Add Chain of Thought support to Gemini LLM integration
- Extract thoughts from response parts - Add COT enable/disable parameter
This commit is contained in:
parent
6686edfd35
commit
3cb4eae492
2 changed files with 148 additions and 41 deletions
|
|
@ -114,28 +114,44 @@ def _format_history_messages(history_messages: list[dict[str, Any]] | None) -> s
|
||||||
return "\n".join(history_lines)
|
return "\n".join(history_lines)
|
||||||
|
|
||||||
|
|
||||||
def _extract_response_text(response: Any) -> str:
|
def _extract_response_text(
|
||||||
|
response: Any, extract_thoughts: bool = False
|
||||||
|
) -> tuple[str, str]:
|
||||||
"""
|
"""
|
||||||
Extract text content from Gemini response, avoiding warnings about non-text parts.
|
Extract text content from Gemini response, separating regular content from thoughts.
|
||||||
|
|
||||||
Always extracts text manually from parts to avoid triggering warnings when
|
Args:
|
||||||
non-text parts (like 'thought_signature') are present in the response.
|
response: Gemini API response object
|
||||||
|
extract_thoughts: Whether to extract thought content separately
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (regular_text, thought_text)
|
||||||
"""
|
"""
|
||||||
candidates = getattr(response, "candidates", None)
|
candidates = getattr(response, "candidates", None)
|
||||||
if not candidates:
|
if not candidates:
|
||||||
return ""
|
return ("", "")
|
||||||
|
|
||||||
|
regular_parts: list[str] = []
|
||||||
|
thought_parts: list[str] = []
|
||||||
|
|
||||||
parts: list[str] = []
|
|
||||||
for candidate in candidates:
|
for candidate in candidates:
|
||||||
if not getattr(candidate, "content", None):
|
if not getattr(candidate, "content", None):
|
||||||
continue
|
continue
|
||||||
for part in getattr(candidate.content, "parts", []):
|
# Use 'or []' to handle None values from parts attribute
|
||||||
# Only extract text parts to avoid non-text content like thought_signature
|
for part in getattr(candidate.content, "parts", None) or []:
|
||||||
text = getattr(part, "text", None)
|
text = getattr(part, "text", None)
|
||||||
if text:
|
if not text:
|
||||||
parts.append(text)
|
continue
|
||||||
|
|
||||||
return "\n".join(parts)
|
# Check if this part is thought content using the 'thought' attribute
|
||||||
|
is_thought = getattr(part, "thought", False)
|
||||||
|
|
||||||
|
if is_thought and extract_thoughts:
|
||||||
|
thought_parts.append(text)
|
||||||
|
elif not is_thought:
|
||||||
|
regular_parts.append(text)
|
||||||
|
|
||||||
|
return ("\n".join(regular_parts), "\n".join(thought_parts))
|
||||||
|
|
||||||
|
|
||||||
async def gemini_complete_if_cache(
|
async def gemini_complete_if_cache(
|
||||||
|
|
@ -143,18 +159,51 @@ async def gemini_complete_if_cache(
|
||||||
prompt: str,
|
prompt: str,
|
||||||
system_prompt: str | None = None,
|
system_prompt: str | None = None,
|
||||||
history_messages: list[dict[str, Any]] | None = None,
|
history_messages: list[dict[str, Any]] | None = None,
|
||||||
*,
|
enable_cot: bool = False,
|
||||||
api_key: str | None = None,
|
|
||||||
base_url: str | None = None,
|
base_url: str | None = None,
|
||||||
generation_config: dict[str, Any] | None = None,
|
api_key: str | None = None,
|
||||||
keyword_extraction: bool = False,
|
|
||||||
token_tracker: Any | None = None,
|
token_tracker: Any | None = None,
|
||||||
hashing_kv: Any | None = None, # noqa: ARG001 - present for interface parity
|
|
||||||
stream: bool | None = None,
|
stream: bool | None = None,
|
||||||
enable_cot: bool = False, # noqa: ARG001 - not supported by Gemini currently
|
keyword_extraction: bool = False,
|
||||||
timeout: float | None = None, # noqa: ARG001 - handled by caller if needed
|
generation_config: dict[str, Any] | None = None,
|
||||||
**_: Any,
|
**_: Any,
|
||||||
) -> str | AsyncIterator[str]:
|
) -> str | AsyncIterator[str]:
|
||||||
|
"""
|
||||||
|
Complete a prompt using Gemini's API with Chain of Thought (COT) support.
|
||||||
|
|
||||||
|
This function supports automatic integration of reasoning content from Gemini models
|
||||||
|
that provide Chain of Thought capabilities via the thinking_config API feature.
|
||||||
|
|
||||||
|
COT Integration:
|
||||||
|
- When enable_cot=True: Thought content is wrapped in <think>...</think> tags
|
||||||
|
- When enable_cot=False: Thought content is filtered out, only regular content returned
|
||||||
|
- Thought content is identified by the 'thought' attribute on response parts
|
||||||
|
- Requires thinking_config to be enabled in generation_config for API to return thoughts
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model: The Gemini model to use.
|
||||||
|
prompt: The prompt to complete.
