LightRAG/tests/test_e2e_qdrant_migration.py
BukeLy d89849c8a6 fix: E2E test fixture scope mismatch
Fix pytest fixture scope incompatibility with pytest-asyncio.
Changed fixture scope from "module" to "function" to match
pytest-asyncio's default event loop scope.

Issue: ScopeMismatch error when accessing function-scoped
event loop fixture from module-scoped fixtures.

Testing: Fixes E2E test execution in GitHub Actions
2025-11-19 23:58:32 +08:00

346 lines
11 KiB
Python

"""
E2E Tests for Qdrant Vector Storage Model Isolation
These tests use a REAL Qdrant server.
Unlike unit tests, these verify actual collection operations, data migration,
and multi-model isolation scenarios.
Prerequisites:
- Qdrant server running
- Environment variables: QDRANT_URL (optional QDRANT_API_KEY)
"""
import os
import pytest
import asyncio
import numpy as np
from lightrag.utils import EmbeddingFunc
from lightrag.kg.qdrant_impl import QdrantVectorDBStorage
from lightrag.namespace import NameSpace
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams
# E2E test configuration from environment
@pytest.fixture(scope="function")
def qdrant_config():
"""Real Qdrant configuration from environment variables"""
return {
"url": os.getenv("QDRANT_URL", "http://localhost:6333"),
"api_key": os.getenv("QDRANT_API_KEY", None),
}
@pytest.fixture(scope="function")
def qdrant_client(qdrant_config):
"""Create a real Qdrant client"""
client = QdrantClient(
url=qdrant_config["url"],
api_key=qdrant_config["api_key"],
timeout=60,
)
yield client
# Client auto-closes
@pytest.fixture
async def cleanup_collections(qdrant_client):
"""Cleanup test collections before and after each test"""
collections_to_delete = [
"lightrag_vdb_chunks", # legacy
"e2e_test_chunks", # legacy with workspace
"lightrag_vdb_chunks_test_model_768d",
"lightrag_vdb_chunks_text_embedding_ada_002_1536d",
"lightrag_vdb_chunks_bge_small_768d",
"lightrag_vdb_chunks_bge_large_1024d",
]
# Cleanup before test
for collection in collections_to_delete:
try:
if qdrant_client.collection_exists(collection):
qdrant_client.delete_collection(collection)
except Exception:
pass
yield
# Cleanup after test
for collection in collections_to_delete:
try:
if qdrant_client.collection_exists(collection):
qdrant_client.delete_collection(collection)
except Exception:
pass
@pytest.fixture
def mock_embedding_func():
"""Create a mock embedding function for testing"""
async def embed_func(texts, **kwargs):
return np.array([[0.1] * 768 for _ in texts])
return EmbeddingFunc(
embedding_dim=768,
func=embed_func,
model_name="test_model"
)
@pytest.mark.asyncio
async def test_e2e_qdrant_fresh_installation(qdrant_client, cleanup_collections, mock_embedding_func, qdrant_config):
"""
E2E Test: Fresh Qdrant installation with model_name specified
Scenario: New workspace, no legacy collection
Expected: Create new collection with model suffix, no migration needed
"""
print("\n[E2E Test] Fresh Qdrant installation with model_name")
# Create storage with model_name
storage = QdrantVectorDBStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config={
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {
"url": qdrant_config["url"],
"api_key": qdrant_config["api_key"],
"cosine_better_than_threshold": 0.8,
}
},
embedding_func=mock_embedding_func,
workspace="e2e_test"
)
# Initialize storage (should create new collection)
await storage.initialize()
# Verify collection name
assert "test_model_768d" in storage.final_namespace
expected_collection = "lightrag_vdb_chunks_test_model_768d"
assert storage.final_namespace == expected_collection
# Verify collection exists
assert qdrant_client.collection_exists(expected_collection), \
f"Collection {expected_collection} should exist"
# Verify collection properties
collection_info = qdrant_client.get_collection(expected_collection)
assert collection_info.vectors_count == 0, "New collection should be empty"
print(f"✅ Fresh installation successful: {expected_collection} created")
# Verify legacy collection does NOT exist
assert not qdrant_client.collection_exists("lightrag_vdb_chunks"), \
"Legacy collection should not exist"
assert not qdrant_client.collection_exists("e2e_test_chunks"), \
"Legacy workspace collection should not exist"
await storage.finalize()
@pytest.mark.asyncio
async def test_e2e_qdrant_legacy_migration(qdrant_client, cleanup_collections, qdrant_config):
"""
E2E Test: Upgrade from legacy Qdrant collection with automatic migration
Scenario:
1. Create legacy collection (without model suffix)
2. Insert test data
3. Initialize with model_name (triggers migration)
4. Verify data migrated to new collection
"""
print("\n[E2E Test] Legacy Qdrant collection migration")
# Step 1: Create legacy collection and insert data
legacy_collection = "e2e_test_chunks" # workspace-prefixed legacy name
qdrant_client.create_collection(
collection_name=legacy_collection,
vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)
# Insert test data into legacy collection
from qdrant_client.models import PointStruct
