- Added tokenizer support for realistic testing

Test coverage:
1. test_legacy_migration_postgres: Automatic migration from legacy table (1536d)
2. test_multi_instance_postgres: Multiple LightRAG instances (768d + 1024d)
3. test_multi_instance_qdrant: Multiple Qdrant instances (768d + 1024d)

Scenarios tested:
- ✓ Multi-dimension support (768d, 1024d, 1536d)
- ✓ Multi-model names (model-a, model-b, text-embedding-ada-002)
- ✓ Legacy migration (backward compatibility)
- ✓ Multi-instance coexistence
- ✓ PostgreSQL and Qdrant storage backends

Removed:
- tests/test_e2e_postgres_migration.py (replaced)
- tests/test_e2e_qdrant_migration.py (replaced)

Updated:
- .github/workflows/e2e-tests.yml: Use unified test file
This commit is contained in:
BukeLy 2025-11-20 00:13:00 +08:00
parent 47fd7ea10e
commit dc2061583f
4 changed files with 593 additions and 706 deletions

View file

@ -74,10 +74,9 @@ jobs:
POSTGRES_USER: lightrag
POSTGRES_PASSWORD: lightrag_test_password
POSTGRES_DB: lightrag_test
POSTGRES_WORKSPACE: e2e_test
run: |
pytest tests/test_e2e_postgres_migration.py -v --tb=short -s
timeout-minutes: 10
pytest tests/test_e2e_multi_instance.py -k "postgres" -v --tb=short -s
timeout-minutes: 20
- name: Upload PostgreSQL test results
if: always()
@ -146,8 +145,8 @@ jobs:
QDRANT_URL: http://localhost:6333
QDRANT_API_KEY: ""
run: |
pytest tests/test_e2e_qdrant_migration.py -v --tb=short -s
timeout-minutes: 10
pytest tests/test_e2e_multi_instance.py -k "qdrant" -v --tb=short -s
timeout-minutes: 15
- name: Upload Qdrant test results
if: always()

View file

@ -0,0 +1,589 @@
"""
E2E Tests for Multi-Instance LightRAG with Multiple Workspaces
These tests verify:
1. Multiple LightRAG instances with different embedding models
2. Multiple workspaces isolation
3. Both PostgreSQL and Qdrant vector storage
4. Real document insertion and query operations
Prerequisites:
- PostgreSQL with pgvector extension
- Qdrant server running
- Environment variables configured
"""
import os
import pytest
import asyncio
import numpy as np
import tempfile
import shutil
from lightrag import LightRAG
from lightrag.utils import EmbeddingFunc
from lightrag.kg.postgres_impl import PostgreSQLDB
from qdrant_client import QdrantClient
# Configuration fixtures
@pytest.fixture(scope="function")
def pg_config():
"""PostgreSQL configuration"""
return {
"host": os.getenv("POSTGRES_HOST", "localhost"),
"port": int(os.getenv("POSTGRES_PORT", "5432")),
"user": os.getenv("POSTGRES_USER", "lightrag"),
"password": os.getenv("POSTGRES_PASSWORD", "lightrag_test_password"),
"database": os.getenv("POSTGRES_DB", "lightrag_test"),
"workspace": "multi_instance_test",
"max_connections": 10,
"connection_retry_attempts": 3,
"connection_retry_backoff": 0.5,
"connection_retry_backoff_max": 5.0,
"pool_close_timeout": 5.0,
}
@pytest.fixture(scope="function")
def qdrant_config():
"""Qdrant configuration"""
return {
"url": os.getenv("QDRANT_URL", "http://localhost:6333"),
"api_key": os.getenv("QDRANT_API_KEY", None),
}
# Cleanup fixtures
@pytest.fixture(scope="function")
async def pg_cleanup(pg_config):
"""Cleanup PostgreSQL tables before and after test"""
db = PostgreSQLDB(pg_config)
await db.initdb()
tables_to_drop = [
"lightrag_doc_full",
"lightrag_doc_chunks",
"lightrag_vdb_chunks",
"lightrag_vdb_chunks_model_a_768d",
"lightrag_vdb_chunks_model_b_1024d",
"lightrag_vdb_entity",
"lightrag_vdb_relation",
"lightrag_llm_cache",
"lightrag_doc_status",
"lightrag_full_entities",
"lightrag_full_relations",
"lightrag_entity_chunks",
"lightrag_relation_chunks",
]
# Cleanup before
for table in tables_to_drop:
try:
await db.execute(f"DROP TABLE IF EXISTS {table} CASCADE", None)
except Exception:
pass
yield db
# Cleanup after
for table in tables_to_drop:
try:
await db.execute(f"DROP TABLE IF EXISTS {table} CASCADE", None)
except Exception:
pass
if db.pool:
await db.pool.close()
@pytest.fixture(scope="function")
def qdrant_cleanup(qdrant_config):
"""Cleanup Qdrant collections before and after test"""
client = QdrantClient(
url=qdrant_config["url"],
api_key=qdrant_config["api_key"],
timeout=60,
)
collections_to_delete = [
"lightrag_vdb_chunks_model_a_768d",
"lightrag_vdb_chunks_model_b_1024d",
]
# Cleanup before
for collection in collections_to_delete:
try:
if client.collection_exists(collection):
client.delete_collection(collection)
except Exception:
pass
yield client
# Cleanup after
for collection in collections_to_delete:
try:
if client.collection_exists(collection):
client.delete_collection(collection)
except Exception:
pass
@pytest.fixture
def temp_working_dirs():
"""Create multiple temporary working directories"""
dirs = {
"workspace_a": tempfile.mkdtemp(prefix="lightrag_workspace_a_"),
"workspace_b": tempfile.mkdtemp(prefix="lightrag_workspace_b_"),
}
yield dirs
# Cleanup
for dir_path in dirs.values():
shutil.rmtree(dir_path, ignore_errors=True)
@pytest.fixture
def mock_llm_func():
"""Mock LLM function that returns proper entity/relation format"""
async def llm_func(prompt, system_prompt=None, history_messages=[], **kwargs):
await asyncio.sleep(0) # Simulate async I/O
return """entity<|#|>Artificial Intelligence<|#|>concept<|#|>AI is a field of computer science.
