Add Langfuse observability integration documentation
This commit is contained in:
parent
bd62bb3024
commit
b0d44d283b
2 changed files with 90 additions and 2 deletions
46
README-zh.md
46
README-zh.md
|
|
@ -53,7 +53,7 @@
|
|||
|
||||
## 🎉 新闻
|
||||
|
||||
- [x] [2025.11.05]🎯📢添加**基于RAGAS的**LightRAG评估框架。
|
||||
- [x] [2025.11.05]🎯📢添加**基于RAGAS的**评估框架和**Langfuse**可观测性支持。
|
||||
- [x] [2025.10.22]🎯📢消除处理**大规模数据集**的瓶颈。
|
||||
- [x] [2025.09.15]🎯📢显著提升**小型LLM**(如Qwen3-30B-A3B)的知识图谱提取准确性。
|
||||
- [x] [2025.08.29]🎯📢现已支持**Reranker**,显著提升混合查询性能。
|
||||
|
|
@ -1463,6 +1463,50 @@ LightRAG服务器提供全面的知识图谱可视化功能。它支持各种重
|
|||
|
||||

|
||||
|
||||
## Langfuse 可观测性集成
|
||||
|
||||
Langfuse 为 OpenAI 客户端提供了直接替代方案,可自动跟踪所有 LLM 交互,使开发者能够在无需修改代码的情况下监控、调试和优化其 RAG 系统。
|
||||
|
||||
### 安装 Langfuse 可选依赖
|
||||
|
||||
```
|
||||
pip install lightrag-hku
|
||||
pip install lightrag-hku[observability]
|
||||
|
||||
# 或从源代码安装并启用调试模式
|
||||
pip install -e .
|
||||
pip install -e ".[observability]"
|
||||
```
|
||||
|
||||
### 配置 Langfuse 环境变量
|
||||
|
||||
修改 .env 文件:
|
||||
|
||||
```
|
||||
## Langfuse 可观测性(可选)
|
||||
# LLM 可观测性和追踪平台
|
||||
# 安装命令: pip install lightrag-hku[observability]
|
||||
# 注册地址: https://cloud.langfuse.com 或自托管部署
|
||||
LANGFUSE_SECRET_KEY=""
|
||||
LANGFUSE_PUBLIC_KEY=""
|
||||
LANGFUSE_HOST="https://cloud.langfuse.com" # 或您的自托管实例地址
|
||||
LANGFUSE_ENABLE_TRACE=true
|
||||
```
|
||||
|
||||
### Langfuse 使用说明
|
||||
|
||||
安装并配置完成后,Langfuse 会自动追踪所有 OpenAI LLM 调用。Langfuse 仪表板功能包括:
|
||||
|
||||
- **追踪**:查看完整的 LLM 调用链
|
||||
- **分析**:Token 使用量、延迟、成本指标
|
||||
- **调试**:检查提示词和响应内容
|
||||
- **评估**:比较模型输出结果
|
||||
- **监控**:实时告警功能
|
||||
|
||||
### 重要提示
|
||||
|
||||
**注意**:LightRAG 目前仅把 OpenAI 兼容的 API 调用接入了 Langfuse。Ollama、Azure 和 AWS Bedrock 等 API 还无法使用 Langfuse 的可观测性功能。
|
||||
|
||||
## RAGAS评估
|
||||
|
||||
**RAGAS**(Retrieval Augmented Generation Assessment,检索增强生成评估)是一个使用LLM对RAG系统进行无参考评估的框架。我们提供了基于RAGAS的评估脚本。详细信息请参阅[基于RAGAS的评估框架](lightrag/evaluation/README.md)。
|
||||
|
|
|
|||
46
README.md
46
README.md
|
|
@ -51,7 +51,7 @@
|
|||
|
||||
---
|
||||
## 🎉 News
|
||||
- [x] [2025.11.05]🎯📢Add **RAGAS-based** Evaluation Framework for LightRAG.
|
||||
- [x] [2025.11.05]🎯📢Add **RAGAS-based** Evaluation Framework and **Langfuse** observability for LightRAG.
|
||||
- [x] [2025.10.22]🎯📢Eliminate bottlenecks in processing **large-scale datasets**.
|
||||
- [x] [2025.09.15]🎯📢Significantly enhances KG extraction accuracy for **small LLMs** like Qwen3-30B-A3B.
|
||||
- [x] [2025.08.29]🎯📢**Reranker** is supported now , significantly boosting performance for mixed queries.
|
||||
|
|
@ -1543,6 +1543,50 @@ The LightRAG Server offers a comprehensive knowledge graph visualization feature
|
|||
|
||||

|
||||
|
||||
## Langfuse observability integration
|
||||
|
||||
Langfuse provides a drop-in replacement for the OpenAI client that automatically tracks all LLM interactions, enabling developers to monitor, debug, and optimize their RAG systems without code changes.
|
||||
|
||||
### Installation with Langfuse option
|
||||
|
||||
```
|
||||
pip install lightrag-hku
|
||||
pip install lightrag-hku[observability]
|
||||
|
||||
# Or install from souce code with debug mode enabled
|
||||
pip install -e .
|
||||
pip install -e ".[observability]"
|
||||
```
|
||||
|
||||
### Config Langfuse env vars
|
||||
|
||||
modify .env file:
|
||||
|
||||
```
|
||||
## Langfuse Observability (Optional)
|
||||
# LLM observability and tracing platform
|
||||
# Install with: pip install lightrag-hku[observability]
|
||||
# Sign up at: https://cloud.langfuse.com or self-host
|
||||
LANGFUSE_SECRET_KEY=""
|
||||
LANGFUSE_PUBLIC_KEY=""
|
||||
LANGFUSE_HOST="https://cloud.langfuse.com" # or your self-hosted instance
|
||||
LANGFUSE_ENABLE_TRACE=true
|
||||
```
|
||||
|
||||
### Langfuse Usage
|
||||
|
||||
Once installed and configured, Langfuse automatically traces all OpenAI LLM calls. Langfuse dashboard features include:
|
||||
|
||||
- **Tracing**: View complete LLM call chains
|
||||
- **Analytics**: Token usage, latency, cost metrics
|
||||
- **Debugging**: Inspect prompts and responses
|
||||
- **Evaluation**: Compare model outputs
|
||||
- **Monitoring**: Real-time alerting
|
||||
|
||||
### Important Notice
|
||||
|
||||
**Note**: LightRAG currently only integrates OpenAI-compatible API calls with Langfuse. APIs such as Ollama, Azure, and AWS Bedrock are not yet supported for Langfuse observability.
|
||||
|
||||
## RAGAS-based Evaluation
|
||||
|
||||
**RAGAS** (Retrieval Augmented Generation Assessment) is a framework for reference-free evaluation of RAG systems using LLMs. There is an evaluation script based on RAGAS. For detailed information, please refer to [RAGAS-based Evaluation Framework](lightrag/evaluation/README.md).
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue