408 lines
14 KiB
Python
408 lines
14 KiB
Python
"""
|
|
Gemini LLM binding for LightRAG.
|
|
|
|
This module provides asynchronous helpers that adapt Google's Gemini models
|
|
to the same interface used by the rest of the LightRAG LLM bindings. The
|
|
implementation mirrors the OpenAI helpers while relying on the official
|
|
``google-genai`` client under the hood.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import asyncio
|
|
import logging
|
|
import os
|
|
from collections.abc import AsyncIterator
|
|
from functools import lru_cache
|
|
from typing import Any
|
|
|
|
from lightrag.utils import logger, remove_think_tags, safe_unicode_decode
|
|
|
|
import pipmaster as pm
|
|
|
|
# Install the Google Gemini client on demand
|
|
if not pm.is_installed("google-genai"):
|
|
pm.install("google-genai")
|
|
|
|
from google import genai # type: ignore
|
|
from google.genai import types # type: ignore
|
|
|
|
DEFAULT_GEMINI_ENDPOINT = "https://generativelanguage.googleapis.com"
|
|
|
|
LOG = logging.getLogger(__name__)
|
|
|
|
|
|
@lru_cache(maxsize=8)
|
|
def _get_gemini_client(api_key: str, base_url: str | None) -> genai.Client:
|
|
"""
|
|
Create (or fetch cached) Gemini client.
|
|
|
|
Args:
|
|
api_key: Google Gemini API key.
|
|
base_url: Optional custom API endpoint.
|
|
|
|
Returns:
|
|
genai.Client: Configured Gemini client instance.
|
|
"""
|
|
client_kwargs: dict[str, Any] = {"api_key": api_key}
|
|
|
|
if base_url and base_url != DEFAULT_GEMINI_ENDPOINT:
|
|
try:
|
|
client_kwargs["http_options"] = types.HttpOptions(api_endpoint=base_url)
|
|
except Exception as exc: # pragma: no cover - defensive
|
|
LOG.warning("Failed to apply custom Gemini endpoint %s: %s", base_url, exc)
|
|
|
|
try:
|
|
return genai.Client(**client_kwargs)
|
|
except TypeError:
|
|
# Older google-genai releases don't accept http_options; retry without it.
|
|
client_kwargs.pop("http_options", None)
|
|
return genai.Client(**client_kwargs)
|
|
|
|
|
|
def _ensure_api_key(api_key: str | None) -> str:
|
|
key = api_key or os.getenv("LLM_BINDING_API_KEY") or os.getenv("GEMINI_API_KEY")
|
|
if not key:
|
|
raise ValueError(
|
|
"Gemini API key not provided. "
|
|
"Set LLM_BINDING_API_KEY or GEMINI_API_KEY in the environment."
|
|
)
|
|
return key
|
|
|
|
|
|
def _build_generation_config(
|
|
base_config: dict[str, Any] | None,
|
|
system_prompt: str | None,
|
|
keyword_extraction: bool,
|
|
) -> types.GenerateContentConfig | None:
|
|
config_data = dict(base_config or {})
|
|
|
|
if system_prompt:
|
|
if config_data.get("system_instruction"):
|
|
config_data["system_instruction"] = (
|
|
f"{config_data['system_instruction']}\n{system_prompt}"
|
|
)
|
|
else:
|
|
config_data["system_instruction"] = system_prompt
|
|
|
|
if keyword_extraction and not config_data.get("response_mime_type"):
|
|
config_data["response_mime_type"] = "application/json"
|
|
|
|
# Remove entries that are explicitly set to None to avoid type errors
|
|
sanitized = {
|
|
key: value
|
|
for key, value in config_data.items()
|
|
if value is not None and value != ""
|
|
}
|
|
|
|
if not sanitized:
|
|
return None
|
|
|
|
return types.GenerateContentConfig(**sanitized)
|
|
|
|
|
|
def _format_history_messages(history_messages: list[dict[str, Any]] | None) -> str:
|
|
if not history_messages:
|
|
return ""
|
|
|
|
history_lines: list[str] = []
|
|
for message in history_messages:
|
|
role = message.get("role", "user")
|
|
content = message.get("content", "")
|
|
history_lines.append(f"[{role}] {content}")
|
|
|
|
return "\n".join(history_lines)
|
|
|
|
|
|
def _extract_response_text(
|
|
response: Any, extract_thoughts: bool = False
|
|
) -> tuple[str, str]:
|
|
"""
|
|
Extract text content from Gemini response, separating regular content from thoughts.
