2543 lines
No EOL
152 KiB
JSON
2543 lines
No EOL
152 KiB
JSON
{
|
||
"data": {
|
||
"edges": [
|
||
{
|
||
"animated": false,
|
||
"className": "",
|
||
"data": {
|
||
"sourceHandle": {
|
||
"dataType": "EmbeddingModel",
|
||
"id": "EmbeddingModel-eZ6bT",
|
||
"name": "embeddings",
|
||
"output_types": [
|
||
"Embeddings"
|
||
]
|
||
},
|
||
"targetHandle": {
|
||
"fieldName": "embedding",
|
||
"id": "OpenSearch-iYfjf",
|
||
"inputTypes": [
|
||
"Embeddings"
|
||
],
|
||
"type": "other"
|
||
}
|
||
},
|
||
"id": "xy-edge__EmbeddingModel-eZ6bT{œdataTypeœ:œEmbeddingModelœ,œidœ:œEmbeddingModel-eZ6bTœ,œnameœ:œembeddingsœ,œoutput_typesœ:[œEmbeddingsœ]}-OpenSearch-iYfjf{œfieldNameœ:œembeddingœ,œidœ:œOpenSearch-iYfjfœ,œinputTypesœ:[œEmbeddingsœ],œtypeœ:œotherœ}",
|
||
"selected": false,
|
||
"source": "EmbeddingModel-eZ6bT",
|
||
"sourceHandle": "{œdataTypeœ:œEmbeddingModelœ,œidœ:œEmbeddingModel-eZ6bTœ,œnameœ:œembeddingsœ,œoutput_typesœ:[œEmbeddingsœ]}",
|
||
"target": "OpenSearch-iYfjf",
|
||
"targetHandle": "{œfieldNameœ:œembeddingœ,œidœ:œOpenSearch-iYfjfœ,œinputTypesœ:[œEmbeddingsœ],œtypeœ:œotherœ}"
|
||
},
|
||
{
|
||
"animated": false,
|
||
"className": "",
|
||
"data": {
|
||
"sourceHandle": {
|
||
"dataType": "ChatInput",
|
||
"id": "ChatInput-bqH7H",
|
||
"name": "message",
|
||
"output_types": [
|
||
"Message"
|
||
]
|
||
},
|
||
"targetHandle": {
|
||
"fieldName": "input_value",
|
||
"id": "Agent-crjWf",
|
||
"inputTypes": [
|
||
"Message"
|
||
],
|
||
"type": "str"
|
||
}
|
||
},
|
||
"id": "xy-edge__ChatInput-bqH7H{œdataTypeœ:œChatInputœ,œidœ:œChatInput-bqH7Hœ,œnameœ:œmessageœ,œoutput_typesœ:[œMessageœ]}-Agent-crjWf{œfieldNameœ:œinput_valueœ,œidœ:œAgent-crjWfœ,œinputTypesœ:[œMessageœ],œtypeœ:œstrœ}",
|
||
"selected": false,
|
||
"source": "ChatInput-bqH7H",
|
||
"sourceHandle": "{œdataTypeœ:œChatInputœ,œidœ:œChatInput-bqH7Hœ,œnameœ:œmessageœ,œoutput_typesœ:[œMessageœ]}",
|
||
"target": "Agent-crjWf",
|
||
"targetHandle": "{œfieldNameœ:œinput_valueœ,œidœ:œAgent-crjWfœ,œinputTypesœ:[œMessageœ],œtypeœ:œstrœ}"
|
||
},
|
||
{
|
||
"animated": false,
|
||
"className": "",
|
||
"data": {
|
||
"sourceHandle": {
|
||
"dataType": "TextInput",
|
||
"id": "TextInput-aHsQb",
|
||
"name": "text",
|
||
"output_types": [
|
||
"Message"
|
||
]
|
||
},
|
||
"targetHandle": {
|
||
"fieldName": "filter_expression",
|
||
"id": "OpenSearch-iYfjf",
|
||
"inputTypes": [
|
||
"Message"
|
||
],
|
||
"type": "str"
|
||
}
|
||
},
|
||
"id": "xy-edge__TextInput-aHsQb{œdataTypeœ:œTextInputœ,œidœ:œTextInput-aHsQbœ,œnameœ:œtextœ,œoutput_typesœ:[œMessageœ]}-OpenSearch-iYfjf{œfieldNameœ:œfilter_expressionœ,œidœ:œOpenSearch-iYfjfœ,œinputTypesœ:[œMessageœ],œtypeœ:œstrœ}",
|
||
"selected": false,
|
||
"source": "TextInput-aHsQb",
|
||
"sourceHandle": "{œdataTypeœ:œTextInputœ,œidœ:œTextInput-aHsQbœ,œnameœ:œtextœ,œoutput_typesœ:[œMessageœ]}",
|
||
"target": "OpenSearch-iYfjf",
|
||
"targetHandle": "{œfieldNameœ:œfilter_expressionœ,œidœ:œOpenSearch-iYfjfœ,œinputTypesœ:[œMessageœ],œtypeœ:œstrœ}"
|
||
},
|
||
{
|
||
"animated": false,
|
||
"className": "",
|
||
"data": {
|
||
"sourceHandle": {
|
||
"dataType": "Agent",
|
||
"id": "Agent-crjWf",
|
||
"name": "response",
|
||
"output_types": [
|
||
"Message"
|
||
]
|
||
},
|
||
"targetHandle": {
|
||
"fieldName": "input_value",
|
||
"id": "ChatOutput-BMVN5",
|
||
"inputTypes": [
|
||
"Data",
|
||
"DataFrame",
|
||
"Message"
|
||
],
|
||
"type": "other"
|
||
}
|
||
},
|
||
"id": "xy-edge__Agent-crjWf{œdataTypeœ:œAgentœ,œidœ:œAgent-crjWfœ,œnameœ:œresponseœ,œoutput_typesœ:[œMessageœ]}-ChatOutput-BMVN5{œfieldNameœ:œinput_valueœ,œidœ:œChatOutput-BMVN5œ,œinputTypesœ:[œDataœ,œDataFrameœ,œMessageœ],œtypeœ:œotherœ}",
|
||
"selected": false,
|
||
"source": "Agent-crjWf",
|
||
"sourceHandle": "{œdataTypeœ:œAgentœ,œidœ:œAgent-crjWfœ,œnameœ:œresponseœ,œoutput_typesœ:[œMessageœ]}",
|
||
"target": "ChatOutput-BMVN5",
|
||
"targetHandle": "{œfieldNameœ:œinput_valueœ,œidœ:œChatOutput-BMVN5œ,œinputTypesœ:[œDataœ,œDataFrameœ,œMessageœ],œtypeœ:œotherœ}"
|
||
},
|
||
{
|
||
"animated": false,
|
||
"className": "",
|
||
"data": {
|
||
"sourceHandle": {
|
||
"dataType": "OpenSearchHybrid",
|
||
"id": "OpenSearch-iYfjf",
|
||
"name": "component_as_tool",
|
||
"output_types": [
|
||
"Tool"
|
||
]
|
||
},
|
||
"targetHandle": {
|
||
"fieldName": "tools",
|
||
"id": "Agent-crjWf",
|
||
"inputTypes": [
|
||
"Tool"
|
||
],
|
||
"type": "other"
|
||
}
|
||
},
|
||
"id": "xy-edge__OpenSearch-iYfjf{œdataTypeœ:œOpenSearchHybridœ,œidœ:œOpenSearch-iYfjfœ,œnameœ:œcomponent_as_toolœ,œoutput_typesœ:[œToolœ]}-Agent-crjWf{œfieldNameœ:œtoolsœ,œidœ:œAgent-crjWfœ,œinputTypesœ:[œToolœ],œtypeœ:œotherœ}",
|
||
"selected": false,
|
||
"source": "OpenSearch-iYfjf",
|
||
"sourceHandle": "{œdataTypeœ:œOpenSearchHybridœ,œidœ:œOpenSearch-iYfjfœ,œnameœ:œcomponent_as_toolœ,œoutput_typesœ:[œToolœ]}",
|
||
"target": "Agent-crjWf",
|
||
"targetHandle": "{œfieldNameœ:œtoolsœ,œidœ:œAgent-crjWfœ,œinputTypesœ:[œToolœ],œtypeœ:œotherœ}"
|
||
},
|
||
{
|
||
"animated": false,
|
||
"data": {
|
||
"sourceHandle": {
|
||
"dataType": "LanguageModelComponent",
|
||
"id": "LanguageModelComponent-0YME7",
|
||
"name": "model_output",
|
||
"output_types": [
|
||
"LanguageModel"
|
||
]
|
||
},
|
||
"targetHandle": {
|
||
"fieldName": "agent_llm",
|
||
"id": "Agent-crjWf",
|
||
"inputTypes": [
|
||
"LanguageModel"
|
||
],
|
||
"type": "str"
|
||
}
|
||
},
|
||
"id": "xy-edge__LanguageModelComponent-0YME7{œdataTypeœ:œLanguageModelComponentœ,œidœ:œLanguageModelComponent-0YME7œ,œnameœ:œmodel_outputœ,œoutput_typesœ:[œLanguageModelœ]}-Agent-crjWf{œfieldNameœ:œagent_llmœ,œidœ:œAgent-crjWfœ,œinputTypesœ:[œLanguageModelœ],œtypeœ:œstrœ}",
|
||
"selected": false,
|
||
"source": "LanguageModelComponent-0YME7",
|
||
"sourceHandle": "{œdataTypeœ:œLanguageModelComponentœ,œidœ:œLanguageModelComponent-0YME7œ,œnameœ:œmodel_outputœ,œoutput_typesœ:[œLanguageModelœ]}",
|
||
"target": "Agent-crjWf",
|
||
"targetHandle": "{œfieldNameœ:œagent_llmœ,œidœ:œAgent-crjWfœ,œinputTypesœ:[œLanguageModelœ],œtypeœ:œstrœ}"
|
||
}
|
||
],
|
||
"nodes": [
|
||
{
|
||
"data": {
|
||
"id": "ChatInput-bqH7H",
|
||
"node": {
|
||
"base_classes": [
|
||
"Message"
|
||
],
|
||
"beta": false,
|
||
"category": "inputs",
|
||
"conditional_paths": [],
|
||
"custom_fields": {},
|
||
"description": "Get chat inputs from the Playground.",
|
||
"display_name": "Chat Input",
|
||
"documentation": "",
|
||
"edited": false,
|
||
"field_order": [
|
||
"input_value",
|
||
"should_store_message",
|
||
"sender",
|
||
"sender_name",
|
||
"session_id",
|
||
"files",
|
||
"background_color",
|
||
"chat_icon",
|
||
"text_color"
|
||
],
|
||
"frozen": false,
|
||
"icon": "MessagesSquare",
|
||
"key": "ChatInput",
|
||
"legacy": false,
|
||
"lf_version": "1.5.0.post1",
|
||
"metadata": {},
|
||
"minimized": true,
|
||
"output_types": [],
|
||
"outputs": [
|
||
{
|
||
"allows_loop": false,
|
||
"cache": true,
|
||
"display_name": "Chat Message",
|
||
"group_outputs": false,
|
||
"method": "message_response",
|
||
"name": "message",
|
||
"selected": "Message",
|
||
"tool_mode": true,
|
||
"types": [
|
||
"Message"
|
||
],
|
||
"value": "__UNDEFINED__"
|
||
}
|
||
],
|
||
"pinned": false,
|
||
"score": 0.0020353564437605998,
|
||
"template": {
|
||
"_type": "Component",
|
||
"background_color": {
|
||
"_input_type": "MessageTextInput",
|
||
"advanced": true,
|
||
"display_name": "Background Color",
|
||
"dynamic": false,
|
||
"info": "The background color of the icon.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "background_color",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": ""
|
||
},
|
||
"chat_icon": {
|
||
"_input_type": "MessageTextInput",
|
||
"advanced": true,
|
||
"display_name": "Icon",
|
||
"dynamic": false,
|
||
"info": "The icon of the message.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "chat_icon",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": ""
|
||
},
|
||
"code": {
|
||
"advanced": true,
|
||
"dynamic": true,
|
||
"fileTypes": [],
|
||
"file_path": "",
|
||
"info": "",
|
||
"list": false,
|
||
"load_from_db": false,
|
||
"multiline": true,
|
||
"name": "code",
|
||
"password": false,
|
||
"placeholder": "",
|
||
"required": true,
|
||
"show": true,
|
||
"title_case": false,
|
||
"type": "code",
|
||