|
||||||
|
system_prompt: Optional system prompt to include.
|
||||||
|
history_messages: Optional list of previous messages in the conversation.
|
||||||
|
api_key: Optional Gemini API key. If None, uses environment variable.
|
||||||
|
base_url: Optional custom API endpoint.
|
||||||
|
generation_config: Optional generation configuration dict.
|
||||||
|
keyword_extraction: Whether to use JSON response format.
|
||||||
|
token_tracker: Optional token usage tracker for monitoring API usage.
|
||||||
|
hashing_kv: Storage interface (for interface parity with other bindings).
|
||||||
|
stream: Whether to stream the response.
|
||||||
|
enable_cot: Whether to include Chain of Thought content in the response.
|
||||||
|
timeout: Request timeout (handled by caller if needed).
|
||||||
|
**_: Additional keyword arguments (ignored).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The completed text (with COT content if enable_cot=True) or an async iterator
|
||||||
|
of text chunks if streaming. COT content is wrapped in <think>...</think> tags.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
RuntimeError: If the response from Gemini is empty.
|
||||||
|
ValueError: If API key is not provided or configured.
|
||||||
|
"""
|
||||||
loop = asyncio.get_running_loop()
|
loop = asyncio.get_running_loop()
|
||||||
|
|
||||||
key = _ensure_api_key(api_key)
|
key = _ensure_api_key(api_key)
|
||||||
|
|
@ -188,6 +237,11 @@ async def gemini_complete_if_cache(
|
||||||
usage_container: dict[str, Any] = {}
|
usage_container: dict[str, Any] = {}
|
||||||
|
|
||||||
def _stream_model() -> None:
|
def _stream_model() -> None:
|
||||||
|
# COT state tracking for streaming
|
||||||
|
cot_active = False
|
||||||
|
cot_started = False
|
||||||
|
initial_content_seen = False
|
||||||
|
|
||||||
try:
|
try:
|
||||||
stream_kwargs = dict(request_kwargs)
|
stream_kwargs = dict(request_kwargs)
|
||||||
stream_iterator = client.models.generate_content_stream(**stream_kwargs)
|
stream_iterator = client.models.generate_content_stream(**stream_kwargs)
|
||||||
|
|
@ -195,19 +249,59 @@ async def gemini_complete_if_cache(
|
||||||
usage = getattr(chunk, "usage_metadata", None)
|
usage = getattr(chunk, "usage_metadata", None)
|
||||||
if usage is not None:
|
if usage is not None:
|
||||||
usage_container["usage"] = usage
|
usage_container["usage"] = usage
|
||||||
# Always use manual extraction to avoid warnings about non-text parts
|
|
||||||
text_piece = _extract_response_text(chunk)
|
# Extract both regular and thought content
|
||||||
if text_piece:
|
regular_text, thought_text = _extract_response_text(
|
||||||
loop.call_soon_threadsafe(queue.put_nowait, text_piece)
|
chunk, extract_thoughts=True
|
||||||
|
)
|
||||||
|
|
||||||
|
if enable_cot:
|
||||||
|
# Process regular content
|
||||||
|
if regular_text:
|
||||||
|
if not initial_content_seen:
|
||||||
|
initial_content_seen = True
|
||||||
|
|
||||||
|
# Close COT section if it was active
|
||||||
|
if cot_active:
|
||||||
|
loop.call_soon_threadsafe(queue.put_nowait, "</think>")
|
||||||
|
cot_active = False
|
||||||
|
|
||||||
|
# Send regular content
|
||||||
|
loop.call_soon_threadsafe(queue.put_nowait, regular_text)
|
||||||
|
|
||||||
|
# Process thought content
|
||||||
|
if thought_text:
|
||||||
|
if not initial_content_seen and not cot_started:
|
||||||
|
# Start COT section
|
||||||
|
loop.call_soon_threadsafe(queue.put_nowait, "<think>")
|
||||||
|
cot_active = True
|
||||||
|
cot_started = True
|
||||||
|
|
||||||
|
# Send thought content if COT is active
|
||||||
|
if cot_active:
|
||||||
|
loop.call_soon_threadsafe(queue.put_nowait, thought_text)
|
||||||
|
else:
|
||||||
|
# COT disabled - only send regular content
|
||||||
|
if regular_text:
|
||||||
|
loop.call_soon_threadsafe(queue.put_nowait, regular_text)
|
||||||
|
|
||||||
|
# Ensure COT is properly closed if still active
|
||||||
|
if cot_active:
|
||||||
|
loop.call_soon_threadsafe(queue.put_nowait, "</think>")
|
||||||
|
|
||||||
loop.call_soon_threadsafe(queue.put_nowait, None)
|
loop.call_soon_threadsafe(queue.put_nowait, None)
|
||||||
except Exception as exc: # pragma: no cover - surface runtime issues
|
except Exception as exc: # pragma: no cover - surface runtime issues
|
||||||
|
# Try to close COT tag before reporting error
|
||||||
|
if cot_active:
|
||||||
|
try:
|
||||||
|
loop.call_soon_threadsafe(queue.put_nowait, "</think>")
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
