Bumps [nltk](https://github.com/nltk/nltk) from 3.8.1 to 3.9. <details> <summary>Changelog</summary> <p><em>Sourced from <a href="https://github.com/nltk/nltk/blob/develop/ChangeLog">nltk's changelog</a>.</em></p> <blockquote> <p>Version 3.9.1 2024-08-19</p> <ul> <li>Fixed bug that prevented wordnet from loading</li> </ul> <p>Version 3.9 2024-08-18</p> <ul> <li>Fix security vulnerability CVE-2024-39705 (breaking change)</li> <li>Replace pickled models (punkt, chunker, taggers) by new pickle-free "_tab" packages</li> <li>No longer sort WordNet synsets and relations (sort in calling function when required)</li> <li>Add Python 3.12 support</li> <li>Many other minor fixes</li> </ul> <p>Thanks to the following contributors to 3.8.2: Tom Aarsen, Cat Lee Ball, Veralara Bernhard, Carlos Brandt, Konstantin Chernyshev, Michael Higgins, Eric Kafe, Vivek Kalyan, David Lukes, Rob Malouf, purificant, Alex Rudnick, Liling Tan, Akihiro Yamazaki.</p> <p>Version 3.8.1 2023-01-02</p> <ul> <li>Resolve RCE vulnerability in localhost WordNet Browser (<a href="https://redirect.github.com/nltk/nltk/issues/3100">#3100</a>)</li> <li>Remove unused tool scripts (<a href="https://redirect.github.com/nltk/nltk/issues/3099">#3099</a>)</li> <li>Resolve XSS vulnerability in localhost WordNet Browser (<a href="https://redirect.github.com/nltk/nltk/issues/3096">#3096</a>)</li> <li>Add Python 3.11 support (<a href="https://redirect.github.com/nltk/nltk/issues/3090">#3090</a>)</li> </ul> <p>Thanks to the following contributors to 3.8.1: Francis Bond, John Vandenberg, Tom Aarsen</p> <p>Version 3.8 2022-12-12</p> <ul> <li>Refactor dispersion plot (<a href="https://redirect.github.com/nltk/nltk/issues/3082">#3082</a>)</li> <li>Provide type hints for LazyCorpusLoader variables (<a href="https://redirect.github.com/nltk/nltk/issues/3081">#3081</a>)</li> <li>Throw warning when LanguageModel is initialized with incorrect vocabulary (<a href="https://redirect.github.com/nltk/nltk/issues/3080">#3080</a>)</li> <li>Fix WordNet's all_synsets() function (<a href="https://redirect.github.com/nltk/nltk/issues/3078">#3078</a>)</li> <li>Resolve TreebankWordDetokenizer inconsistency with end-of-string contractions (<a href="https://redirect.github.com/nltk/nltk/issues/3070">#3070</a>)</li> <li>Support both iso639-3 codes and BCP-47 language tags (<a href="https://redirect.github.com/nltk/nltk/issues/3060">#3060</a>)</li> <li>Avoid DeprecationWarning in Regexp tokenizer (<a href="https://redirect.github.com/nltk/nltk/issues/3055">#3055</a>)</li> <li>Fix many doctests, add doctests to CI (<a href="https://redirect.github.com/nltk/nltk/issues/3054">#3054</a>, <a href="https://redirect.github.com/nltk/nltk/issues/3050">#3050</a>, <a href="https://redirect.github.com/nltk/nltk/issues/3048">#3048</a>)</li> <li>Fix bool field not being read in VerbNet (<a href="https://redirect.github.com/nltk/nltk/issues/3044">#3044</a>)</li> <li>Greatly improve time efficiency of SyllableTokenizer when tokenizing numbers (<a href="https://redirect.github.com/nltk/nltk/issues/3042">#3042</a>)</li> <li>Fix encodings of Polish udhr corpus reader (<a href="https://redirect.github.com/nltk/nltk/issues/3038">#3038</a>)</li> <li>Allow TweetTokenizer to tokenize emoji flag sequences (<a href="https://redirect.github.com/nltk/nltk/issues/3034">#3034</a>)</li> <li>Prevent LazyModule from increasing the size of nltk.<strong>dict</strong> (<a href="https://redirect.github.com/nltk/nltk/issues/3033">#3033</a>)</li> <li>Fix CoreNLPServer non-default port issue (<a href="https://redirect.github.com/nltk/nltk/issues/3031">#3031</a>)</li> <li>Add "acion" suffix to the Spanish SnowballStemmer (<a href="https://redirect.github.com/nltk/nltk/issues/3030">#3030</a>)</li> <li>Allow loading WordNet without OMW (<a href="https://redirect.github.com/nltk/nltk/issues/3026">#3026</a>)</li> <li>Use input() in nltk.chat.chatbot() for Jupyter support (<a href="https://redirect.github.com/nltk/nltk/issues/3022">#3022</a>)</li> <li>Fix edit_distance_align() in distance.py (<a href="https://redirect.github.com/nltk/nltk/issues/3017">#3017</a>)</li> <li>Tackle performance and accuracy regression of sentence tokenizer since NLTK 3.6.6 (<a href="https://redirect.github.com/nltk/nltk/issues/3014">#3014</a>)</li> <li>Add the Iota operator to semantic logic (<a href="https://redirect.github.com/nltk/nltk/issues/3010">#3010</a>)</li> <li>Resolve critical errors in WordNet app (<a href="https://redirect.github.com/nltk/nltk/issues/3008">#3008</a>)</li> <li>Resolve critical error in CHILDES Corpus (<a href="https://redirect.github.com/nltk/nltk/issues/2998">#2998</a>)</li> <li>Make WordNet information_content() accept adjective satellites (<a href="https://redirect.github.com/nltk/nltk/issues/2995">#2995</a>)</li> <li>Add "strict=True" parameter to CoreNLP (<a href="https://redirect.github.com/nltk/nltk/issues/2993">#2993</a>, <a href="https://redirect.github.com/nltk/nltk/issues/3043">#3043</a>)</li> </ul> <!