"value": "from langflow.base.data.utils import IMG_FILE_TYPES, TEXT_FILE_TYPES\nfrom langflow.base.io.chat import ChatComponent\nfrom langflow.inputs.inputs import BoolInput\nfrom langflow.io import (\n DropdownInput,\n FileInput,\n MessageTextInput,\n MultilineInput,\n Output,\n)\nfrom langflow.schema.message import Message\nfrom langflow.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_USER,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatInput(ChatComponent):\n display_name = \"Chat Input\"\n description = \"Get chat inputs from the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-input\"\n icon = \"MessagesSquare\"\n name = \"ChatInput\"\n minimized = True\n\n inputs = [\n MultilineInput(\n name=\"input_value\",\n display_name=\"Input Text\",\n value=\"\",\n info=\"Message to be passed as input.\",\n input_types=[],\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_USER,\n info=\"Type of sender.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_USER,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n FileInput(\n name=\"files\",\n display_name=\"Files\",\n file_types=TEXT_FILE_TYPES + IMG_FILE_TYPES,\n info=\"Files to be sent with the message.\",\n advanced=True,\n is_list=True,\n temp_file=True,\n ),\n MessageTextInput(\n name=\"background_color\",\n display_name=\"Background Color\",\n info=\"The background color of the icon.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"chat_icon\",\n display_name=\"Icon\",\n info=\"The icon of the message.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"text_color\",\n display_name=\"Text Color\",\n info=\"The text color of the name\",\n advanced=True,\n ),\n ]\n outputs = [\n Output(display_name=\"Chat Message\", name=\"message\", method=\"message_response\"),\n ]\n\n async def message_response(self) -> Message:\n background_color = self.background_color\n text_color = self.text_color\n icon = self.chat_icon\n\n message = await Message.create(\n text=self.input_value,\n sender=self.sender,\n sender_name=self.sender_name,\n session_id=self.session_id,\n files=self.files,\n properties={\n \"background_color\": background_color,\n \"text_color\": text_color,\n \"icon\": icon,\n },\n )\n if self.session_id and isinstance(message, Message) and self.should_store_message:\n stored_message = await self.send_message(\n message,\n )\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n"
|
||
},
|
||
"files": {
|
||
"_input_type": "FileInput",
|
||
"advanced": true,
|
||
"display_name": "Files",
|
||
"dynamic": false,
|
||
"fileTypes": [
|
||
"txt",
|
||
"md",
|
||
"mdx",
|
||
"csv",
|
||
"json",
|
||
"yaml",
|
||
"yml",
|
||
"xml",
|
||
"html",
|
||
"htm",
|
||
"pdf",
|
||
"docx",
|
||
"py",
|
||
"sh",
|
||
"sql",
|
||
"js",
|
||
"ts",
|
||
"tsx",
|
||
"jpg",
|
||
"jpeg",
|
||
"png",
|
||
"bmp",
|
||
"image"
|
||
],
|
||
"file_path": "",
|
||
"info": "Files to be sent with the message.",
|
||
"list": true,
|
||
"list_add_label": "Add More",
|
||
"name": "files",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"temp_file": true,
|
||
"title_case": false,
|
||
"trace_as_metadata": true,
|
||
"type": "file",
|
||
"value": ""
|
||
},
|
||
"input_value": {
|
||
"_input_type": "MultilineInput",
|
||
"advanced": false,
|
||
"copy_field": false,
|
||
"display_name": "Input Text",
|
||
"dynamic": false,
|
||
"info": "Message to be passed as input.",
|
||
"input_types": [],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"multiline": true,
|
||
"name": "input_value",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": ""
|
||
},
|
||
"sender": {
|
||
"_input_type": "DropdownInput",
|
||
"advanced": true,
|
||
"combobox": false,
|
||
"dialog_inputs": {},
|
||
"display_name": "Sender Type",
|
||
"dynamic": false,
|
||
"info": "Type of sender.",
|
||
"name": "sender",
|
||
"options": [
|
||
"Machine",
|
||
"User"
|
||
],
|
||
"options_metadata": [],
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "User"
|
||
},
|
||
"sender_name": {
|
||
"_input_type": "MessageTextInput",
|
||
"advanced": true,
|
||
"display_name": "Sender Name",
|
||
"dynamic": false,
|
||
"info": "Name of the sender.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "sender_name",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "User"
|
||
},
|
||
"session_id": {
|
||
"_input_type": "MessageTextInput",
|
||
"advanced": true,
|
||
"display_name": "Session ID",
|
||
"dynamic": false,
|
||
"info": "The session ID of the chat. If empty, the current session ID parameter will be used.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "session_id",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": ""
|
||
},
|
||
"should_store_message": {
|
||
"_input_type": "BoolInput",
|
||
"advanced": true,
|
||
"display_name": "Store Messages",
|
||
"dynamic": false,
|
||
"info": "Store the message in the history.",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "should_store_message",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "bool",
|
||
"value": true
|
||
},
|
||
"text_color": {
|
||
"_input_type": "MessageTextInput",
|
||
"advanced": true,
|
||
"display_name": "Text Color",
|
||
"dynamic": false,
|
||
"info": "The text color of the name",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "text_color",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": ""
|
||
}
|
||
},
|
||
"tool_mode": false
|
||
},
|
||
"selected_output": "message",
|
||
"showNode": false,
|
||
"type": "ChatInput"
|
||
},
|
||
"dragging": false,
|
||
"id": "ChatInput-bqH7H",
|
||
"measured": {
|
||
"height": 48,
|
||
"width": 192
|
||
},
|
||
"position": {
|
||
"x": 1264.0651279011304,
|
||
"y": 1192.017532447814
|
||
},
|
||
"selected": false,
|
||
"type": "genericNode"
|
||
},
|
||
{
|
||
"data": {
|
||
"id": "ChatOutput-BMVN5",
|
||
"node": {
|
||
"base_classes": [
|
||
"Message"
|
||
],
|
||
"beta": false,
|
||
"category": "outputs",
|
||
"conditional_paths": [],
|
||
"custom_fields": {},
|
||
"description": "Display a chat message in the Playground.",
|
||
"display_name": "Chat Output",
|
||
"documentation": "",
|
||
"edited": false,
|
||
"field_order": [
|
||
"input_value",
|
||
"should_store_message",
|
||
"sender",
|
||
"sender_name",
|
||
"session_id",
|
||
"data_template",
|
||
"background_color",
|
||
"chat_icon",
|
||
"text_color",
|
||
"clean_data"
|
||
],
|
||
"frozen": false,
|
||
"icon": "MessagesSquare",
|
||
"key": "ChatOutput",
|
||
"legacy": false,
|
||
"lf_version": "1.5.0.post1",
|
||
"metadata": {},
|
||
"minimized": true,
|
||
"output_types": [],
|
||
"outputs": [
|
||
{
|
||
"allows_loop": false,
|
||
"cache": true,
|
||
"display_name": "Output Message",
|
||
"group_outputs": false,
|
||
"method": "message_response",
|
||
"name": "message",
|
||
"selected": "Message",
|
||
"tool_mode": true,
|
||
"types": [
|
||
"Message"
|
||
],
|
||
"value": "__UNDEFINED__"
|
||
}
|
||
],
|
||
"pinned": false,
|
||
"score": 0.003169567463043492,
|
||
"template": {
|
||
"_type": "Component",
|
||
"background_color": {
|
||
"_input_type": "MessageTextInput",
|
||
"advanced": true,
|
||
"display_name": "Background Color",
|
||
"dynamic": false,
|
||
"info": "The background color of the icon.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "background_color",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": ""
|
||
},
|
||
"chat_icon": {
|
||
"_input_type": "MessageTextInput",
|
||
"advanced": true,
|
||
"display_name": "Icon",
|
||
"dynamic": false,
|
||
"info": "The icon of the message.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "chat_icon",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": ""
|
||
},
|
||
"clean_data": {
|
||
"_input_type": "BoolInput",
|
||
"advanced": true,
|
||
"display_name": "Basic Clean Data",
|
||
"dynamic": false,
|
||
"info": "Whether to clean the data",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "clean_data",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "bool",
|
||
"value": true
|
||
},
|
||
"code": {
|
||
"advanced": true,
|
||
"dynamic": true,
|
||
"fileTypes": [],
|
||
"file_path": "",
|
||
"info": "",
|
||
"list": false,
|
||
"load_from_db": false,
|
||
"multiline": true,
|
||
"name": "code",
|
||
"password": false,
|
||
"placeholder": "",
|
||
"required": true,
|
||
"show": true,
|
||
"title_case": false,
|
||
"type": "code",
|
||
"value": "from collections.abc import Generator\nfrom typing import Any\n\nimport orjson\nfrom fastapi.encoders import jsonable_encoder\n\nfrom langflow.base.io.chat import ChatComponent\nfrom langflow.helpers.data import safe_convert\nfrom langflow.inputs.inputs import BoolInput, DropdownInput, HandleInput, MessageTextInput\nfrom langflow.schema.data import Data\nfrom langflow.schema.dataframe import DataFrame\nfrom langflow.schema.message import Message\nfrom langflow.schema.properties import Source\nfrom langflow.template.field.base import Output\nfrom langflow.utils.constants import (\n MESSAGE_SENDER_AI,\n MESSAGE_SENDER_NAME_AI,\n MESSAGE_SENDER_USER,\n)\n\n\nclass ChatOutput(ChatComponent):\n display_name = \"Chat Output\"\n description = \"Display a chat message in the Playground.\"\n documentation: str = \"https://docs.langflow.org/components-io#chat-output\"\n icon = \"MessagesSquare\"\n name = \"ChatOutput\"\n minimized = True\n\n inputs = [\n HandleInput(\n name=\"input_value\",\n display_name=\"Inputs\",\n info=\"Message to be passed as output.\",\n input_types=[\"Data\", \"DataFrame\", \"Message\"],\n required=True,\n ),\n BoolInput(\n name=\"should_store_message\",\n display_name=\"Store Messages\",\n info=\"Store the message in the history.\",\n value=True,\n advanced=True,\n ),\n DropdownInput(\n name=\"sender\",\n display_name=\"Sender Type\",\n options=[MESSAGE_SENDER_AI, MESSAGE_SENDER_USER],\n value=MESSAGE_SENDER_AI,\n advanced=True,\n info=\"Type of sender.\",\n ),\n MessageTextInput(\n name=\"sender_name\",\n display_name=\"Sender Name\",\n info=\"Name of the sender.\",\n value=MESSAGE_SENDER_NAME_AI,\n advanced=True,\n ),\n MessageTextInput(\n name=\"session_id\",\n display_name=\"Session ID\",\n info=\"The session ID of the chat. If empty, the current session ID parameter will be used.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"data_template\",\n display_name=\"Data Template\",\n value=\"{text}\",\n advanced=True,\n info=\"Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.