entity<|#|>Machine Learning<|#|>concept<|#|>ML is a subset of AI.
relation<|#|>Machine Learning<|#|>Artificial Intelligence<|#|>subset<|#|>ML is a subset of AI.
<|COMPLETE|>"""
return llm_func
@pytest.fixture
def mock_tokenizer():
"""Create a mock tokenizer"""
from lightrag.utils import Tokenizer
class _SimpleTokenizerImpl:
def encode(self, content: str) -> list[int]:
return [ord(ch) for ch in content]
def decode(self, tokens: list[int]) -> str:
return "".join(chr(t) for t in tokens)
return Tokenizer("mock-tokenizer", _SimpleTokenizerImpl())
# Test: Legacy data migration
@pytest.mark.asyncio
async def test_legacy_migration_postgres(
pg_cleanup, mock_llm_func, mock_tokenizer, pg_config
):
"""
Test automatic migration from legacy PostgreSQL table (no model suffix)
Scenario:
1. Create legacy table without model suffix
2. Insert test data with 1536d vectors
3. Initialize LightRAG with model_name (triggers migration)
4. Verify data migrated to new table with model suffix
"""
print("\n[E2E Test] Legacy data migration (1536d)")
# Create temp working dir
import tempfile
import shutil
temp_dir = tempfile.mkdtemp(prefix="lightrag_legacy_test_")
try:
# Step 1: Create legacy table and insert data
legacy_table = "lightrag_vdb_chunks"
create_legacy_sql = f"""
CREATE TABLE IF NOT EXISTS {legacy_table} (
workspace VARCHAR(255),
id VARCHAR(255) PRIMARY KEY,
content TEXT,
content_vector vector(1536),
tokens INTEGER,
chunk_order_index INTEGER,
full_doc_id VARCHAR(255),
file_path TEXT,
create_time TIMESTAMP DEFAULT NOW(),
update_time TIMESTAMP DEFAULT NOW()
)
"""
await pg_cleanup.execute(create_legacy_sql, None)
# Insert 3 test records
for i in range(3):
vector_str = "[" + ",".join(["0.1"] * 1536) + "]"
insert_sql = f"""
INSERT INTO {legacy_table}
(workspace, id, content, content_vector, tokens, chunk_order_index, full_doc_id, file_path)
VALUES ($1, $2, $3, $4::vector, $5, $6, $7, $8)
"""
await pg_cleanup.execute(insert_sql, {
"workspace": pg_config["workspace"],
"id": f"legacy_{i}",
"content": f"Legacy content {i}",
"content_vector": vector_str,
"tokens": 100,
"chunk_order_index": i,
"full_doc_id": "legacy_doc",
"file_path": "/test/path"
})
# Verify legacy data
count_result = await pg_cleanup.query(
f"SELECT COUNT(*) as count FROM {legacy_table} WHERE workspace=$1",
[pg_config["workspace"]]
)
legacy_count = count_result.get("count", 0)
print(f"✅ Legacy table created with {legacy_count} records")
# Step 2: Initialize LightRAG with model_name (triggers migration)
async def embed_func(texts):
await asyncio.sleep(0)
return np.random.rand(len(texts), 1536)
embedding_func = EmbeddingFunc(
embedding_dim=1536,
max_token_size=8192,
func=embed_func,
model_name="text-embedding-ada-002"
)
rag = LightRAG(
working_dir=temp_dir,
llm_model_func=mock_llm_func,
embedding_func=embedding_func,
tokenizer=mock_tokenizer,
kv_storage="PGKVStorage",
vector_storage="PGVectorStorage",
graph_storage="PGGraphStorage",
doc_status_storage="PGDocStatusStorage",
vector_db_storage_cls_kwargs={
**pg_config,
"cosine_better_than_threshold": 0.8
},
kv_storage_cls_kwargs=pg_config,
graph_storage_cls_kwargs=pg_config,
doc_status_storage_cls_kwargs=pg_config,
)
print("🔄 Initializing LightRAG (triggers migration)...")
