From b0d44d283be0748146cda3672ba0fc69bc7f383f Mon Sep 17 00:00:00 2001 From: yangdx Date: Thu, 6 Nov 2025 10:24:15 +0800 Subject: [PATCH] Add Langfuse observability integration documentation --- README-zh.md | 46 +++++++++++++++++++++++++++++++++++++++++++++- README.md | 46 +++++++++++++++++++++++++++++++++++++++++++++- 2 files changed, 90 insertions(+), 2 deletions(-) diff --git a/README-zh.md b/README-zh.md index c90889dd..3032cdb6 100644 --- a/README-zh.md +++ b/README-zh.md @@ -53,7 +53,7 @@ ## 🎉 新闻 -- [x] [2025.11.05]🎯📢添加**基于RAGAS的**LightRAG评估框架。 +- [x] [2025.11.05]🎯📢添加**基于RAGAS的**评估框架和**Langfuse**可观测性支持。 - [x] [2025.10.22]🎯📢消除处理**大规模数据集**的瓶颈。 - [x] [2025.09.15]🎯📢显著提升**小型LLM**(如Qwen3-30B-A3B)的知识图谱提取准确性。 - [x] [2025.08.29]🎯📢现已支持**Reranker**,显著提升混合查询性能。 @@ -1463,6 +1463,50 @@ LightRAG服务器提供全面的知识图谱可视化功能。它支持各种重 ![iShot_2025-03-23_12.40.08](./README.assets/iShot_2025-03-23_12.40.08.png) +## Langfuse 可观测性集成 + +Langfuse 为 OpenAI 客户端提供了直接替代方案,可自动跟踪所有 LLM 交互,使开发者能够在无需修改代码的情况下监控、调试和优化其 RAG 系统。 + +### 安装 Langfuse 可选依赖 + +``` +pip install lightrag-hku +pip install lightrag-hku[observability] + +# 或从源代码安装并启用调试模式 +pip install -e . +pip install -e ".[observability]" +``` + +### 配置 Langfuse 环境变量 + +修改 .env 文件: + +``` +## Langfuse 可观测性(可选) +# LLM 可观测性和追踪平台 +# 安装命令: pip install lightrag-hku[observability] +# 注册地址: https://cloud.langfuse.com 或自托管部署 +LANGFUSE_SECRET_KEY="" +LANGFUSE_PUBLIC_KEY="" +LANGFUSE_HOST="https://cloud.langfuse.com" # 或您的自托管实例地址 +LANGFUSE_ENABLE_TRACE=true +``` + +### Langfuse 使用说明 + +安装并配置完成后,Langfuse 会自动追踪所有 OpenAI LLM 调用。Langfuse 仪表板功能包括: + +- **追踪**:查看完整的 LLM 调用链 +- **分析**:Token 使用量、延迟、成本指标 +- **调试**:检查提示词和响应内容 +- **评估**:比较模型输出结果 +- **监控**:实时告警功能 + +### 重要提示 + +**注意**:LightRAG 目前仅把 OpenAI 兼容的 API 调用接入了 Langfuse。Ollama、Azure 和 AWS Bedrock 等 API 还无法使用 Langfuse 的可观测性功能。 + ## RAGAS评估 **RAGAS**(Retrieval Augmented Generation Assessment,检索增强生成评估)是一个使用LLM对RAG系统进行无参考评估的框架。我们提供了基于RAGAS的评估脚本。详细信息请参阅[基于RAGAS的评估框架](lightrag/evaluation/README.md)。 diff --git a/README.md b/README.md index 559cd0ef..7a366c05 100644 --- a/README.md +++ b/README.md @@ -51,7 +51,7 @@ --- ## 🎉 News -- [x] [2025.11.05]🎯📢Add **RAGAS-based** Evaluation Framework for LightRAG. +- [x] [2025.11.05]🎯📢Add **RAGAS-based** Evaluation Framework and **Langfuse** observability for LightRAG. - [x] [2025.10.22]🎯📢Eliminate bottlenecks in processing **large-scale datasets**. - [x] [2025.09.15]🎯📢Significantly enhances KG extraction accuracy for **small LLMs** like Qwen3-30B-A3B. - [x] [2025.08.29]🎯📢**Reranker** is supported now , significantly boosting performance for mixed queries. @@ -1543,6 +1543,50 @@ The LightRAG Server offers a comprehensive knowledge graph visualization feature ![iShot_2025-03-23_12.40.08](./README.assets/iShot_2025-03-23_12.40.08.png) +## Langfuse observability integration + +Langfuse provides a drop-in replacement for the OpenAI client that automatically tracks all LLM interactions, enabling developers to monitor, debug, and optimize their RAG systems without code changes. + +### Installation with Langfuse option + +``` +pip install lightrag-hku +pip install lightrag-hku[observability] + +# Or install from souce code with debug mode enabled +pip install -e . +pip install -e ".[observability]" +``` + +### Config Langfuse env vars + +modify .env file: + +``` +## Langfuse Observability (Optional) +# LLM observability and tracing platform +# Install with: pip install lightrag-hku[observability] +# Sign up at: https://cloud.langfuse.com or self-host +LANGFUSE_SECRET_KEY="" +LANGFUSE_PUBLIC_KEY="" +LANGFUSE_HOST="https://cloud.langfuse.com" # or your self-hosted instance +LANGFUSE_ENABLE_TRACE=true +``` + +### Langfuse Usage + +Once installed and configured, Langfuse automatically traces all OpenAI LLM calls. Langfuse dashboard features include: + +- **Tracing**: View complete LLM call chains +- **Analytics**: Token usage, latency, cost metrics +- **Debugging**: Inspect prompts and responses +- **Evaluation**: Compare model outputs +- **Monitoring**: Real-time alerting + +### Important Notice + +**Note**: LightRAG currently only integrates OpenAI-compatible API calls with Langfuse. APIs such as Ollama, Azure, and AWS Bedrock are not yet supported for Langfuse observability. + ## RAGAS-based Evaluation **RAGAS** (Retrieval Augmented Generation Assessment) is a framework for reference-free evaluation of RAG systems using LLMs. There is an evaluation script based on RAGAS. For detailed information, please refer to [RAGAS-based Evaluation Framework](lightrag/evaluation/README.md).