\",\n ),\n MessageTextInput(\n name=\"background_color\",\n display_name=\"Background Color\",\n info=\"The background color of the icon.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"chat_icon\",\n display_name=\"Icon\",\n info=\"The icon of the message.\",\n advanced=True,\n ),\n MessageTextInput(\n name=\"text_color\",\n display_name=\"Text Color\",\n info=\"The text color of the name\",\n advanced=True,\n ),\n BoolInput(\n name=\"clean_data\",\n display_name=\"Basic Clean Data\",\n value=True,\n info=\"Whether to clean the data\",\n advanced=True,\n ),\n ]\n outputs = [\n Output(\n display_name=\"Output Message\",\n name=\"message\",\n method=\"message_response\",\n ),\n ]\n\n def _build_source(self, id_: str | None, display_name: str | None, source: str | None) -> Source:\n source_dict = {}\n if id_:\n source_dict[\"id\"] = id_\n if display_name:\n source_dict[\"display_name\"] = display_name\n if source:\n # Handle case where source is a ChatOpenAI object\n if hasattr(source, \"model_name\"):\n source_dict[\"source\"] = source.model_name\n elif hasattr(source, \"model\"):\n source_dict[\"source\"] = str(source.model)\n else:\n source_dict[\"source\"] = str(source)\n return Source(**source_dict)\n\n async def message_response(self) -> Message:\n # First convert the input to string if needed\n text = self.convert_to_string()\n\n # Get source properties\n source, icon, display_name, source_id = self.get_properties_from_source_component()\n background_color = self.background_color\n text_color = self.text_color\n if self.chat_icon:\n icon = self.chat_icon\n\n # Create or use existing Message object\n if isinstance(self.input_value, Message):\n message = self.input_value\n # Update message properties\n message.text = text\n else:\n message = Message(text=text)\n\n # Set message properties\n message.sender = self.sender\n message.sender_name = self.sender_name\n message.session_id = self.session_id\n message.flow_id = self.graph.flow_id if hasattr(self, \"graph\") else None\n message.properties.source = self._build_source(source_id, display_name, source)\n message.properties.icon = icon\n message.properties.background_color = background_color\n message.properties.text_color = text_color\n\n # Store message if needed\n if self.session_id and self.should_store_message:\n stored_message = await self.send_message(message)\n self.message.value = stored_message\n message = stored_message\n\n self.status = message\n return message\n\n def _serialize_data(self, data: Data) -> str:\n \"\"\"Serialize Data object to JSON string.\"\"\"\n # Convert data.data to JSON-serializable format\n serializable_data = jsonable_encoder(data.data)\n # Serialize with orjson, enabling pretty printing with indentation\n json_bytes = orjson.dumps(serializable_data, option=orjson.OPT_INDENT_2)\n # Convert bytes to string and wrap in Markdown code blocks\n return \"```json\\n\" + json_bytes.decode(\"utf-8\") + \"\\n```\"\n\n def _validate_input(self) -> None:\n \"\"\"Validate the input data and raise ValueError if invalid.\"\"\"\n if self.input_value is None:\n msg = \"Input data cannot be None\"\n raise ValueError(msg)\n if isinstance(self.input_value, list) and not all(\n isinstance(item, Message | Data | DataFrame | str) for item in self.input_value\n ):\n invalid_types = [\n type(item).__name__\n for item in self.input_value\n if not isinstance(item, Message | Data | DataFrame | str)\n ]\n msg = f\"Expected Data or DataFrame or Message or str, got {invalid_types}\"\n raise TypeError(msg)\n if not isinstance(\n self.input_value,\n Message | Data | DataFrame | str | list | Generator | type(None),\n ):\n type_name = type(self.input_value).__name__\n msg = f\"Expected Data or DataFrame or Message or str, Generator or None, got {type_name}\"\n raise TypeError(msg)\n\n def convert_to_string(self) -> str | Generator[Any, None, None]:\n \"\"\"Convert input data to string with proper error handling.\"\"\"\n self._validate_input()\n if isinstance(self.input_value, list):\n return \"\\n\".join([safe_convert(item, clean_data=self.clean_data) for item in self.input_value])\n if isinstance(self.input_value, Generator):\n return self.input_value\n return safe_convert(self.input_value)\n"
|
||
},
|
||
"data_template": {
|
||
"_input_type": "MessageTextInput",
|
||
"advanced": true,
|
||
"display_name": "Data Template",
|
||
"dynamic": false,
|
||
"info": "Template to convert Data to Text. If left empty, it will be dynamically set to the Data's text key.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "data_template",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "{text}"
|
||
},
|
||
"input_value": {
|
||
"_input_type": "HandleInput",
|
||
"advanced": false,
|
||
"display_name": "Inputs",
|
||
"dynamic": false,
|
||
"info": "Message to be passed as output.",
|
||
"input_types": [
|
||
"Data",
|
||
"DataFrame",
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "input_value",
|
||
"placeholder": "",
|
||
"required": true,
|
||
"show": true,
|
||
"title_case": false,
|
||
"trace_as_metadata": true,
|
||
"type": "other",
|
||
"value": ""
|
||
},
|
||
"sender": {
|
||
"_input_type": "DropdownInput",
|
||
"advanced": true,
|
||
"combobox": false,
|
||
"dialog_inputs": {},
|
||
"display_name": "Sender Type",
|
||
"dynamic": false,
|
||
"info": "Type of sender.",
|
||
"name": "sender",
|
||
"options": [
|
||
"Machine",
|
||
"User"
|
||
],
|
||
"options_metadata": [],
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "Machine"
|
||
},
|
||
"sender_name": {
|
||
"_input_type": "MessageTextInput",
|
||
"advanced": true,
|
||
"display_name": "Sender Name",
|
||
"dynamic": false,
|
||
"info": "Name of the sender.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "sender_name",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "AI"
|
||
},
|
||
"session_id": {
|
||
"_input_type": "MessageTextInput",
|
||
"advanced": true,
|
||
"display_name": "Session ID",
|
||
"dynamic": false,
|
||
"info": "The session ID of the chat. If empty, the current session ID parameter will be used.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "session_id",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": ""
|
||
},
|
||
"should_store_message": {
|
||
"_input_type": "BoolInput",
|
||
"advanced": true,
|
||
"display_name": "Store Messages",
|
||
"dynamic": false,
|
||
"info": "Store the message in the history.",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "should_store_message",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "bool",
|
||
"value": true
|
||
},
|
||
"text_color": {
|
||
"_input_type": "MessageTextInput",
|
||
"advanced": true,
|
||
"display_name": "Text Color",
|
||
"dynamic": false,
|
||
"info": "The text color of the name",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "text_color",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": ""
|
||
}
|
||
},
|
||
"tool_mode": false
|
||
},
|
||
"showNode": false,
|
||
"type": "ChatOutput"
|
||
},
|
||
"id": "ChatOutput-BMVN5",
|
||
"measured": {
|
||
"height": 48,
|
||
"width": 192
|
||
},
|
||
"position": {
|
||
"x": 2145,
|
||
"y": 660
|
||
},
|
||
"selected": false,
|
||
"type": "genericNode"
|
||
},
|
||
{
|
||
"data": {
|
||
"id": "OpenSearch-iYfjf",
|
||
"node": {
|
||
"base_classes": [
|
||
"Data",
|
||
"DataFrame",
|
||
"VectorStore"
|
||
],
|
||
"beta": false,
|
||
"conditional_paths": [],
|
||
"custom_fields": {},
|
||
"description": "Hybrid search: KNN + keyword, with optional filters, min_score, and aggregations.",
|
||
"display_name": "OpenSearch (Hybrid)",
|
||
"documentation": "",
|
||
"edited": true,
|
||
"field_order": [
|
||
"opensearch_url",
|
||
"index_name",
|
||
"ingest_data",
|
||
"search_query",
|
||
"should_cache_vector_store",
|
||
"embedding",
|
||
"vector_field",
|
||
"number_of_results",
|
||
"filter_expression",
|
||
"auth_mode",
|
||
"username",
|
||
"password",
|
||
"jwt_token",
|
||
"jwt_header",
|
||
"bearer_prefix",
|
||
"use_ssl",
|
||
"verify_certs"
|
||
],
|
||
"frozen": false,
|
||
"icon": "OpenSearch",
|
||
"last_updated": "2025-09-22T15:52:59.128Z",
|
||
"legacy": false,
|
||
"metadata": {},
|
||
"minimized": false,
|
||
"output_types": [],
|
||
"outputs": [
|
||
{
|
||
"allows_loop": false,
|
||
"cache": true,
|
||
"display_name": "Toolset",
|
||
"group_outputs": false,
|
||
"hidden": null,
|
||
"method": "to_toolkit",
|
||
"name": "component_as_tool",
|
||
"options": null,
|
||
"required_inputs": null,
|
||
"selected": "Tool",
|
||
"tool_mode": true,
|
||
"types": [
|
||
"Tool"
|
||
],
|
||
"value": "__UNDEFINED__"
|
||
}
|
||
],
|
||
"pinned": false,
|
||
"template": {
|
||
"_type": "Component",
|
||
"auth_mode": {
|
||
"_input_type": "DropdownInput",
|
||
"advanced": false,
|
||
"combobox": false,
|
||
"dialog_inputs": {},
|
||
"display_name": "Auth Mode",
|
||
"dynamic": false,
|
||
"info": "Choose Basic (username/password) or JWT (Bearer token).",
|
||
"load_from_db": false,
|
||
"name": "auth_mode",
|
||
"options": [
|
||
"basic",
|
||
"jwt"
|
||
],
|
||
"options_metadata": [],
|
||
"placeholder": "",
|
||
"real_time_refresh": true,
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"toggle": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "jwt"
|
||
},
|
||
"bearer_prefix": {
|
||
"_input_type": "BoolInput",
|
||
"advanced": true,
|
||
"display_name": "Prefix 'Bearer '",
|
||