|
|
|
|
Args:
|
|
response: Gemini API response object
|
|
extract_thoughts: Whether to extract thought content separately
|
|
|
|
Returns:
|
|
Tuple of (regular_text, thought_text)
|
|
"""
|
|
candidates = getattr(response, "candidates", None)
|
|
if not candidates:
|
|
return ("", "")
|
|
|
|
regular_parts: list[str] = []
|
|
thought_parts: list[str] = []
|
|
|
|
for candidate in candidates:
|
|
if not getattr(candidate, "content", None):
|
|
continue
|
|
# Use 'or []' to handle None values from parts attribute
|
|
for part in getattr(candidate.content, "parts", None) or []:
|
|
text = getattr(part, "text", None)
|
|
if not text:
|
|
continue
|
|
|
|
# Check if this part is thought content using the 'thought' attribute
|
|
is_thought = getattr(part, "thought", False)
|
|
|
|
if is_thought and extract_thoughts:
|
|
thought_parts.append(text)
|
|
elif not is_thought:
|
|
regular_parts.append(text)
|
|
|
|
return ("\n".join(regular_parts), "\n".join(thought_parts))
|
|
|
|
|
|
async def gemini_complete_if_cache(
|
|
model: str,
|
|
prompt: str,
|
|
system_prompt: str | None = None,
|
|
history_messages: list[dict[str, Any]] | None = None,
|
|
enable_cot: bool = False,
|
|
base_url: str | None = None,
|
|
api_key: str | None = None,
|
|
token_tracker: Any | None = None,
|
|
stream: bool | None = None,
|
|
keyword_extraction: bool = False,
|
|
generation_config: dict[str, Any] | None = None,
|
|
**_: Any,
|
|
) -> str | AsyncIterator[str]:
|
|
"""
|
|
Complete a prompt using Gemini's API with Chain of Thought (COT) support.
|
|
|
|
This function supports automatic integration of reasoning content from Gemini models
|
|
that provide Chain of Thought capabilities via the thinking_config API feature.
|
|
|
|
COT Integration:
|
|
- When enable_cot=True: Thought content is wrapped in <think>...</think> tags
|
|
- When enable_cot=False: Thought content is filtered out, only regular content returned
|
|
- Thought content is identified by the 'thought' attribute on response parts
|
|
- Requires thinking_config to be enabled in generation_config for API to return thoughts
|
|
|
|
Args:
|
|
model: The Gemini model to use.
|
|
prompt: The prompt to complete.
|
|
system_prompt: Optional system prompt to include.
|
|
history_messages: Optional list of previous messages in the conversation.
|
|
api_key: Optional Gemini API key. If None, uses environment variable.
|
|
base_url: Optional custom API endpoint.
|
|
generation_config: Optional generation configuration dict.
|
|
keyword_extraction: Whether to use JSON response format.
|
|
token_tracker: Optional token usage tracker for monitoring API usage.
|
|
hashing_kv: Storage interface (for interface parity with other bindings).
|
|
stream: Whether to stream the response.
|
|
enable_cot: Whether to include Chain of Thought content in the response.
|
|
timeout: Request timeout (handled by caller if needed).
|
|
**_: Additional keyword arguments (ignored).
|
|
|
|
Returns:
|
|
The completed text (with COT content if enable_cot=True) or an async iterator
|
|
of text chunks if streaming. COT content is wrapped in <think>...</think> tags.