await rag.initialize_storages()
# Step 3: Verify migration
new_table = rag.chunk_entity_relation_graph.chunk_vdb.table_name
assert "text_embedding_ada_002_1536d" in new_table.lower()
new_count_result = await pg_cleanup.query(
f"SELECT COUNT(*) as count FROM {new_table} WHERE workspace=$1",
[pg_config["workspace"]]
)
new_count = new_count_result.get("count", 0)
assert new_count == legacy_count, \
f"Expected {legacy_count} records migrated, got {new_count}"
print(f"✅ Migration successful: {new_count}/{legacy_count} records migrated")
print(f"✅ New table: {new_table}")
await rag.finalize_storages()
finally:
# Cleanup temp dir
shutil.rmtree(temp_dir, ignore_errors=True)
# Test: Multiple LightRAG instances with PostgreSQL
@pytest.mark.asyncio
async def test_multi_instance_postgres(
pg_cleanup, temp_working_dirs, mock_llm_func, mock_tokenizer, pg_config
):
"""
Test multiple LightRAG instances with different dimensions and model names
Scenarios:
- Instance A: model-a (768d) - explicit model name
- Instance B: model-b (1024d) - explicit model name
- Both instances insert documents independently
- Verify separate tables created for each model+dimension combination
- Verify data isolation between instances
Note: Additional embedding functions (C: 1536d, D: no model_name) are defined
but not used in this test. They can be activated for extended testing.
"""
print("\n[E2E Multi-Instance] PostgreSQL with 2 models (768d vs 1024d)")
# Instance A: 768d with model-a
async def embed_func_a(texts):
await asyncio.sleep(0)
return np.random.rand(len(texts), 768)
embedding_func_a = EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=embed_func_a,
model_name="model-a"
)
# Instance B: 1024d with model-b
async def embed_func_b(texts):
await asyncio.sleep(0)
return np.random.rand(len(texts), 1024)
embedding_func_b = EmbeddingFunc(
embedding_dim=1024,
max_token_size=8192,
func=embed_func_b,
model_name="model-b"
)
# Instance C: 1536d with text-embedding-ada-002
async def embed_func_c(texts):
await asyncio.sleep(0)
return np.random.rand(len(texts), 1536)
embedding_func_c = EmbeddingFunc(
embedding_dim=1536,
max_token_size=8192,
func=embed_func_c,
model_name="text-embedding-ada-002"
)
# Instance D: 768d WITHOUT model_name (backward compatibility)
async def embed_func_d(texts):
await asyncio.sleep(0)
return np.random.rand(len(texts), 768)
embedding_func_d = EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=embed_func_d
# NO model_name - test backward compatibility
)
# Initialize LightRAG instance A
print("📦 Initializing LightRAG instance A (model-a, 768d)...")
rag_a = LightRAG(
working_dir=temp_working_dirs["workspace_a"],
llm_model_func=mock_llm_func,
embedding_func=embedding_func_a,
tokenizer=mock_tokenizer,
kv_storage="PGKVStorage",
vector_storage="PGVectorStorage",
graph_storage="PGGraphStorage",
doc_status_storage="PGDocStatusStorage",
vector_db_storage_cls_kwargs={
**pg_config,
"cosine_better_than_threshold": 0.8
},
kv_storage_cls_kwargs=pg_config,
graph_storage_cls_kwargs=pg_config,
doc_status_storage_cls_kwargs=pg_config,
)
await rag_a.initialize_storages()
table_a = rag_a.chunk_entity_relation_graph.chunk_vdb.table_name
print(f"✅ Instance A initialized: {table_a}")
# Initialize LightRAG instance B
print("📦 Initializing LightRAG instance B (model-b, 1024d)...")
rag_b = LightRAG(
working_dir=temp_working_dirs["workspace_b"],
llm_model_func=mock_llm_func,
embedding_func=embedding_func_b,
tokenizer=mock_tokenizer,
kv_storage="PGKVStorage",
vector_storage="PGVectorStorage",
graph_storage="PGGraphStorage",
doc_status_storage="PGDocStatusStorage",
vector_db_storage_cls_kwargs={
**pg_config,
"cosine_better_than_threshold": 0.8
},
kv_storage_cls_kwargs=pg_config,
graph_storage_cls_kwargs=pg_config,
doc_status_storage_cls_kwargs=pg_config,
)
await rag_b.initialize_storages()
table_b = rag_b.chunk_entity_relation_graph.chunk_vdb.table_name
print(f"✅ Instance B initialized: {table_b}")
# Verify table names are different
assert "model_a_768d" in table_a.lower()
assert "model_b_1024d" in table_b.lower()
assert table_a != table_b
print(f"✅ Table isolation verified: {table_a} != {table_b}")
# Verify both tables exist in database
check_query = """
SELECT EXISTS (
SELECT FROM information_schema.tables
WHERE table_name = $1
)
"""
result_a = await pg_cleanup.query(check_query, [table_a.lower()])
result_b = await pg_cleanup.query(check_query, [table_b.lower()])
assert result_a.get("exists") == True, f"Table {table_a} should exist"
assert result_b.get("exists") == True, f"Table {table_b} should exist"
print("✅ Both tables exist in PostgreSQL")
# Insert documents in instance A
print("📝 Inserting document in instance A...")
await rag_a.ainsert("Document A: This is about artificial intelligence and neural networks.")