"dynamic": false,
|
||
"info": "",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "bearer_prefix",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "bool",
|
||
"value": true
|
||
},
|
||
"code": {
|
||
"advanced": true,
|
||
"dynamic": true,
|
||
"fileTypes": [],
|
||
"file_path": "",
|
||
"info": "",
|
||
"list": false,
|
||
"load_from_db": false,
|
||
"multiline": true,
|
||
"name": "code",
|
||
"password": false,
|
||
"placeholder": "",
|
||
"required": true,
|
||
"show": true,
|
||
"title_case": false,
|
||
"type": "code",
|
||
"value": "from __future__ import annotations\n\nimport json\nfrom typing import Any, Dict, List\n\nfrom opensearchpy import OpenSearch, helpers\n\nfrom langflow.base.vectorstores.model import LCVectorStoreComponent, check_cached_vector_store\nfrom langflow.base.vectorstores.vector_store_connection_decorator import vector_store_connection\nfrom langflow.io import (\n BoolInput,\n HandleInput,\n IntInput,\n MultilineInput,\n SecretStrInput,\n StrInput,\n DropdownInput,\n)\nfrom langflow.schema.data import Data\n\n\n@vector_store_connection\nclass OpenSearchHybridComponent(LCVectorStoreComponent):\n \"\"\"OpenSearch hybrid search: KNN (k=10, boost=0.7) + multi_match (boost=0.3) with optional filters & min_score.\"\"\"\n display_name: str = \"OpenSearch (Hybrid)\"\n name: str = \"OpenSearchHybrid\"\n icon: str = \"OpenSearch\"\n description: str = \"Hybrid search: KNN + keyword, with optional filters, min_score, and aggregations.\"\n\n # Keys we consider baseline\n default_keys: list[str] = [\n \"opensearch_url\",\n \"index_name\",\n *[i.name for i in LCVectorStoreComponent.inputs], # search_query, add_documents, etc.\n \"embedding\",\n \"vector_field\",\n \"number_of_results\",\n \"auth_mode\",\n \"username\",\n \"password\",\n \"jwt_token\",\n \"jwt_header\",\n \"bearer_prefix\",\n \"use_ssl\",\n \"verify_certs\",\n \"filter_expression\",\n ]\n\n inputs = [\n StrInput(\n name=\"opensearch_url\",\n display_name=\"OpenSearch URL\",\n value=\"http://localhost:9200\",\n info=\"URL for your OpenSearch cluster.\"\n ),\n StrInput(\n name=\"index_name\",\n display_name=\"Index Name\",\n value=\"langflow\",\n info=\"The index to search.\"\n ),\n *LCVectorStoreComponent.inputs, # includes search_query, add_documents, etc.\n HandleInput(\n name=\"embedding\",\n display_name=\"Embedding\",\n input_types=[\"Embeddings\"]\n ),\n StrInput(\n name=\"vector_field\",\n display_name=\"Vector Field\",\n value=\"chunk_embedding\",\n advanced=True,\n info=\"Vector field used for KNN.\"\n ),\n IntInput(\n name=\"number_of_results\",\n display_name=\"Default Size (limit)\",\n value=10,\n advanced=True,\n info=\"Default number of hits when no limit provided in filter_expression.\"\n ),\n MultilineInput(\n name=\"filter_expression\",\n display_name=\"Filter Expression (JSON)\",\n value=\"\",\n info=(\n \"Optional JSON to control filters/limit/score threshold.\\n\"\n \"Accepted shapes:\\n\"\n '1) {\"filter\": [ {\"term\": {\"filename\":\"foo\"}}, {\"terms\":{\"owner\":[\"u1\",\"u2\"]}} ], \"limit\": 10, \"score_threshold\": 1.6 }\\n'\n '2) Context-style maps: {\"data_sources\":[\"fileA\"], \"document_types\":[\"application/pdf\"], \"owners\":[\"123\"]}\\n'\n \"Placeholders with __IMPOSSIBLE_VALUE__ are ignored.\"\n )\n ),\n\n # ----- Auth controls (dynamic) -----\n DropdownInput(\n name=\"auth_mode\",\n display_name=\"Auth Mode\",\n value=\"basic\",\n options=[\"basic\", \"jwt\"],\n info=\"Choose Basic (username/password) or JWT (Bearer token).\",\n real_time_refresh=True,\n advanced=False,\n ),\n StrInput(\n name=\"username\",\n display_name=\"Username\",\n value=\"admin\",\n show=True,\n ),\n SecretStrInput(\n name=\"password\",\n display_name=\"Password\",\n value=\"admin\",\n show=True,\n ),\n SecretStrInput(\n name=\"jwt_token\",\n display_name=\"JWT Token\",\n value=\"\",\n show=False,\n info=\"Paste a valid JWT (sent as a header).\",\n ),\n StrInput(\n name=\"jwt_header\",\n display_name=\"JWT Header Name\",\n value=\"Authorization\",\n show=False,\n advanced=True,\n ),\n BoolInput(\n name=\"bearer_prefix\",\n display_name=\"Prefix 'Bearer '\",\n value=True,\n show=False,\n advanced=True,\n ),\n\n # ----- TLS -----\n BoolInput(\n name=\"use_ssl\",\n display_name=\"Use SSL\",\n value=True,\n advanced=True\n ),\n BoolInput(\n name=\"verify_certs\",\n display_name=\"Verify Certificates\",\n value=False,\n advanced=True\n ),\n ]\n\n # ---------- auth / client ----------\n def _build_auth_kwargs(self) -> Dict[str, Any]:\n mode = (self.auth_mode or \"basic\").strip().lower()\n if mode == \"jwt\":\n token = (self.jwt_token or \"\").strip()\n if not token:\n raise ValueError(\"Auth Mode is 'jwt' but no jwt_token was provided.\")\n header_name = (self.jwt_header or \"Authorization\").strip()\n header_value = f\"Bearer {token}\" if self.bearer_prefix else token\n return {\"headers\": {header_name: header_value}}\n user = (self.username or \"\").strip()\n pwd = (self.password or \"\").strip()\n if not user or not pwd:\n raise ValueError(\"Auth Mode is 'basic' but username/password are missing.\")\n return {\"http_auth\": (user, pwd)}\n\n def build_client(self) -> OpenSearch:\n auth_kwargs = self._build_auth_kwargs()\n return OpenSearch(\n hosts=[self.opensearch_url],\n use_ssl=self.use_ssl,\n verify_certs=self.verify_certs,\n ssl_assert_hostname=False,\n ssl_show_warn=False,\n **auth_kwargs,\n )\n\n @check_cached_vector_store\n def build_vector_store(self) -> OpenSearch:\n # Return raw OpenSearch client as our “vector store.”\n return self.build_client()\n\n # ---------- ingest ----------\n def _add_documents_to_vector_store(self, client: OpenSearch) -> None:\n docs = self._prepare_ingest_data() or []\n if not docs:\n self.log(\"No documents to ingest.\")\n return\n\n texts = [d.to_lc_document().page_content for d in docs]\n if not self.embedding:\n raise ValueError(\"Embedding handle is required to embed documents.\")\n vectors = self.embedding.embed_documents(texts)\n\n actions = []\n for doc_obj, vec in zip(docs, vectors):\n lc_doc = doc_obj.to_lc_document()\n body = {\n **lc_doc.metadata,\n \"text\": lc_doc.page_content,\n self.vector_field: vec,\n }\n actions.append({\n \"_op_type\": \"index\",\n \"_index\": self.index_name,\n \"_source\": body,\n })\n\n self.log(f\"Indexing {len(actions)} docs into '{self.index_name}'…\")\n helpers.bulk(client, actions)\n\n # ---------- helpers for filters ----------\n def _is_placeholder_term(self, term_obj: dict) -> bool:\n # term_obj like {\"filename\": \"__IMPOSSIBLE_VALUE__\"}\n return any(v == \"__IMPOSSIBLE_VALUE__\" for v in term_obj.values())\n\n def _coerce_filter_clauses(self, filter_obj: dict | None) -> List[dict]:\n \"\"\"\n Accepts either:\n A) {\"filter\":[ ...term/terms objects... ], \"limit\":..., \"score_threshold\":...}\n B) Context-style: {\"data_sources\":[...], \"document_types\":[...], \"owners\":[...]}\n Returns a list of OS filter clauses (term/terms), skipping placeholders and empty terms.\n \"\"\"\n \n if not filter_obj:\n return []\n\n # If it’s a string, try to parse it once\n if isinstance(filter_obj, str):\n try:\n filter_obj = json.loads(filter_obj)\n except Exception:\n # Not valid JSON → treat as no filters\n return []\n \n # Case A: already an explicit list/dict under \"filter\"\n if \"filter\" in filter_obj:\n raw = filter_obj[\"filter\"]\n if isinstance(raw, dict):\n raw = [raw]\n clauses: List[dict] = []\n for f in (raw or []):\n if \"term\" in f and isinstance(f[\"term\"], dict) and not self._is_placeholder_term(f[\"term\"]):\n clauses.append(f)\n elif \"terms\" in f and isinstance(f[\"terms\"], dict):\n field, vals = next(iter(f[\"terms\"].items()))\n if isinstance(vals, list) and len(vals) > 0:\n clauses.append(f)\n return clauses\n\n # Case B: convert context-style maps into clauses\n field_mapping = {\"data_sources\": \"filename\", \"document_types\": \"mimetype\", \"owners\": \"owner\"}\n print(f\"filter_obj {filter_obj}\")\n clauses: List[dict] = []\n for k, values in filter_obj.items():\n if not isinstance(values, list):\n continue\n field = field_mapping.get(k, k)\n if len(values) == 0:\n # Match-nothing placeholder (kept to mirror your tool semantics)\n clauses.append({\"term\": {field: \"__IMPOSSIBLE_VALUE__\"}})\n elif len(values) == 1:\n if values[0] != \"__IMPOSSIBLE_VALUE__\":\n clauses.append({\"term\": {field: values[0]}})\n else:\n clauses.append({\"terms\": {field: values}})\n return clauses\n\n # ---------- search (single hybrid path matching your tool) ----------\n def search(self, query: str | None = None) -> list[dict[str, Any]]:\n print(\"search method\")\n client = self.build_client()\n q = (query or \"\").strip()\n\n # Parse optional filter expression (can be either A or B shape; see _coerce_filter_clauses)\n filter_obj = None\n print(f\"DEBUG q {q}\")\n if getattr(self, \"filter_expression\", \"\") and self.filter_expression.strip():\n try:\n self.log(f\"DEBUG FILTER EXPRESSION {self.filter_expression}\")\n except json.JSONDecodeError as e:\n raise ValueError(f\"Invalid filter_expression JSON: {e}\") from e\n\n if not self.embedding:\n raise ValueError(\"Embedding is required to run hybrid search (KNN + keyword).