|
|
|
|
Raises:
|
|
RuntimeError: If the response from Gemini is empty.
|
|
ValueError: If API key is not provided or configured.
|
|
"""
|
|
loop = asyncio.get_running_loop()
|
|
|
|
key = _ensure_api_key(api_key)
|
|
client = _get_gemini_client(key, base_url)
|
|
|
|
history_block = _format_history_messages(history_messages)
|
|
prompt_sections = []
|
|
if history_block:
|
|
prompt_sections.append(history_block)
|
|
prompt_sections.append(f"[user] {prompt}")
|
|
combined_prompt = "\n".join(prompt_sections)
|
|
|
|
config_obj = _build_generation_config(
|
|
generation_config,
|
|
system_prompt=system_prompt,
|
|
keyword_extraction=keyword_extraction,
|
|
)
|
|
|
|
request_kwargs: dict[str, Any] = {
|
|
"model": model,
|
|
"contents": [combined_prompt],
|
|
}
|
|
if config_obj is not None:
|
|
request_kwargs["config"] = config_obj
|
|
|
|
def _call_model():
|
|
return client.models.generate_content(**request_kwargs)
|
|
|
|
if stream:
|
|
queue: asyncio.Queue[Any] = asyncio.Queue()
|
|
usage_container: dict[str, Any] = {}
|
|
|
|
def _stream_model() -> None:
|
|
# COT state tracking for streaming
|
|
cot_active = False
|
|
cot_started = False
|
|
initial_content_seen = False
|
|
|
|
try:
|
|
stream_kwargs = dict(request_kwargs)
|
|
stream_iterator = client.models.generate_content_stream(**stream_kwargs)
|
|
for chunk in stream_iterator:
|
|
usage = getattr(chunk, "usage_metadata", None)
|
|
if usage is not None:
|
|
usage_container["usage"] = usage
|
|
|
|
# Extract both regular and thought content
|
|
regular_text, thought_text = _extract_response_text(
|
|
chunk, extract_thoughts=True
|
|
)
|
|
|
|
if enable_cot:
|
|
# Process regular content
|
|
if regular_text:
|
|
if not initial_content_seen:
|
|
initial_content_seen = True
|
|
|
|
# Close COT section if it was active
|
|
if cot_active:
|
|
loop.call_soon_threadsafe(queue.put_nowait, "</think>")
|
|
cot_active = False
|
|
|
|
# Send regular content
|
|
loop.call_soon_threadsafe(queue.put_nowait, regular_text)
|
|
|
|
# Process thought content
|
|
if thought_text:
|
|
if not initial_content_seen and not cot_started:
|
|
# Start COT section
|
|
loop.call_soon_threadsafe(queue.put_nowait, "<think>")
|
|
cot_active = True
|
|
cot_started = True
|
|
|
|
# Send thought content if COT is active
|
|
if cot_active:
|
|
loop.call_soon_threadsafe(queue.put_nowait, thought_text)
|
|
else:
|
|
# COT disabled - only send regular content
|
|
if regular_text:
|
|
loop.call_soon_threadsafe(queue.put_nowait, regular_text)
|
|
|
|
# Ensure COT is properly closed if still active
|
|
if cot_active:
|
|
loop.call_soon_threadsafe(queue.put_nowait, "</think>")
|
|
|
|
loop.call_soon_threadsafe(queue.put_nowait, None)
|
|
except Exception as exc: # pragma: no cover - surface runtime issues
|
|
# Try to close COT tag before reporting error
|
|
if cot_active:
|
|
try:
|
|
loop.call_soon_threadsafe(queue.put_nowait, "</think>")
|
|
except Exception:
|
|
pass
|
|
loop.call_soon_threadsafe(queue.put_nowait, exc)
|
|
|
|
loop.run_in_executor(None, _stream_model)
|
|
|
|
async def _async_stream() -> AsyncIterator[str]:
|
|
try:
|
|
while True:
|
|
item = await queue.get()
