### What problem does this PR solve? Previous: - Defaulted to hardcoded model 'BAAI/bge-large-zh-v1.5@BAAI' - Did not respect user-configured default embedding_model Now: - Correctly prioritizes user-configured default embedding_model Other: - Make embedding_model optional in CreateDatasetReq with proper None handling - Add default embedding model fallback in dataset update when empty - Enhance validation utils to handle None values and string normalization - Update SDK default embedding model to None to match API changes - Adjust related test cases to reflect new validation rules ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) |
||
|---|---|---|
| .. | ||
| ragflow_sdk | ||
| test | ||
| hello_ragflow.py | ||
| pyproject.toml | ||
| README.md | ||
| uv.lock | ||
ragflow-sdk
build and publish python SDK to pypi.org
uv build
uv pip install twine
export TWINE_USERNAME="__token__"
export TWINE_PASSWORD=$YOUR_PYPI_API_TOKEN
twine upload dist/*.whl