\")\n\n # Embed the query\n vec = self.embedding.embed_query(q)\n\n # Build filter clauses (accept both shapes)\n clauses = self._coerce_filter_clauses(filter_obj)\n\n # Respect the tool's limit/threshold defaults\n limit = (filter_obj or {}).get(\"limit\", self.number_of_results)\n score_threshold = (filter_obj or {}).get(\"score_threshold\", 0)\n\n print(f\"DEBUG clauses {clauses}\")\n # Build the same hybrid body as your SearchService\n body = {\n \"query\": {\n \"bool\": {\n \"should\": [\n {\n \"knn\": {\n self.vector_field: {\n \"vector\": vec,\n \"k\": 10, # fixed to match the tool\n \"boost\": 0.7\n }\n }\n },\n {\n \"multi_match\": {\n \"query\": q,\n \"fields\": [\"text^2\", \"filename^1.5\"],\n \"type\": \"best_fields\",\n \"fuzziness\": \"AUTO\",\n \"boost\": 0.3\n }\n }\n ],\n \"minimum_should_match\": 1\n }\n },\n \"aggs\": {\n \"data_sources\": {\"terms\": {\"field\": \"filename\", \"size\": 20}},\n \"document_types\": {\"terms\": {\"field\": \"mimetype\", \"size\": 10}},\n \"owners\": {\"terms\": {\"field\": \"owner\", \"size\": 10}}\n },\n \"_source\": [\n \"filename\", \"mimetype\", \"page\", \"text\", \"source_url\",\n \"owner\", \"allowed_users\", \"allowed_groups\"\n ],\n \"size\": limit\n }\n print(f\"DEBUG BODY {body}\")\n if clauses:\n body[\"query\"][\"bool\"][\"filter\"] = clauses\n\n if isinstance(score_threshold, (int, float)) and score_threshold > 0:\n # top-level min_score (matches your tool)\n body[\"min_score\"] = score_threshold\n\n print(f\"DEBUG HYBRID BODY {body}\")\n resp = client.search(index=self.index_name, body=body)\n hits = resp.get(\"hits\", {}).get(\"hits\", [])\n return [\n {\n \"page_content\": hit[\"_source\"].get(\"text\", \"\"),\n \"metadata\": {k: v for k, v in hit[\"_source\"].items() if k != \"text\"},\n \"score\": hit.get(\"_score\"),\n }\n for hit in hits\n ]\n\n def search_documents(self) -> list[Data]:\n try:\n raw = self.search(self.search_query or \"\")\n return [\n Data(file_path=hit[\"metadata\"].get(\"file_path\", \"\"), text=hit[\"page_content\"])\n for hit in raw\n ]\n except Exception as e:\n print(f\"ERROR search_documents: {e}\")\n self.log(f\"search_documents error: {e}\")\n raise\n\n # -------- dynamic UI handling (auth switch) --------\n async def update_build_config(self, build_config: dict, field_value: str, field_name: str | None = None) -> dict:\n try:\n if field_name == \"auth_mode\":\n mode = (field_value or \"basic\").strip().lower()\n is_basic = mode == \"basic\"\n is_jwt = mode == \"jwt\"\n\n build_config[\"username\"][\"show\"] = is_basic\n build_config[\"password\"][\"show\"] = is_basic\n\n build_config[\"jwt_token\"][\"show\"] = is_jwt\n build_config[\"jwt_header\"][\"show\"] = is_jwt\n build_config[\"bearer_prefix\"][\"show\"] = is_jwt\n\n build_config[\"username\"][\"required\"] = is_basic\n build_config[\"password\"][\"required\"] = is_basic\n\n build_config[\"jwt_token\"][\"required\"] = is_jwt\n build_config[\"jwt_header\"][\"required\"] = is_jwt\n build_config[\"bearer_prefix\"][\"required\"] = False\n\n if is_basic:\n build_config[\"jwt_token\"][\"value\"] = \"\"\n\n return build_config\n\n return build_config\n\n except Exception as e:\n self.log(f\"update_build_config error: {e}\")\n return build_config\n"
|
||
},
|
||
"embedding": {
|
||
"_input_type": "HandleInput",
|
||
"advanced": false,
|
||
"display_name": "Embedding",
|
||
"dynamic": false,
|
||
"info": "",
|
||
"input_types": [
|
||
"Embeddings"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "embedding",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"trace_as_metadata": true,
|
||
"type": "other",
|
||
"value": ""
|
||
},
|
||
"filter_expression": {
|
||
"_input_type": "MultilineInput",
|
||
"advanced": false,
|
||
"copy_field": false,
|
||
"display_name": "Filter Expression (JSON)",
|
||
"dynamic": false,
|
||
"info": "Optional JSON to control filters/limit/score threshold.\nAccepted shapes:\n1) {\"filter\": [ {\"term\": {\"filename\":\"foo\"}}, {\"terms\":{\"owner\":[\"u1\",\"u2\"]}} ], \"limit\": 10, \"score_threshold\": 1.6 }\n2) Context-style maps: {\"data_sources\":[\"fileA\"], \"document_types\":[\"application/pdf\"], \"owners\":[\"123\"]}\nPlaceholders with __IMPOSSIBLE_VALUE__ are ignored.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"multiline": true,
|
||
"name": "filter_expression",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": ""
|
||
},
|
||
"index_name": {
|
||
"_input_type": "StrInput",
|
||
"advanced": false,
|
||
"display_name": "Index Name",
|
||
"dynamic": false,
|
||
"info": "The index to search.",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "index_name",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "documents"
|
||
},
|
||
"ingest_data": {
|
||
"_input_type": "HandleInput",
|
||
"advanced": false,
|
||
"display_name": "Ingest Data",
|
||
"dynamic": false,
|
||
"info": "",
|
||
"input_types": [
|
||
"Data",
|
||
"DataFrame"
|
||
],
|
||
"list": true,
|
||
"list_add_label": "Add More",
|
||
"name": "ingest_data",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"trace_as_metadata": true,
|
||
"type": "other",
|
||
"value": ""
|
||
},
|
||
"jwt_header": {
|
||
"_input_type": "StrInput",
|
||
"advanced": true,
|
||
"display_name": "JWT Header Name",
|
||
"dynamic": false,
|
||
"info": "",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "jwt_header",
|
||
"placeholder": "",
|
||
"required": true,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "Authorization"
|
||
},
|
||
"jwt_token": {
|
||
"_input_type": "SecretStrInput",
|
||
"advanced": false,
|
||
"display_name": "JWT Token",
|
||
"dynamic": false,
|
||
"info": "Paste a valid JWT (sent as a header).",
|
||
"input_types": [],
|
||
"load_from_db": true,
|
||
"name": "jwt_token",
|
||
"password": true,
|
||
"placeholder": "",
|
||
"required": true,
|
||
"show": true,
|
||
"title_case": false,
|
||
"type": "str",
|
||
"value": "JWT"
|
||
},
|
||
"number_of_results": {
|
||
"_input_type": "IntInput",
|
||
"advanced": true,
|
||
"display_name": "Default Size (limit)",
|
||
"dynamic": false,
|
||
"info": "Default number of hits when no limit provided in filter_expression.",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "number_of_results",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "int",
|
||
"value": 4
|
||
},
|
||
"opensearch_url": {
|
||
"_input_type": "StrInput",
|
||
"advanced": false,
|
||
"display_name": "OpenSearch URL",
|
||
"dynamic": false,
|
||
"info": "URL for your OpenSearch cluster.",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "opensearch_url",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "https://opensearch:9200"
|
||
},
|
||
"password": {
|
||
"_input_type": "SecretStrInput",
|
||
"advanced": false,
|
||
"display_name": "Password",
|
||
"dynamic": false,
|
||
"info": "",
|
||
"input_types": [],
|
||
"load_from_db": false,
|
||
"name": "password",
|
||
"password": true,
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": false,
|
||
"title_case": false,
|
||
"type": "str",
|
||
"value": ""
|
||
},
|
||
"search_query": {
|
||
"_input_type": "QueryInput",
|
||
"advanced": false,
|
||
"display_name": "Search Query",
|
||
"dynamic": false,
|
||
"info": "Enter a query to run a similarity search.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "search_query",
|
||
"placeholder": "Enter a query...",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": true,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "query",
|
||
"value": ""
|
||
},
|
||
"should_cache_vector_store": {
|
||
"_input_type": "BoolInput",
|
||
"advanced": true,
|
||
"display_name": "Cache Vector Store",
|
||
"dynamic": false,
|
||
"info": "If True, the vector store will be cached for the current build of the component. This is useful for components that have multiple output methods and want to share the same vector store.",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "should_cache_vector_store",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "bool",
|
||
"value": true
|
||
},
|
||
"tools_metadata": {
|
||
"_input_type": "ToolsInput",
|
||
"advanced": false,
|
||
"display_name": "Actions",
|
||
"dynamic": false,
|
||
"info": "Modify tool names and descriptions to help agents understand when to use each tool.",
|
||
"is_list": true,
|
||
"list_add_label": "Add More",
|
||
"name": "tools_metadata",
|
||
"placeholder": "",
|
||
"real_time_refresh": true,
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "tools",
|
||
"value": [
|
||
{
|
||
"args": {
|
||
"search_query": {
|
||
"default": "",
|
||
"description": "Enter a query to run a similarity search.",
|
||
"title": "Search Query",
|
||
"type": "string"
|
||
}
|
||
},
|
||
"description": "Hybrid search: KNN + keyword, with optional filters, min_score, and aggregations.",
|
||
"display_description": "Hybrid search: KNN + keyword, with optional filters, min_score, and aggregations.",
|
||
"display_name": "search_documents",
|
||
"name": "search_documents",
|
||
"readonly": false,
|
||
"status": true,
|
||
"tags": [
|
||
"search_documents"
|
||
]
|
||
},
|
||
{
|
||
"args": {
|
||
"search_query": {
|
||
"default": "",
|
||
"description": "Enter a query to run a similarity search.",
|
||
"title": "Search Query",
|
||
"type": "string"
|
||
}
|
||
},
|
||
"description": "Hybrid search: KNN + keyword, with optional filters, min_score, and aggregations.",
|
||
"display_description": "Hybrid search: KNN + keyword, with optional filters, min_score, and aggregations.",