loop.call_soon_threadsafe(queue.put_nowait, exc)
|
loop.call_soon_threadsafe(queue.put_nowait, exc)
|
||||||
|
|
||||||
loop.run_in_executor(None, _stream_model)
|
loop.run_in_executor(None, _stream_model)
|
||||||
|
|
||||||
async def _async_stream() -> AsyncIterator[str]:
|
async def _async_stream() -> AsyncIterator[str]:
|
||||||
accumulated = ""
|
|
||||||
emitted = ""
|
|
||||||
try:
|
try:
|
||||||
while True:
|
while True:
|
||||||
item = await queue.get()
|
item = await queue.get()
|
||||||
|
|
@ -220,16 +314,9 @@ async def gemini_complete_if_cache(
|
||||||
if "\\u" in chunk_text:
|
if "\\u" in chunk_text:
|
||||||
chunk_text = safe_unicode_decode(chunk_text.encode("utf-8"))
|
chunk_text = safe_unicode_decode(chunk_text.encode("utf-8"))
|
||||||
|
|
||||||
accumulated += chunk_text
|
# Yield the chunk directly without filtering
|
||||||
sanitized = remove_think_tags(accumulated)
|
# COT filtering is already handled in _stream_model()
|
||||||
if sanitized.startswith(emitted):
|
yield chunk_text
|
||||||
delta = sanitized[len(emitted) :]
|
|
||||||
else:
|
|
||||||
delta = sanitized
|
|
||||||
emitted = sanitized
|
|
||||||
|
|
||||||
if delta:
|
|
||||||
yield delta
|
|
||||||
finally:
|
finally:
|
||||||
usage = usage_container.get("usage")
|
usage = usage_container.get("usage")
|
||||||
if token_tracker and usage:
|
if token_tracker and usage:
|
||||||
|
|
@ -247,14 +334,33 @@ async def gemini_complete_if_cache(
|
||||||
|
|
||||||
response = await asyncio.to_thread(_call_model)
|
response = await asyncio.to_thread(_call_model)
|
||||||
|
|
||||||
text = _extract_response_text(response)
|
# Extract both regular text and thought text
|
||||||
if not text:
|
regular_text, thought_text = _extract_response_text(response, extract_thoughts=True)
|
||||||
|
|
||||||
|
# Apply COT filtering logic based on enable_cot parameter
|
||||||
|
if enable_cot:
|
||||||
|
# Include thought content wrapped in <think> tags
|
||||||
|
if thought_text and thought_text.strip():
|
||||||
|
if not regular_text or regular_text.strip() == "":
|
||||||
|
# Only thought content available
|
||||||
|
final_text = f"<think>{thought_text}</think>"
|
||||||
|
else:
|
||||||
|
# Both content types present: prepend thought to regular content
|
||||||
|
final_text = f"<think>{thought_text}</think>{regular_text}"
|
||||||
|
else:
|
||||||
|
# No thought content, use regular content only
|
||||||
|
final_text = regular_text or ""
|
||||||
|
else:
|
||||||
|
# Filter out thought content, return only regular content
|
||||||
|
final_text = regular_text or ""
|
||||||
|
|
||||||
|
if not final_text:
|
||||||
raise RuntimeError("Gemini response did not contain any text content.")
|
raise RuntimeError("Gemini response did not contain any text content.")
|
||||||
|
|
||||||
if "\\u" in text:
|
if "\\u" in final_text:
|
||||||
text = safe_unicode_decode(text.encode("utf-8"))
|
final_text = safe_unicode_decode(final_text.encode("utf-8"))
|
||||||
|
|
||||||
text = remove_think_tags(text)
|
final_text = remove_think_tags(final_text)
|
||||||
|
|
||||||
usage = getattr(response, "usage_metadata", None)
|
usage = getattr(response, "usage_metadata", None)
|
||||||
if token_tracker and usage:
|
if token_tracker and usage:
|
||||||
|
|
@ -266,8 +372,8 @@ async def gemini_complete_if_cache(
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.debug("Gemini response length: %s", len(text))
|
logger.debug("Gemini response length: %s", len(final_text))
|
||||||
return text
|
return final_text
|
||||||
|
|
||||||
|
|
||||||
async def gemini_model_complete(
|
async def gemini_model_complete(
|
||||||
|
|
|
||||||
|
|
@ -174,6 +174,7 @@ async def openai_complete_if_cache(
|
||||||
explicit parameters (api_key, base_url).
|
explicit parameters (api_key, base_url).
|
||||||
- hashing_kv: Will be removed from kwargs before passing to OpenAI.
|
- hashing_kv: Will be removed from kwargs before passing to OpenAI.
|
||||||
- keyword_extraction: Will be removed from kwargs before passing to OpenAI.
|
- keyword_extraction: Will be removed from kwargs before passing to OpenAI.
|
||||||
|
- stream: Whether to stream the response. Default is False.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
The completed text (with integrated COT content if available) or an async iterator
|
The completed text (with integrated COT content if available) or an async iterator
|
||||||
|
|
|
||||||
Loading…
Add table
Reference in a new issue