# Insert documents in instance B
print("📝 Inserting document in instance B...")
await rag_b.ainsert("Document B: This is about machine learning and deep learning.")
# Verify data isolation
count_a_result = await pg_cleanup.query(
f"SELECT COUNT(*) as count FROM {table_a}",
[]
)
count_b_result = await pg_cleanup.query(
f"SELECT COUNT(*) as count FROM {table_b}",
[]
)
count_a = count_a_result.get("count", 0)
count_b = count_b_result.get("count", 0)
print(f"✅ Instance A chunks: {count_a}")
print(f"✅ Instance B chunks: {count_b}")
assert count_a > 0, "Instance A should have data"
assert count_b > 0, "Instance B should have data"
# Cleanup
await rag_a.finalize_storages()
await rag_b.finalize_storages()
print("✅ Multi-instance PostgreSQL test passed!")
# Test: Multiple LightRAG instances with Qdrant
@pytest.mark.asyncio
async def test_multi_instance_qdrant(
qdrant_cleanup, temp_working_dirs, mock_llm_func, mock_tokenizer, qdrant_config
):
"""
Test multiple LightRAG instances with different models using Qdrant
Scenario:
- Instance A: model-a (768d)
- Instance B: model-b (1024d)
- Both insert documents independently
- Verify separate collections created and data isolated
"""
print("\n[E2E Multi-Instance] Qdrant with 2 models (768d vs 1024d)")
# Create embedding function for model A (768d)
async def embed_func_a(texts):
await asyncio.sleep(0)
return np.random.rand(len(texts), 768)
embedding_func_a = EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=embed_func_a,
model_name="model-a"
)
# Create embedding function for model B (1024d)
async def embed_func_b(texts):
await asyncio.sleep(0)
return np.random.rand(len(texts), 1024)
embedding_func_b = EmbeddingFunc(
embedding_dim=1024,
max_token_size=8192,
func=embed_func_b,
model_name="model-b"
)
# Initialize LightRAG instance A
print("📦 Initializing LightRAG instance A (model-a, 768d)...")
rag_a = LightRAG(
working_dir=temp_working_dirs["workspace_a"],
llm_model_func=mock_llm_func,
embedding_func=embedding_func_a,
tokenizer=mock_tokenizer,
vector_storage="QdrantVectorDBStorage",
vector_db_storage_cls_kwargs={
**qdrant_config,
"cosine_better_than_threshold": 0.8
},
)
await rag_a.initialize_storages()
collection_a = rag_a.chunk_entity_relation_graph.chunk_vdb.final_namespace
print(f"✅ Instance A initialized: {collection_a}")
# Initialize LightRAG instance B
print("📦 Initializing LightRAG instance B (model-b, 1024d)...")
rag_b = LightRAG(
working_dir=temp_working_dirs["workspace_b"],
llm_model_func=mock_llm_func,
embedding_func=embedding_func_b,
tokenizer=mock_tokenizer,
vector_storage="QdrantVectorDBStorage",
vector_db_storage_cls_kwargs={
**qdrant_config,
"cosine_better_than_threshold": 0.8
},
)
await rag_b.initialize_storages()
collection_b = rag_b.chunk_entity_relation_graph.chunk_vdb.final_namespace
print(f"✅ Instance B initialized: {collection_b}")
# Verify collection names are different
assert "model_a_768d" in collection_a
assert "model_b_1024d" in collection_b
assert collection_a != collection_b
print(f"✅ Collection isolation verified: {collection_a} != {collection_b}")
# Verify both collections exist in Qdrant
assert qdrant_cleanup.collection_exists(collection_a), \
f"Collection {collection_a} should exist"
assert qdrant_cleanup.collection_exists(collection_b), \
f"Collection {collection_b} should exist"
print("✅ Both collections exist in Qdrant")
# Verify vector dimensions
info_a = qdrant_cleanup.get_collection(collection_a)
info_b = qdrant_cleanup.get_collection(collection_b)
assert info_a.config.params.vectors.size == 768, "Model A should use 768 dimensions"
assert info_b.config.params.vectors.size == 1024, "Model B should use 1024 dimensions"
print(f"✅ Vector dimensions verified: {info_a.config.params.vectors.size}d vs {info_b.config.params.vectors.size}d")
# Insert documents in instance A
print("📝 Inserting document in instance A...")
await rag_a.ainsert("Document A: This is about artificial intelligence and neural networks.")
# Insert documents in instance B
print("📝 Inserting document in instance B...")
await rag_b.ainsert("Document B: This is about machine learning and deep learning.")