|
||
"display_name": "as_dataframe",
|
||
"name": "as_dataframe",
|
||
"readonly": false,
|
||
"status": true,
|
||
"tags": [
|
||
"as_dataframe"
|
||
]
|
||
},
|
||
{
|
||
"args": {
|
||
"search_query": {
|
||
"default": "",
|
||
"description": "Enter a query to run a similarity search.",
|
||
"title": "Search Query",
|
||
"type": "string"
|
||
}
|
||
},
|
||
"description": "Hybrid search: KNN + keyword, with optional filters, min_score, and aggregations.",
|
||
"display_description": "Hybrid search: KNN + keyword, with optional filters, min_score, and aggregations.",
|
||
"display_name": "as_vector_store",
|
||
"name": "as_vector_store",
|
||
"readonly": false,
|
||
"status": true,
|
||
"tags": [
|
||
"as_vector_store"
|
||
]
|
||
}
|
||
]
|
||
},
|
||
"use_ssl": {
|
||
"_input_type": "BoolInput",
|
||
"advanced": true,
|
||
"display_name": "Use SSL",
|
||
"dynamic": false,
|
||
"info": "",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "use_ssl",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "bool",
|
||
"value": true
|
||
},
|
||
"username": {
|
||
"_input_type": "StrInput",
|
||
"advanced": false,
|
||
"display_name": "Username",
|
||
"dynamic": false,
|
||
"info": "",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "username",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": false,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "admin"
|
||
},
|
||
"vector_field": {
|
||
"_input_type": "StrInput",
|
||
"advanced": true,
|
||
"display_name": "Vector Field",
|
||
"dynamic": false,
|
||
"info": "Vector field used for KNN.",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "vector_field",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "chunk_embedding"
|
||
},
|
||
"verify_certs": {
|
||
"_input_type": "BoolInput",
|
||
"advanced": true,
|
||
"display_name": "Verify Certificates",
|
||
"dynamic": false,
|
||
"info": "",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "verify_certs",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "bool",
|
||
"value": false
|
||
}
|
||
},
|
||
"tool_mode": true
|
||
},
|
||
"selected_output": "search_results",
|
||
"showNode": true,
|
||
"type": "OpenSearchHybrid"
|
||
},
|
||
"dragging": false,
|
||
"id": "OpenSearch-iYfjf",
|
||
"measured": {
|
||
"height": 747,
|
||
"width": 320
|
||
},
|
||
"position": {
|
||
"x": 1202.1762389080463,
|
||
"y": 395.8072555285192
|
||
},
|
||
"selected": false,
|
||
"type": "genericNode"
|
||
},
|
||
{
|
||
"data": {
|
||
"id": "EmbeddingModel-eZ6bT",
|
||
"node": {
|
||
"base_classes": [
|
||
"Embeddings"
|
||
],
|
||
"beta": false,
|
||
"category": "models",
|
||
"conditional_paths": [],
|
||
"custom_fields": {},
|
||
"description": "Generate embeddings using a specified provider.",
|
||
"display_name": "Embedding Model",
|
||
"documentation": "https://docs.langflow.org/components-embedding-models",
|
||
"edited": false,
|
||
"field_order": [
|
||
"provider",
|
||
"model",
|
||
"api_key",
|
||
"api_base",
|
||
"dimensions",
|
||
"chunk_size",
|
||
"request_timeout",
|
||
"max_retries",
|
||
"show_progress_bar",
|
||
"model_kwargs"
|
||
],
|
||
"frozen": false,
|
||
"icon": "binary",
|
||
"key": "EmbeddingModel",
|
||
"last_updated": "2025-09-22T15:52:59.132Z",
|
||
"legacy": false,
|
||
"lf_version": "1.5.0.post1",
|
||
"metadata": {},
|
||
"minimized": false,
|
||
"output_types": [],
|
||
"outputs": [
|
||
{
|
||
"allows_loop": false,
|
||
"cache": true,
|
||
"display_name": "Embedding Model",
|
||
"group_outputs": false,
|
||
"method": "build_embeddings",
|
||
"name": "embeddings",
|
||
"options": null,
|
||
"required_inputs": null,
|
||
"selected": "Embeddings",
|
||
"tool_mode": true,
|
||
"types": [
|
||
"Embeddings"
|
||
],
|
||
"value": "__UNDEFINED__"
|
||
}
|
||
],
|
||
"pinned": false,
|
||
"score": 0.002833550413469189,
|
||
"template": {
|
||
"_type": "Component",
|
||
"api_base": {
|
||
"_input_type": "MessageTextInput",
|
||
"advanced": true,
|
||
"display_name": "API Base URL",
|
||
"dynamic": false,
|
||
"info": "Base URL for the API. Leave empty for default.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "api_base",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": ""
|
||
},
|
||
"api_key": {
|
||
"_input_type": "SecretStrInput",
|
||
"advanced": false,
|
||
"display_name": "OpenAI API Key",
|
||
"dynamic": false,
|
||
"info": "Model Provider API key",
|
||
"input_types": [],
|
||
"load_from_db": true,
|
||
"name": "api_key",
|
||
"password": true,
|
||
"placeholder": "",
|
||
"real_time_refresh": true,
|
||
"required": true,
|
||
"show": true,
|
||
"title_case": false,
|
||
"type": "str",
|
||
"value": "OPENAI_API_KEY"
|
||
},
|
||
"chunk_size": {
|
||
"_input_type": "IntInput",
|
||
"advanced": true,
|
||
"display_name": "Chunk Size",
|
||
"dynamic": false,
|
||
"info": "",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "chunk_size",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "int",
|
||
"value": 1000
|
||
},
|
||
"code": {
|
||
"advanced": true,
|
||
"dynamic": true,
|
||
"fileTypes": [],
|
||
"file_path": "",
|
||
"info": "",
|
||
"list": false,
|
||
"load_from_db": false,
|
||
"multiline": true,
|
||
"name": "code",
|
||
"password": false,
|
||
"placeholder": "",
|
||
"required": true,
|
||
"show": true,
|
||
"title_case": false,
|
||
"type": "code",
|
||
"value": "from typing import Any\n\nfrom langchain_openai import OpenAIEmbeddings\n\nfrom langflow.base.embeddings.model import LCEmbeddingsModel\nfrom langflow.base.models.openai_constants import OPENAI_EMBEDDING_MODEL_NAMES\nfrom langflow.field_typing import Embeddings\nfrom langflow.io import (\n BoolInput,\n DictInput,\n DropdownInput,\n FloatInput,\n IntInput,\n MessageTextInput,\n SecretStrInput,\n)\nfrom langflow.schema.dotdict import dotdict\n\n\nclass EmbeddingModelComponent(LCEmbeddingsModel):\n display_name = \"Embedding Model\"\n description = \"Generate embeddings using a specified provider.\"\n documentation: str = \"https://docs.langflow.org/components-embedding-models\"\n icon = \"binary\"\n name = \"EmbeddingModel\"\n category = \"models\"\n\n inputs = [\n DropdownInput(\n name=\"provider\",\n display_name=\"Model Provider\",\n options=[\"OpenAI\"],\n value=\"OpenAI\",\n info=\"Select the embedding model provider\",\n real_time_refresh=True,\n options_metadata=[{\"icon\": \"OpenAI\"}],\n ),\n DropdownInput(\n name=\"model\",\n display_name=\"Model Name\",\n options=OPENAI_EMBEDDING_MODEL_NAMES,\n value=OPENAI_EMBEDDING_MODEL_NAMES[0],\n info=\"Select the embedding model to use\",\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"Model Provider API key\",\n required=True,\n show=True,\n real_time_refresh=True,\n ),\n MessageTextInput(\n name=\"api_base\",\n display_name=\"API Base URL\",\n info=\"Base URL for the API. Leave empty for default.\",\n advanced=True,\n ),\n IntInput(\n name=\"dimensions\",\n display_name=\"Dimensions\",\n info=\"The number of dimensions the resulting output embeddings should have. \"\n \"Only supported by certain models.\",\n advanced=True,\n ),\n IntInput(name=\"chunk_size\", display_name=\"Chunk Size\", advanced=True, value=1000),\n FloatInput(name=\"request_timeout\", display_name=\"Request Timeout\", advanced=True),\n IntInput(name=\"max_retries\", display_name=\"Max Retries\", advanced=True, value=3),\n BoolInput(name=\"show_progress_bar\", display_name=\"Show Progress Bar\", advanced=True),\n DictInput(\n name=\"model_kwargs\",\n display_name=\"Model Kwargs\",\n advanced=True,\n info=\"Additional keyword arguments to pass to the model.\",\n ),\n ]\n\n def build_embeddings(self) -> Embeddings:\n provider = self.provider\n model = self.model\n api_key = self.api_key\n api_base = self.api_base\n dimensions = self.dimensions\n chunk_size = self.chunk_size\n request_timeout = self.request_timeout\n max_retries = self.max_retries\n show_progress_bar = self.show_progress_bar\n model_kwargs = self.model_kwargs or {}\n\n if provider == \"OpenAI\":\n if not api_key:\n msg = \"OpenAI API key is required when using OpenAI provider\"\n raise ValueError(msg)\n return OpenAIEmbeddings(\n model=model,\n dimensions=dimensions or None,\n base_url=api_base or None,\n api_key=api_key,\n chunk_size=chunk_size,\n max_retries=max_retries,\n timeout=request_timeout or None,\n show_progress_bar=show_progress_bar,\n model_kwargs=model_kwargs,\n )\n msg = f\"Unknown provider: {provider}\"\n raise ValueError(msg)\n\n def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None) -> dotdict:\n if field_name == \"provider\" and field_value == \"OpenAI\":\n build_config[\"model\"][\"options\"] = OPENAI_EMBEDDING_MODEL_NAMES\n build_config[\"model\"][\"value\"] = OPENAI_EMBEDDING_MODEL_NAMES[0]\n build_config[\"api_key\"][\"display_name\"] = \"OpenAI API Key\"\n build_config[\"api_base\"][\"display_name\"] = \"OpenAI API Base URL\"\n return build_config\n"
|
||
},
|
||
"dimensions": {
|
||
"_input_type": "IntInput",
|
||
"advanced": true,
|
||
"display_name": "Dimensions",
|
||
"dynamic": false,
|
||
"info": "The number of dimensions the resulting output embeddings should have. Only supported by certain models.",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "dimensions",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "int",
|
||
"value": ""
|
||
},
|
||
"max_retries": {
|