-- raw HTML omitted --> </blockquote> <p>... (truncated)</p> </details> <details> <summary>Commits</summary> <ul> <li><a href=" |
||
|---|---|---|
| .github | ||
| agent | ||
| api | ||
| conf | ||
| deepdoc | ||
| docker | ||
| docs | ||
| graphrag | ||
| rag | ||
| sdk/python | ||
| web | ||
| .gitattributes | ||
| .gitignore | ||
| Dockerfile | ||
| Dockerfile.arm | ||
| Dockerfile.cuda | ||
| Dockerfile.scratch | ||
| Dockerfile.scratch.oc9 | ||
| LICENSE | ||
| printEnvironment.sh | ||
| README.md | ||
| README_ja.md | ||
| README_ko.md | ||
| README_zh.md | ||
| requirements.txt | ||
| requirements_arm.txt | ||
| SECURITY.md | ||
Document | Roadmap | Twitter | Discord | Demo
📕 Table of Contents
💡 What is RAGFlow?
RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
🎮 Demo
Try our demo at https://demo.ragflow.io.
🔥 Latest Updates
-
2024-08-22 Support text to SQL statements through RAG.
-
2024-08-02 Supports GraphRAG inspired by graphrag and mind map.
-
2024-07-23 Supports audio file parsing.
-
2024-07-21 Supports more LLMs (LocalAI, OpenRouter, StepFun, and Nvidia).
-
2024-07-18 Adds more components (Wikipedia, PubMed, Baidu, and Duckduckgo) to the graph.
-
2024-07-08 Supports workflow based on Graph.
-
2024-06-27 Supports Markdown and Docx in the Q&A parsing method.
-
2024-06-27 Supports extracting images from Docx files.
-
2024-06-27 Supports extracting tables from Markdown files.
-
2024-06-06 Supports Self-RAG, which is enabled by default in dialog settings.
-
2024-05-23 Supports RAPTOR for better text retrieval.
-
2024-05-15 Integrates OpenAI GPT-4o.
🌟 Key Features
🍭 "Quality in, quality out"
- Deep document understanding-based knowledge extraction from unstructured data with complicated formats.
- Finds "needle in a data haystack" of literally unlimited tokens.
🍱 Template-based chunking
- Intelligent and explainable.
- Plenty of template options to choose from.
🌱 Grounded citations with reduced hallucinations
- Visualization of text chunking to allow human intervention.
- Quick view of the key references and traceable citations to support grounded answers.
🍔 Compatibility with heterogeneous data sources
- Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more.
🛀 Automated and effortless RAG workflow
- Streamlined RAG orchestration catered to both personal and large businesses.
- Configurable LLMs as well as embedding models.
- Multiple recall paired with fused re-ranking.
- Intuitive APIs for seamless integration with business.
🔎 System Architecture
🎬 Get Started
📝 Prerequisites
- CPU >= 4 cores
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
If you have not installed Docker on your local machine (Windows, Mac, or Linux), see Install Docker Engine.
🚀 Start up the server
-
Ensure
vm.max_map_count>= 262144:To check the value of
vm.max_map_count:$ sysctl vm.max_map_countReset
vm.max_map_countto a value at least 262144 if it is not.# In this case, we set it to 262144: $ sudo sysctl -w vm.max_map_count=262144This change will be reset after a system reboot. To ensure your change remains permanent, add or update the
vm.max_map_countvalue in /etc/sysctl.conf accordingly:vm.max_map_count=262144 -
Clone the repo:
$ git clone https://github.com/infiniflow/ragflow.git -
Build the pre-built Docker images and start up the server:
Running the following commands automatically downloads the dev version RAGFlow Docker image. To download and run a specified Docker version, update
RAGFLOW_VERSIONin docker/.env to the intended version, for exampleRAGFLOW_VERSION=v0.10.0, before running the following commands.$ cd ragflow/docker $ chmod +x ./entrypoint.sh $ docker compose up -dThe core image is about 9 GB in size and may take a while to load.