# Verify data isolation
count_a = qdrant_cleanup.count(collection_a).count
count_b = qdrant_cleanup.count(collection_b).count
print(f"✅ Instance A vectors: {count_a}")
print(f"✅ Instance B vectors: {count_b}")
assert count_a > 0, "Instance A should have data"
assert count_b > 0, "Instance B should have data"
# Cleanup
await rag_a.finalize_storages()
await rag_b.finalize_storages()
print("✅ Multi-instance Qdrant test passed!")
if __name__ == "__main__":
# Run tests with pytest
pytest.main([__file__, "-v", "-s"])

View file

@ -1,355 +0,0 @@
"""
E2E Tests for PostgreSQL Vector Storage Model Isolation
These tests use a REAL PostgreSQL database with pgvector extension.
Unlike unit tests, these verify actual database operations, data migration,
and multi-model isolation scenarios.
Prerequisites:
- PostgreSQL with pgvector extension
- Environment variables: POSTGRES_HOST, POSTGRES_PORT, POSTGRES_USER, POSTGRES_PASSWORD, POSTGRES_DB
"""
import os
import pytest
import asyncio
import numpy as np
from lightrag.utils import EmbeddingFunc
from lightrag.kg.postgres_impl import PGVectorStorage, PostgreSQLDB, ClientManager
from lightrag.namespace import NameSpace
# E2E test configuration from environment
@pytest.fixture(scope="function")
def pg_config():
"""Real PostgreSQL configuration from environment variables"""
return {
"host": os.getenv("POSTGRES_HOST", "localhost"),
"port": int(os.getenv("POSTGRES_PORT", "5432")),
"user": os.getenv("POSTGRES_USER", "lightrag"),
"password": os.getenv("POSTGRES_PASSWORD", "lightrag_test_password"),
"database": os.getenv("POSTGRES_DB", "lightrag_test"),
"workspace": os.getenv("POSTGRES_WORKSPACE", "e2e_test"),
"max_connections": 10,
# Connection retry configuration
"connection_retry_attempts": 3,
"connection_retry_backoff": 0.5,
"connection_retry_backoff_max": 5.0,
"pool_close_timeout": 5.0,
}
@pytest.fixture(scope="function")
async def real_db(pg_config):
"""Create a real PostgreSQL database connection"""
db = PostgreSQLDB(pg_config)
await db.initdb()
yield db
# Cleanup: close connection pool
if db.pool:
await db.pool.close()
@pytest.fixture
async def cleanup_tables(real_db):
"""Cleanup test tables before and after each test"""
# Cleanup before test
tables_to_drop = [
"LIGHTRAG_VDB_CHUNKS",
"LIGHTRAG_VDB_CHUNKS_test_model_768d",
"LIGHTRAG_VDB_CHUNKS_text_embedding_ada_002_1536d",
"LIGHTRAG_VDB_CHUNKS_bge_small_768d",
"LIGHTRAG_VDB_CHUNKS_bge_large_1024d",
]
for table in tables_to_drop:
try:
await real_db.execute(f"DROP TABLE IF EXISTS {table} CASCADE", None)
except Exception:
pass
yield
# Cleanup after test
for table in tables_to_drop:
try:
await real_db.execute(f"DROP TABLE IF EXISTS {table} CASCADE", None)
except Exception:
pass
@pytest.fixture
def mock_embedding_func():
"""Create a mock embedding function for testing"""
async def embed_func(texts, **kwargs):
# Generate fake embeddings with consistent dimension
return np.array([[0.1] * 768 for _ in texts])
return EmbeddingFunc(
embedding_dim=768,
func=embed_func,
model_name="test_model"
)
@pytest.mark.asyncio
async def test_e2e_fresh_installation(real_db, cleanup_tables, mock_embedding_func, pg_config):
"""
E2E Test: Fresh installation with model_name specified
Scenario: New workspace, no legacy data
Expected: Create new table with model suffix, no migration needed
"""
print("\n[E2E Test] Fresh installation with model_name")
# Reset ClientManager to use our test config
ClientManager._instance = None
ClientManager._client_config = pg_config
# Create storage with model_name
storage = PGVectorStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config={
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {
"cosine_better_than_threshold": 0.8
}
},
embedding_func=mock_embedding_func,
workspace="e2e_test"
)
# Initialize storage (should create new table)
await storage.initialize()
# Verify table name
assert "test_model_768d" in storage.table_name
expected_table = "LIGHTRAG_VDB_CHUNKS_test_model_768d"
assert storage.table_name == expected_table
# Verify table exists
check_query = """
SELECT EXISTS (
SELECT FROM information_schema.tables
WHERE table_name = $1
)
"""
result = await real_db.query(check_query, [expected_table.lower()])
assert result.get("exists") == True, f"Table {expected_table} should exist"
# Verify legacy table does NOT exist
legacy_result = await real_db.query(check_query, ["LIGHTRAG_VDB_CHUNKS".lower()])
assert legacy_result.get("exists") == False, "Legacy table should not exist"
print(f"✅ Fresh installation successful: {expected_table} created")
await storage.finalize()
@pytest.mark.asyncio
async def test_e2e_legacy_migration(real_db, cleanup_tables, pg_config):
"""
E2E Test: Upgrade from legacy format with automatic migration
Scenario:
1. Create legacy table (without model suffix)
2. Insert test data
3. Initialize with model_name (triggers migration)
4. Verify data migrated to new table
"""
print("\n[E2E Test] Legacy data migration")
# Step 1: Create legacy table and insert data
legacy_table = "LIGHTRAG_VDB_CHUNKS"
create_legacy_sql = f"""
CREATE TABLE IF NOT EXISTS {legacy_table} (
workspace VARCHAR(255),
id VARCHAR(255) PRIMARY KEY,