||
"_input_type": "IntInput",
|
||
"advanced": true,
|
||
"display_name": "Max Retries",
|
||
"dynamic": false,
|
||
"info": "",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "max_retries",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "int",
|
||
"value": 3
|
||
},
|
||
"model": {
|
||
"_input_type": "DropdownInput",
|
||
"advanced": false,
|
||
"combobox": false,
|
||
"dialog_inputs": {},
|
||
"display_name": "Model Name",
|
||
"dynamic": false,
|
||
"info": "Select the embedding model to use",
|
||
"name": "model",
|
||
"options": [
|
||
"text-embedding-3-small",
|
||
"text-embedding-3-large",
|
||
"text-embedding-ada-002"
|
||
],
|
||
"options_metadata": [],
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"toggle": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "text-embedding-3-small"
|
||
},
|
||
"model_kwargs": {
|
||
"_input_type": "DictInput",
|
||
"advanced": true,
|
||
"display_name": "Model Kwargs",
|
||
"dynamic": false,
|
||
"info": "Additional keyword arguments to pass to the model.",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "model_kwargs",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"type": "dict",
|
||
"value": {}
|
||
},
|
||
"provider": {
|
||
"_input_type": "DropdownInput",
|
||
"advanced": false,
|
||
"combobox": false,
|
||
"dialog_inputs": {},
|
||
"display_name": "Model Provider",
|
||
"dynamic": false,
|
||
"info": "Select the embedding model provider",
|
||
"name": "provider",
|
||
"options": [
|
||
"OpenAI"
|
||
],
|
||
"options_metadata": [
|
||
{
|
||
"icon": "OpenAI"
|
||
}
|
||
],
|
||
"placeholder": "",
|
||
"real_time_refresh": true,
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"toggle": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "OpenAI"
|
||
},
|
||
"request_timeout": {
|
||
"_input_type": "FloatInput",
|
||
"advanced": true,
|
||
"display_name": "Request Timeout",
|
||
"dynamic": false,
|
||
"info": "",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "request_timeout",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "float",
|
||
"value": ""
|
||
},
|
||
"show_progress_bar": {
|
||
"_input_type": "BoolInput",
|
||
"advanced": true,
|
||
"display_name": "Show Progress Bar",
|
||
"dynamic": false,
|
||
"info": "",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "show_progress_bar",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "bool",
|
||
"value": false
|
||
}
|
||
},
|
||
"tool_mode": false
|
||
},
|
||
"showNode": true,
|
||
"type": "EmbeddingModel"
|
||
},
|
||
"dragging": false,
|
||
"id": "EmbeddingModel-eZ6bT",
|
||
"measured": {
|
||
"height": 369,
|
||
"width": 320
|
||
},
|
||
"position": {
|
||
"x": 727.4791597769406,
|
||
"y": 518.0820551650631
|
||
},
|
||
"selected": false,
|
||
"type": "genericNode"
|
||
},
|
||
{
|
||
"data": {
|
||
"description": "Define the agent's instructions, then enter a task to complete using tools.",
|
||
"display_name": "Agent",
|
||
"id": "Agent-crjWf",
|
||
"node": {
|
||
"base_classes": [
|
||
"Data",
|
||
"Message"
|
||
],
|
||
"beta": false,
|
||
"conditional_paths": [],
|
||
"custom_fields": {},
|
||
"description": "Define the agent's instructions, then enter a task to complete using tools.",
|
||
"display_name": "Agent",
|
||
"documentation": "https://docs.langflow.org/agents",
|
||
"edited": false,
|
||
"field_order": [
|
||
"agent_llm",
|
||
"max_tokens",
|
||
"model_kwargs",
|
||
"model_name",
|
||
"openai_api_base",
|
||
"api_key",
|
||
"temperature",
|
||
"seed",
|
||
"max_retries",
|
||
"timeout",
|
||
"system_prompt",
|
||
"n_messages",
|
||
"format_instructions",
|
||
"output_schema",
|
||
"tools",
|
||
"input_value",
|
||
"handle_parsing_errors",
|
||
"verbose",
|
||
"max_iterations",
|
||
"agent_description",
|
||
"add_current_date_tool"
|
||
],
|
||
"frozen": false,
|
||
"icon": "bot",
|
||
"last_updated": "2025-09-22T15:54:25.247Z",
|
||
"legacy": false,
|
||
"metadata": {
|
||
"code_hash": "964ea0b7bc96",
|
||
"dependencies": {
|
||
"dependencies": [
|
||
{
|
||
"name": "langchain_core",
|
||
"version": "0.3.72"
|
||
},
|
||
{
|
||
"name": "pydantic",
|
||
"version": "2.10.6"
|
||
},
|
||
{
|
||
"name": "langflow",
|
||
"version": null
|
||
}
|
||
],
|
||
"total_dependencies": 3
|
||
},
|
||
"module": "custom_components.agent"
|
||
},
|
||
"minimized": false,
|
||
"output_types": [],
|
||
"outputs": [
|
||
{
|
||
"allows_loop": false,
|
||
"cache": true,
|
||
"display_name": "Response",
|
||
"group_outputs": false,
|
||
"method": "message_response",
|
||
"name": "response",
|
||
"options": null,
|
||
"required_inputs": null,
|
||
"selected": "Message",
|
||
"tool_mode": true,
|
||
"types": [
|
||
"Message"
|
||
],
|
||
"value": "__UNDEFINED__"
|
||
},
|
||
{
|
||
"allows_loop": false,
|
||
"cache": true,
|
||
"display_name": "Structured Response",
|
||
"group_outputs": false,
|
||
"method": "json_response",
|
||
"name": "structured_response",
|
||
"options": null,
|
||
"required_inputs": null,
|
||
"selected": "Data",
|
||
"tool_mode": false,
|
||
"types": [
|
||
"Data"
|
||
],
|
||
"value": "__UNDEFINED__"
|
||
}
|
||
],
|
||
"pinned": false,
|
||
"template": {
|
||
"_type": "Component",
|
||
"add_current_date_tool": {
|
||
"_input_type": "BoolInput",
|
||
"advanced": true,
|
||
"display_name": "Current Date",
|
||
"dynamic": false,
|
||
"info": "If true, will add a tool to the agent that returns the current date.",
|
||
"input_types": [],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "add_current_date_tool",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "bool",
|
||
"value": true
|
||
},
|
||
"agent_description": {
|
||
"_input_type": "MultilineInput",
|
||
"advanced": true,
|
||
"copy_field": false,
|
||
"display_name": "Agent Description [Deprecated]",
|
||
"dynamic": false,
|
||
"info": "The description of the agent. This is only used when in Tool Mode. Defaults to 'A helpful assistant with access to the following tools:' and tools are added dynamically. This feature is deprecated and will be removed in future versions.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"multiline": true,
|
||
"name": "agent_description",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "A helpful assistant with access to the following tools:"
|
||
},
|
||
"agent_llm": {
|
||
"_input_type": "DropdownInput",
|
||
"advanced": false,
|
||
"combobox": false,
|
||
"dialog_inputs": {},
|
||
"display_name": "Language Model",
|
||
"dynamic": false,
|
||
"info": "",
|
||
"input_types": [
|
||
"LanguageModel"
|
||
],
|
||
"name": "agent_llm",
|
||
"options": [
|
||
"Anthropic",
|
||
"Google Generative AI",
|
||
"Groq",
|
||
"OpenAI",
|
||
"Custom"
|
||
],
|
||
"options_metadata": [
|
||
{
|
||
"icon": "Anthropic"
|
||
},
|
||
{
|
||
"icon": "GoogleGenerativeAI"
|
||
},
|
||
{
|
||
"icon": "Groq"
|
||
},
|
||
{
|
||
"icon": "OpenAI"
|
||
},
|
||
{
|
||
"icon": "brain"
|
||
}
|
||
],
|
||
"placeholder": "",
|
||
"real_time_refresh": true,
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"toggle": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": ""
|
||
},
|
||
"code": {
|
||
"advanced": true,
|
||
"dynamic": true,
|
||
"fileTypes": [],
|
||
"file_path": "",
|
||
"info": "",
|
||
"input_types": [],
|
||
"list": false,
|
||
"load_from_db": false,
|
||
"multiline": true,
|
||
"name": "code",
|
||
"password": false,
|
||
"placeholder": "",
|
||
"required": true,
|
||
"show": true,
|
||
"title_case": false,
|
||
"type": "code",
|
||
"value": "import json\nimport re\n\nfrom langchain_core.tools import StructuredTool\nfrom pydantic import ValidationError\n\nfrom langflow.base.agents.agent import LCToolsAgentComponent\nfrom langflow.base.agents.events import ExceptionWithMessageError\nfrom langflow.base.models.model_input_constants import (\n ALL_PROVIDER_FIELDS,\n MODEL_DYNAMIC_UPDATE_FIELDS,\n MODEL_PROVIDERS,\n MODEL_PROVIDERS_DICT,\n MODELS_METADATA,\n)\nfrom langflow.base.models.model_utils import get_model_name\nfrom langflow.components.helpers.current_date import CurrentDateComponent\nfrom langflow.components.helpers.memory import MemoryComponent\nfrom langflow.components.langchain_utilities.tool_calling import ToolCallingAgentComponent\nfrom langflow.custom.custom_component.component import _get_component_toolkit\nfrom langflow.custom.utils import update_component_build_config\nfrom langflow.field_typing import Tool\nfrom langflow.helpers.base_model import build_model_from_schema\nfrom langflow.io import BoolInput, DropdownInput, IntInput, MultilineInput, Output, TableInput\nfrom langflow.logging import logger\nfrom langflow.schema.data import Data\nfrom langflow.schema.dotdict import dotdict\nfrom langflow.schema.message import Message\nfrom langflow.schema.table import EditMode\n\n\ndef set_advanced_true(component_input):\n component_input.advanced = True\n return component_input\n\n\nMODEL_PROVIDERS_LIST = [\"Anthropic\", \"Google Generative AI\", \"Groq\", \"OpenAI\"]\n\n\nclass AgentComponent(ToolCallingAgentComponent):\n display_name: str = \"Agent\"\n description: str = \"Define the agent's instructions, then enter a task to complete using tools.