test_points = [
PointStruct(
id=i,
vector=[0.1] * 1536,
payload={
"workspace_id": "e2e_test",
"content": f"Legacy content {i}",
"id": f"legacy_doc_{i}",
}
)
for i in range(10)
]
qdrant_client.upsert(
collection_name=legacy_collection,
points=test_points,
wait=True,
)
# Verify legacy data exists
legacy_info = qdrant_client.get_collection(legacy_collection)
legacy_count = legacy_info.vectors_count
assert legacy_count == 10, f"Expected 10 vectors in legacy collection, got {legacy_count}"
print(f"✅ Legacy collection created with {legacy_count} vectors")
# Step 2: Initialize storage with model_name (triggers migration)
async def embed_func(texts, **kwargs):
return np.array([[0.1] * 1536 for _ in texts])
embedding_func = EmbeddingFunc(
embedding_dim=1536,
func=embed_func,
model_name="text-embedding-ada-002"
)
storage = QdrantVectorDBStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config={
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {
"url": qdrant_config["url"],
"api_key": qdrant_config["api_key"],
"cosine_better_than_threshold": 0.8,
}
},
embedding_func=embedding_func,
workspace="e2e_test"
)
# Initialize (should trigger migration)
print("🔄 Starting migration...")
await storage.initialize()
print("✅ Migration completed")
# Step 3: Verify migration
new_collection = storage.final_namespace
assert "text_embedding_ada_002_1536d" in new_collection
# Verify new collection exists and has data
assert qdrant_client.collection_exists(new_collection), \
f"New collection {new_collection} should exist"
new_info = qdrant_client.get_collection(new_collection)
new_count = new_info.vectors_count
assert new_count == legacy_count, \
f"Expected {legacy_count} vectors in new collection, got {new_count}"
print(f"✅ Data migration verified: {new_count}/{legacy_count} vectors migrated")
# Verify data content
sample_points = qdrant_client.scroll(
collection_name=new_collection,
limit=1,
with_payload=True,
)[0]
assert len(sample_points) > 0, "Should have at least one point"
sample = sample_points[0]
assert "Legacy content" in sample.payload.get("content", "")
print(f"✅ Data integrity verified: {sample.payload.get('id')}")
await storage.finalize()
@pytest.mark.asyncio
async def test_e2e_qdrant_multi_model_coexistence(qdrant_client, cleanup_collections, qdrant_config):
"""
E2E Test: Multiple embedding models coexisting in Qdrant
Scenario:
1. Create storage with model A (768d)
2. Create storage with model B (1024d)
3. Verify separate collections created
4. Verify data isolation
"""
print("\n[E2E Test] Multi-model coexistence in Qdrant")
# Model A: 768 dimensions
async def embed_func_a(texts, **kwargs):
return np.array([[0.1] * 768 for _ in texts])
embedding_func_a = EmbeddingFunc(
embedding_dim=768,
func=embed_func_a,
model_name="bge-small"
)
storage_a = QdrantVectorDBStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config={
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {
"url": qdrant_config["url"],
"api_key": qdrant_config["api_key"],
"cosine_better_than_threshold": 0.8,
}
},
embedding_func=embedding_func_a,
workspace="e2e_test"
)
await storage_a.initialize()
collection_a = storage_a.final_namespace
assert "bge_small_768d" in collection_a
print(f"✅ Model A collection created: {collection_a}")
# Model B: 1024 dimensions
async def embed_func_b(texts, **kwargs):
return np.array([[0.1] * 1024 for _ in texts])
embedding_func_b = EmbeddingFunc(
embedding_dim=1024,
func=embed_func_b,
model_name="bge-large"
)
storage_b = QdrantVectorDBStorage(
namespace=NameSpace.VECTOR_STORE_CHUNKS,
global_config={
"embedding_batch_num": 10,
"vector_db_storage_cls_kwargs": {
"url": qdrant_config["url"],
"api_key": qdrant_config["api_key"],
"cosine_better_than_threshold": 0.8,
}
},
embedding_func=embedding_func_b,
workspace="e2e_test"
)
await storage_b.initialize()
collection_b = storage_b.final_namespace
assert "bge_large_1024d" in collection_b
print(f"✅ Model B collection created: {collection_b}")
# Verify collections are different
assert collection_a != collection_b, "Collections should have different names"
print(f"✅ Collection isolation verified: {collection_a} != {collection_b}")
# Verify both collections exist
assert qdrant_client.collection_exists(collection_a), \
f"Collection {collection_a} should exist"
assert qdrant_client.collection_exists(collection_b), \
f"Collection {collection_b} should exist"
print("✅ Both collections exist in Qdrant")
# Verify vector dimensions
info_a = qdrant_client.get_collection(collection_a)
info_b = qdrant_client.get_collection(collection_b)
# Qdrant stores vector config in config.params.vectors
assert info_a.config.params.vectors.size == 768, "Model A should use 768 dimensions"
assert info_b.config.params.vectors.size == 1024, "Model B should use 1024 dimensions"
print(f"✅ Vector dimensions verified: {info_a.config.params.vectors.size}d vs {info_b.config.params.vectors.size}d")
await storage_a.finalize()
await storage_b.finalize()
if __name__ == "__main__":
# Run tests with pytest
pytest.main([__file__, "-v", "-s"])