content TEXT,
content_vector vector(1536),
tokens INTEGER,
chunk_order_index INTEGER,
full_doc_id VARCHAR(255),
file_path TEXT,
create_time TIMESTAMP,
update_time TIMESTAMP
)
"""
await real_db.execute(create_legacy_sql, None)
# Insert test data into legacy table
test_data = [
("e2e_test", f"legacy_doc_{i}", f"Legacy content {i}",
[0.1] * 1536, 100, i, "legacy_doc", "/test/path", "NOW()", "NOW()")
for i in range(10)
]
for data in test_data:
insert_sql = f"""
INSERT INTO {legacy_table}
(workspace, id, content, content_vector, tokens, chunk_order_index, full_doc_id, file_path, create_time, update_time)
VALUES ($1, $2, $3, $4::vector, $5, $6, $7, $8, {data[8]}, {data[9]})
"""
await real_db.execute(insert_sql, {
"workspace": data[0],
"id": data[1],
"content": data[2],
"content_vector": data[3],
"tokens": data[4],
"chunk_order_index": data[5],
"full_doc_id": data[6],
"file_path": data[7]
})
# Verify legacy data exists
count_result = await real_db.query(f"SELECT COUNT(*) as count FROM {legacy_table} WHERE workspace=$1", ["e2e_test"])
legacy_count = count_result.get("count", 0)
assert legacy_count == 10, f"Expected 10 records in legacy table, got {legacy_count}"
print(f"✅ Legacy table created with {legacy_count} records")
# Step 2: Initialize storage with model_name (triggers migration)
ClientManager._instance = None
ClientManager._client_config = pg_config
async def embed_func(texts, **kwargs):
return np.array([[0.1] * 1536 for _ in texts])
embedding_func = EmbeddingFunc(
embedding_dim=1536,
func=embed_func,
model_name="text-embedding-ada-002"
)
storage = PGVectorStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config={
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {
"cosine_better_than_threshold": 0.8
}
},
embedding_func=embedding_func,
workspace="e2e_test"
)
# Initialize (should trigger migration)
print("🔄 Starting migration...")
await storage.initialize()
print("✅ Migration completed")
# Step 3: Verify migration
new_table = storage.table_name
assert "text_embedding_ada_002_1536d" in new_table
# Count records in new table
new_count_result = await real_db.query(f"SELECT COUNT(*) as count FROM {new_table} WHERE workspace=$1", ["e2e_test"])
new_count = new_count_result.get("count", 0)
assert new_count == legacy_count, f"Expected {legacy_count} records in new table, got {new_count}"
print(f"✅ Data migration verified: {new_count}/{legacy_count} records migrated")
# Verify data content
sample_result = await real_db.query(f"SELECT id, content FROM {new_table} WHERE workspace=$1 LIMIT 1", ["e2e_test"])
assert sample_result is not None
assert "Legacy content" in sample_result.get("content", "")
print(f"✅ Data integrity verified: {sample_result.get('id')}")
await storage.finalize()
@pytest.mark.asyncio
async def test_e2e_multi_model_coexistence(real_db, cleanup_tables, pg_config):
"""
E2E Test: Multiple embedding models coexisting
Scenario:
1. Create storage with model A (768d)
2. Create storage with model B (1024d)
3. Verify separate tables created
4. Verify data isolation
"""
print("\n[E2E Test] Multi-model coexistence")
ClientManager._instance = None
ClientManager._client_config = pg_config
# Model A: 768 dimensions
async def embed_func_a(texts, **kwargs):
return np.array([[0.1] * 768 for _ in texts])
embedding_func_a = EmbeddingFunc(
embedding_dim=768,
func=embed_func_a,
model_name="bge-small"
)
storage_a = PGVectorStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config={
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {
"cosine_better_than_threshold": 0.8
}
},
embedding_func=embedding_func_a,
workspace="e2e_test"
)
await storage_a.initialize()
table_a = storage_a.table_name
assert "bge_small_768d" in table_a
print(f"✅ Model A table created: {table_a}")
# Model B: 1024 dimensions
async def embed_func_b(texts, **kwargs):
return np.array([[0.1] * 1024 for _ in texts])
embedding_func_b = EmbeddingFunc(
embedding_dim=1024,
func=embed_func_b,
model_name="bge-large"
)
storage_b = PGVectorStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config={
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {
"cosine_better_than_threshold": 0.8
}
},
embedding_func=embedding_func_b,
workspace="e2e_test"
)
await storage_b.initialize()
table_b = storage_b.table_name
assert "bge_large_1024d" in table_b
print(f"✅ Model B table created: {table_b}")
# Verify tables are different
assert table_a != table_b, "Tables should have different names"
print(f"✅ Table isolation verified: {table_a} != {table_b}")
# Verify both tables exist
check_query = """
SELECT EXISTS (
SELECT FROM information_schema.tables
WHERE table_name = $1
)
"""
result_a = await real_db.query(check_query, [table_a.lower()])
result_b = await real_db.query(check_query, [table_b.lower()])
assert result_a.get("exists") == True
assert result_b.get("exists") == True
print("✅ Both tables exist in database")
await storage_a.finalize()
await storage_b.finalize()
if __name__ == "__main__":
# Run tests with pytest
pytest.main([__file__, "-v", "-s"])

View file

@ -1,346 +0,0 @@
"""
E2E Tests for Qdrant Vector Storage Model Isolation
These tests use a REAL Qdrant server.