|
|
if item is None:
|
|
break
|
|
if isinstance(item, Exception):
|
|
raise item
|
|
|
|
chunk_text = str(item)
|
|
if "\\u" in chunk_text:
|
|
chunk_text = safe_unicode_decode(chunk_text.encode("utf-8"))
|
|
|
|
# Yield the chunk directly without filtering
|
|
# COT filtering is already handled in _stream_model()
|
|
yield chunk_text
|
|
finally:
|
|
usage = usage_container.get("usage")
|
|
if token_tracker and usage:
|
|
token_tracker.add_usage(
|
|
{
|
|
"prompt_tokens": getattr(usage, "prompt_token_count", 0),
|
|
"completion_tokens": getattr(
|
|
usage, "candidates_token_count", 0
|
|
),
|
|
"total_tokens": getattr(usage, "total_token_count", 0),
|
|
}
|
|
)
|
|
|
|
return _async_stream()
|
|
|
|
response = await asyncio.to_thread(_call_model)
|
|
|
|
# Extract both regular text and thought text
|
|
regular_text, thought_text = _extract_response_text(response, extract_thoughts=True)
|
|
|
|
# Apply COT filtering logic based on enable_cot parameter
|
|
if enable_cot:
|
|
# Include thought content wrapped in <think> tags
|
|
if thought_text and thought_text.strip():
|
|
if not regular_text or regular_text.strip() == "":
|
|
# Only thought content available
|
|
final_text = f"<think>{thought_text}</think>"
|
|
else:
|
|
# Both content types present: prepend thought to regular content
|
|
final_text = f"<think>{thought_text}</think>{regular_text}"
|
|
else:
|
|
# No thought content, use regular content only
|
|
final_text = regular_text or ""
|
|
else:
|
|
# Filter out thought content, return only regular content
|
|
final_text = regular_text or ""
|
|
|
|
if not final_text:
|
|
raise RuntimeError("Gemini response did not contain any text content.")
|
|
|
|
if "\\u" in final_text:
|
|
final_text = safe_unicode_decode(final_text.encode("utf-8"))
|
|
|
|
final_text = remove_think_tags(final_text)
|
|
|
|
usage = getattr(response, "usage_metadata", None)
|
|
if token_tracker and usage:
|
|
token_tracker.add_usage(
|
|
{
|
|
"prompt_tokens": getattr(usage, "prompt_token_count", 0),
|
|
"completion_tokens": getattr(usage, "candidates_token_count", 0),
|
|
"total_tokens": getattr(usage, "total_token_count", 0),
|
|
}
|
|
)
|
|
|
|
logger.debug("Gemini response length: %s", len(final_text))
|
|
return final_text
|
|
|
|
|
|
async def gemini_model_complete(
|
|
prompt: str,
|
|
system_prompt: str | None = None,
|
|
history_messages: list[dict[str, Any]] | None = None,
|
|
keyword_extraction: bool = False,
|
|
**kwargs: Any,
|
|
) -> str | AsyncIterator[str]:
|
|
hashing_kv = kwargs.get("hashing_kv")
|
|
model_name = None
|
|
if hashing_kv is not None:
|
|
model_name = hashing_kv.global_config.get("llm_model_name")
|
|
if model_name is None:
|
|
model_name = kwargs.pop("model_name", None)
|
|
if model_name is None:
|
|
raise ValueError("Gemini model name not provided in configuration.")
|
|
|
|
return await gemini_complete_if_cache(
|
|
model_name,
|
|
prompt,
|
|
system_prompt=system_prompt,
|
|
history_messages=history_messages,
|
|
keyword_extraction=keyword_extraction,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
__all__ = [
|
|
"gemini_complete_if_cache",
|
|
"gemini_model_complete",
|
|
]
|