-
Check the server status after having the server up and running:
$ docker logs -f ragflow-serverThe following output confirms a successful launch of the system:
____ ______ __ / __ \ ____ _ ____ _ / ____// /____ _ __ / /_/ // __ `// __ `// /_ / // __ \| | /| / / / _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ / /_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/ /____/ * Running on all addresses (0.0.0.0) * Running on http://127.0.0.1:9380 * Running on http://x.x.x.x:9380 INFO:werkzeug:Press CTRL+C to quitIf you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a
network anomalyerror because, at that moment, your RAGFlow may not be fully initialized. -
In your web browser, enter the IP address of your server and log in to RAGFlow.
With the default settings, you only need to enter
http://IP_OF_YOUR_MACHINE(sans port number) as the default HTTP serving port80can be omitted when using the default configurations. -
In service_conf.yaml, select the desired LLM factory in
user_default_llmand update theAPI_KEYfield with the corresponding API key.See llm_api_key_setup for more information.
The show is now on!
🔧 Configurations
When it comes to system configurations, you will need to manage the following files:
- .env: Keeps the fundamental setups for the system, such as
SVR_HTTP_PORT,MYSQL_PASSWORD, andMINIO_PASSWORD. - service_conf.yaml: Configures the back-end services.
- docker-compose.yml: The system relies on docker-compose.yml to start up.
You must ensure that changes to the .env file are in line with what are in the service_conf.yaml file.
The ./docker/README file provides a detailed description of the environment settings and service configurations, and you are REQUIRED to ensure that all environment settings listed in the ./docker/README file are aligned with the corresponding configurations in the service_conf.yaml file.
To update the default HTTP serving port (80), go to docker-compose.yml and change 80:80 to <YOUR_SERVING_PORT>:80.
Updates to all system configurations require a system reboot to take effect:
$ docker-compose up -d
🛠️ Build from source
To build the Docker images from source:
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/
$ docker build -t infiniflow/ragflow:dev .
$ cd ragflow/docker
$ chmod +x ./entrypoint.sh
$ docker compose up -d
🛠️ Launch service from source
To launch the service from source:
-
Clone the repository:
$ git clone https://github.com/infiniflow/ragflow.git $ cd ragflow/ -
Create a virtual environment, ensuring that Anaconda or Miniconda is installed:
$ conda create -n ragflow python=3.11.0 $ conda activate ragflow $ pip install -r requirements.txt# If your CUDA version is higher than 12.0, run the following additional commands: $ pip uninstall -y onnxruntime-gpu $ pip install onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/ -
Copy the entry script and configure environment variables:
# Get the Python path: $ which python # Get the ragflow project path: $ pwd$ cp docker/entrypoint.sh . $ vi entrypoint.sh# Adjust configurations according to your actual situation (the following two export commands are newly added): # - Assign the result of `which python` to `PY`. # - Assign the result of `pwd` to `PYTHONPATH`. # - Comment out `LD_LIBRARY_PATH`, if it is configured. # - Optional: Add Hugging Face mirror. PY=${PY} export PYTHONPATH=${PYTHONPATH} export HF_ENDPOINT=https://hf-mirror.com -
Launch the third-party services (MinIO, Elasticsearch, Redis, and MySQL):
$ cd docker $ docker compose -f docker-compose-base.yml up -d -
Check the configuration files, ensuring that:
- The settings in docker/.env match those in conf/service_conf.yaml.
- The IP addresses and ports for related services in service_conf.yaml match the local machine IP and ports exposed by the container.
-
Launch the RAGFlow backend service:
$ chmod +x ./entrypoint.sh $ bash ./entrypoint.sh -
Launch the frontend service:
$ cd web $ npm install --registry=https://registry.npmmirror.com --force $ vim .umirc.ts # Update proxy.target to http://127.0.0.1:9380 $ npm run dev -
Deploy the frontend service:
$ cd web $ npm install --registry=https://registry.npmmirror.com --force $ umi build $ mkdir -p /ragflow/web $ cp -r dist /ragflow/web $ apt install nginx -y $ cp ../docker/nginx/proxy.conf /etc/nginx $ cp ../docker/nginx/nginx.conf /etc/nginx $ cp ../docker/nginx/ragflow.conf /etc/nginx/conf.d $ systemctl start nginx
📚 Documentation
📜 Roadmap
See the RAGFlow Roadmap 2024
🏄 Community
🙌 Contributing
RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our Contribution Guidelines first.