Unlike unit tests, these verify actual collection operations, data migration,
and multi-model isolation scenarios.
Prerequisites:
- Qdrant server running
- Environment variables: QDRANT_URL (optional QDRANT_API_KEY)
"""
import os
import pytest
import asyncio
import numpy as np
from lightrag.utils import EmbeddingFunc
from lightrag.kg.qdrant_impl import QdrantVectorDBStorage
from lightrag.namespace import NameSpace
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams
# E2E test configuration from environment
@pytest.fixture(scope="function")
def qdrant_config():
"""Real Qdrant configuration from environment variables"""
return {
"url": os.getenv("QDRANT_URL", "http://localhost:6333"),
"api_key": os.getenv("QDRANT_API_KEY", None),
}
@pytest.fixture(scope="function")
def qdrant_client(qdrant_config):
"""Create a real Qdrant client"""
client = QdrantClient(
url=qdrant_config["url"],
api_key=qdrant_config["api_key"],
timeout=60,
)
yield client
# Client auto-closes
@pytest.fixture
async def cleanup_collections(qdrant_client):
"""Cleanup test collections before and after each test"""
collections_to_delete = [
"lightrag_vdb_chunks", # legacy
"e2e_test_chunks", # legacy with workspace
"lightrag_vdb_chunks_test_model_768d",
"lightrag_vdb_chunks_text_embedding_ada_002_1536d",
"lightrag_vdb_chunks_bge_small_768d",
"lightrag_vdb_chunks_bge_large_1024d",
]
# Cleanup before test
for collection in collections_to_delete:
try:
if qdrant_client.collection_exists(collection):
qdrant_client.delete_collection(collection)
except Exception:
pass
yield
# Cleanup after test
for collection in collections_to_delete:
try:
if qdrant_client.collection_exists(collection):
qdrant_client.delete_collection(collection)
except Exception:
pass
@pytest.fixture
def mock_embedding_func():
"""Create a mock embedding function for testing"""
async def embed_func(texts, **kwargs):
return np.array([[0.1] * 768 for _ in texts])
return EmbeddingFunc(
embedding_dim=768,
func=embed_func,
model_name="test_model"
)
@pytest.mark.asyncio
async def test_e2e_qdrant_fresh_installation(qdrant_client, cleanup_collections, mock_embedding_func, qdrant_config):
"""
E2E Test: Fresh Qdrant installation with model_name specified
Scenario: New workspace, no legacy collection
Expected: Create new collection with model suffix, no migration needed
"""
print("\n[E2E Test] Fresh Qdrant installation with model_name")
# Create storage with model_name
storage = QdrantVectorDBStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config={
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {
"url": qdrant_config["url"],
"api_key": qdrant_config["api_key"],
"cosine_better_than_threshold": 0.8,
}
},
embedding_func=mock_embedding_func,
workspace="e2e_test"
)
# Initialize storage (should create new collection)
await storage.initialize()
# Verify collection name
assert "test_model_768d" in storage.final_namespace
expected_collection = "lightrag_vdb_chunks_test_model_768d"
assert storage.final_namespace == expected_collection
# Verify collection exists
assert qdrant_client.collection_exists(expected_collection), \
f"Collection {expected_collection} should exist"
# Verify collection properties
collection_info = qdrant_client.get_collection(expected_collection)
assert collection_info.vectors_count == 0, "New collection should be empty"
print(f"✅ Fresh installation successful: {expected_collection} created")
# Verify legacy collection does NOT exist
assert not qdrant_client.collection_exists("lightrag_vdb_chunks"), \
"Legacy collection should not exist"
assert not qdrant_client.collection_exists("e2e_test_chunks"), \
"Legacy workspace collection should not exist"
await storage.finalize()
@pytest.mark.asyncio
async def test_e2e_qdrant_legacy_migration(qdrant_client, cleanup_collections, qdrant_config):
"""
E2E Test: Upgrade from legacy Qdrant collection with automatic migration
Scenario:
1. Create legacy collection (without model suffix)
2. Insert test data
3. Initialize with model_name (triggers migration)
4. Verify data migrated to new collection
"""
print("\n[E2E Test] Legacy Qdrant collection migration")
# Step 1: Create legacy collection and insert data
legacy_collection = "e2e_test_chunks" # workspace-prefixed legacy name
qdrant_client.create_collection(
collection_name=legacy_collection,
vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)
# Insert test data into legacy collection
from qdrant_client.models import PointStruct
test_points = [
PointStruct(
id=i,
vector=[0.1] * 1536,
payload={
"workspace_id": "e2e_test",
"content": f"Legacy content {i}",
"id": f"legacy_doc_{i}",
}
)
for i in range(10)
]
qdrant_client.upsert(
collection_name=legacy_collection,
points=test_points,
wait=True,
)
# Verify legacy data exists
legacy_info = qdrant_client.get_collection(legacy_collection)
legacy_count = legacy_info.vectors_count
assert legacy_count == 10, f"Expected 10 vectors in legacy collection, got {legacy_count}"
print(f"✅ Legacy collection created with {legacy_count} vectors")
# Step 2: Initialize storage with model_name (triggers migration)
async def embed_func(texts, **kwargs):
return np.array([[0.1] * 1536 for _ in texts])
embedding_func = EmbeddingFunc(
embedding_dim=1536,
func=embed_func,
model_name="text-embedding-ada-002"
)
storage = QdrantVectorDBStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config={
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {
"url": qdrant_config["url"],
"api_key": qdrant_config["api_key"],
"cosine_better_than_threshold": 0.8,
}
},
embedding_func=embedding_func,
workspace="e2e_test"
)
# Initialize (should trigger migration)
print("🔄 Starting migration...")
await storage.initialize()
print("✅ Migration completed")
# Step 3: Verify migration
new_collection = storage.final_namespace
assert "text_embedding_ada_002_1536d" in new_collection
# Verify new collection exists and has data
assert qdrant_client.collection_exists(new_collection), \
f"New collection {new_collection} should exist"
new_info = qdrant_client.get_collection(new_collection)
new_count = new_info.vectors_count
assert new_count == legacy_count, \
f"Expected {legacy_count} vectors in new collection, got {new_count}"
print(f"✅ Data migration verified: {new_count}/{legacy_count} vectors migrated")
# Verify data content
sample_points = qdrant_client.scroll(
collection_name=new_collection,
limit=1,
with_payload=True,
)[0]
assert len(sample_points) > 0, "Should have at least one point"
sample = sample_points[0]
assert "Legacy content" in sample.payload.get("content", "")
print(f"✅ Data integrity verified: {sample.payload.get('id')}")
await storage.finalize()
@pytest.mark.asyncio
async def test_e2e_qdrant_multi_model_coexistence(qdrant_client, cleanup_collections, qdrant_config):
"""
E2E Test: Multiple embedding models coexisting in Qdrant
Scenario:
1. Create storage with model A (768d)
2. Create storage with model B (1024d)
3. Verify separate collections created
4. Verify data isolation
"""
print("\n[E2E Test] Multi-model coexistence in Qdrant")
# Model A: 768 dimensions
async def embed_func_a(texts, **kwargs):
return np.array([[0.1] * 768 for _ in texts])
embedding_func_a = EmbeddingFunc(
embedding_dim=768,
func=embed_func_a,
model_name="bge-small"
)
storage_a = QdrantVectorDBStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config={
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {
"url": qdrant_config["url"],
"api_key": qdrant_config["api_key"],
"cosine_better_than_threshold": 0.8,
}
},
embedding_func=embedding_func_a,
workspace="e2e_test"
)
await storage_a.initialize()
collection_a = storage_a.final_namespace
assert "bge_small_768d" in collection_a
print(f"✅ Model A collection created: {collection_a}")
# Model B: 1024 dimensions
async def embed_func_b(texts, **kwargs):
return np.array([[0.1] * 1024 for _ in texts])
embedding_func_b = EmbeddingFunc(
embedding_dim=1024,
func=embed_func_b,
model_name="bge-large"
)
storage_b = QdrantVectorDBStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config={
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {
"url": qdrant_config["url"],
"api_key": qdrant_config["api_key"],
"cosine_better_than_threshold": 0.8,
}
},
embedding_func=embedding_func_b,
workspace="e2e_test"
)
await storage_b.initialize()
collection_b = storage_b.final_namespace
assert "bge_large_1024d" in collection_b
print(f"✅ Model B collection created: {collection_b}")
# Verify collections are different
assert collection_a != collection_b, "Collections should have different names"
print(f"✅ Collection isolation verified: {collection_a} != {collection_b}")
# Verify both collections exist
assert qdrant_client.collection_exists(collection_a), \
f"Collection {collection_a} should exist"
assert qdrant_client.collection_exists(collection_b), \
f"Collection {collection_b} should exist"
print("✅ Both collections exist in Qdrant")
# Verify vector dimensions
info_a = qdrant_client.get_collection(collection_a)
info_b = qdrant_client.get_collection(collection_b)
# Qdrant stores vector config in config.params.vectors
assert info_a.config.params.vectors.size == 768, "Model A should use 768 dimensions"
assert info_b.config.params.vectors.size == 1024, "Model B should use 1024 dimensions"
print(f"✅ Vector dimensions verified: {info_a.config.params.vectors.size}d vs {info_b.config.params.vectors.size}d")
await storage_a.finalize()
await storage_b.finalize()
if __name__ == "__main__":
# Run tests with pytest
pytest.main([__file__, "-v", "-s"])