\"\n documentation: str = \"https://docs.langflow.org/agents\"\n icon = \"bot\"\n beta = False\n name = \"Agent\"\n\n memory_inputs = [set_advanced_true(component_input) for component_input in MemoryComponent().inputs]\n\n # Filter out json_mode from OpenAI inputs since we handle structured output differently\n openai_inputs_filtered = [\n input_field\n for input_field in MODEL_PROVIDERS_DICT[\"OpenAI\"][\"inputs\"]\n if not (hasattr(input_field, \"name\") and input_field.name == \"json_mode\")\n ]\n\n inputs = [\n DropdownInput(\n name=\"agent_llm\",\n display_name=\"Model Provider\",\n info=\"The provider of the language model that the agent will use to generate responses.\",\n options=[*MODEL_PROVIDERS_LIST, \"Custom\"],\n value=\"OpenAI\",\n real_time_refresh=True,\n input_types=[],\n options_metadata=[MODELS_METADATA[key] for key in MODEL_PROVIDERS_LIST] + [{\"icon\": \"brain\"}],\n ),\n *openai_inputs_filtered,\n MultilineInput(\n name=\"system_prompt\",\n display_name=\"Agent Instructions\",\n info=\"System Prompt: Initial instructions and context provided to guide the agent's behavior.\",\n value=\"You are a helpful assistant that can use tools to answer questions and perform tasks.\",\n advanced=False,\n ),\n IntInput(\n name=\"n_messages\",\n display_name=\"Number of Chat History Messages\",\n value=100,\n info=\"Number of chat history messages to retrieve.\",\n advanced=True,\n show=True,\n ),\n MultilineInput(\n name=\"format_instructions\",\n display_name=\"Output Format Instructions\",\n info=\"Generic Template for structured output formatting. Valid only with Structured response.\",\n value=(\n \"You are an AI that extracts structured JSON objects from unstructured text. \"\n \"Use a predefined schema with expected types (str, int, float, bool, dict). \"\n \"Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. \"\n \"Fill missing or ambiguous values with defaults: null for missing values. \"\n \"Remove exact duplicates but keep variations that have different field values. \"\n \"Always return valid JSON in the expected format, never throw errors. \"\n \"If multiple objects can be extracted, return them all in the structured format.\"\n ),\n advanced=True,\n ),\n TableInput(\n name=\"output_schema\",\n display_name=\"Output Schema\",\n info=(\n \"Schema Validation: Define the structure and data types for structured output. \"\n \"No validation if no output schema.\"\n ),\n advanced=True,\n required=False,\n value=[],\n table_schema=[\n {\n \"name\": \"name\",\n \"display_name\": \"Name\",\n \"type\": \"str\",\n \"description\": \"Specify the name of the output field.\",\n \"default\": \"field\",\n \"edit_mode\": EditMode.INLINE,\n },\n {\n \"name\": \"description\",\n \"display_name\": \"Description\",\n \"type\": \"str\",\n \"description\": \"Describe the purpose of the output field.\",\n \"default\": \"description of field\",\n \"edit_mode\": EditMode.POPOVER,\n },\n {\n \"name\": \"type\",\n \"display_name\": \"Type\",\n \"type\": \"str\",\n \"edit_mode\": EditMode.INLINE,\n \"description\": (\"Indicate the data type of the output field (e.g., str, int, float, bool, dict).\"),\n \"options\": [\"str\", \"int\", \"float\", \"bool\", \"dict\"],\n \"default\": \"str\",\n },\n {\n \"name\": \"multiple\",\n \"display_name\": \"As List\",\n \"type\": \"boolean\",\n \"description\": \"Set to True if this output field should be a list of the specified type.\",\n \"default\": \"False\",\n \"edit_mode\": EditMode.INLINE,\n },\n ],\n ),\n *LCToolsAgentComponent._base_inputs,\n # removed memory inputs from agent component\n # *memory_inputs,\n BoolInput(\n name=\"add_current_date_tool\",\n display_name=\"Current Date\",\n advanced=True,\n info=\"If true, will add a tool to the agent that returns the current date.\",\n value=True,\n ),\n ]\n outputs = [\n Output(name=\"response\", display_name=\"Response\", method=\"message_response\"),\n Output(name=\"structured_response\", display_name=\"Structured Response\", method=\"json_response\", tool_mode=False),\n ]\n\n async def get_agent_requirements(self):\n \"\"\"Get the agent requirements for the agent.\"\"\"\n llm_model, display_name = await self.get_llm()\n if llm_model is None:\n msg = \"No language model selected. Please choose a model to proceed.\"\n raise ValueError(msg)\n self.model_name = get_model_name(llm_model, display_name=display_name)\n\n # Get memory data\n self.chat_history = await self.get_memory_data()\n if isinstance(self.chat_history, Message):\n self.chat_history = [self.chat_history]\n\n # Add current date tool if enabled\n if self.add_current_date_tool:\n if not isinstance(self.tools, list): # type: ignore[has-type]\n self.tools = []\n current_date_tool = (await CurrentDateComponent(**self.get_base_args()).to_toolkit()).pop(0)\n if not isinstance(current_date_tool, StructuredTool):\n msg = \"CurrentDateComponent must be converted to a StructuredTool\"\n raise TypeError(msg)\n self.tools.append(current_date_tool)\n return llm_model, self.chat_history, self.tools\n\n async def message_response(self) -> Message:\n try:\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n # Set up and run agent\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=self.system_prompt,\n )\n agent = self.create_agent_runnable()\n result = await self.run_agent(agent)\n\n # Store result for potential JSON output\n self._agent_result = result\n\n except (ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"{type(e).__name__}: {e!s}\")\n raise\n except ExceptionWithMessageError as e:\n await logger.aerror(f\"ExceptionWithMessageError occurred: {e}\")\n raise\n # Avoid catching blind Exception; let truly unexpected exceptions propagate\n except Exception as e:\n await logger.aerror(f\"Unexpected error: {e!s}\")\n raise\n else:\n return result\n\n def _preprocess_schema(self, schema):\n \"\"\"Preprocess schema to ensure correct data types for build_model_from_schema.\"\"\"\n processed_schema = []\n for field in schema:\n processed_field = {\n \"name\": str(field.get(\"name\", \"field\")),\n \"type\": str(field.get(\"type\", \"str\")),\n \"description\": str(field.get(\"description\", \"\")),\n \"multiple\": field.get(\"multiple\", False),\n }\n # Ensure multiple is handled correctly\n if isinstance(processed_field[\"multiple\"], str):\n processed_field[\"multiple\"] = processed_field[\"multiple\"].lower() in [\"true\", \"1\", \"t\", \"y\", \"yes\"]\n processed_schema.append(processed_field)\n return processed_schema\n\n async def build_structured_output_base(self, content: str):\n \"\"\"Build structured output with optional BaseModel validation.\"\"\"\n json_pattern = r\"\\{.*\\}\"\n schema_error_msg = \"Try setting an output schema\"\n\n # Try to parse content as JSON first\n json_data = None\n try:\n json_data = json.loads(content)\n except json.JSONDecodeError:\n json_match = re.search(json_pattern, content, re.DOTALL)\n if json_match:\n try:\n json_data = json.loads(json_match.group())\n except json.JSONDecodeError:\n return {\"content\": content, \"error\": schema_error_msg}\n else:\n return {\"content\": content, \"error\": schema_error_msg}\n\n # If no output schema provided, return parsed JSON without validation\n if not hasattr(self, \"output_schema\") or not self.output_schema or len(self.output_schema) == 0:\n return json_data\n\n # Use BaseModel validation with schema\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n\n # Validate against the schema\n if isinstance(json_data, list):\n # Multiple objects\n validated_objects = []\n for item in json_data:\n try:\n validated_obj = output_model.model_validate(item)\n validated_objects.append(validated_obj.model_dump())\n except ValidationError as e:\n await logger.aerror(f\"Validation error for item: {e}\")\n # Include invalid items with error info\n validated_objects.append({\"data\": item, \"validation_error\": str(e)})\n return validated_objects\n\n # Single object\n try:\n validated_obj = output_model.model_validate(json_data)\n return [validated_obj.model_dump()] # Return as list for consistency\n except ValidationError as e:\n await logger.aerror(f\"Validation error: {e}\")\n return [{\"data\": json_data, \"validation_error\": str(e)}]\n\n except (TypeError, ValueError) as e:\n await logger.aerror(f\"Error building structured output: {e}\")\n # Fallback to parsed JSON without validation\n return json_data\n\n async def json_response(self) -> Data:\n \"\"\"Convert agent response to structured JSON Data output with schema validation.\"\"\"\n # Always use structured chat agent for JSON response mode for better JSON formatting\n try:\n system_components = []\n\n # 1. Agent Instructions (system_prompt)\n agent_instructions = getattr(self, \"system_prompt\", \"\") or \"\"\n if agent_instructions:\n system_components.append(f\"{agent_instructions}\")\n\n # 2. Format Instructions\n format_instructions = getattr(self, \"format_instructions\", \"\") or \"\"\n if format_instructions:\n system_components.append(f\"Format instructions: {format_instructions}\")\n\n # 3. Schema Information from BaseModel\n if hasattr(self, \"output_schema\") and self.output_schema and len(self.output_schema) > 0:\n try:\n processed_schema = self._preprocess_schema(self.output_schema)\n output_model = build_model_from_schema(processed_schema)\n schema_dict = output_model.model_json_schema()\n schema_info = (\n \"You are given some text that may include format instructions, \"\n \"explanations, or other content alongside a JSON schema.\\n\\n\"\n \"Your task:\\n\"\n \"- Extract only the JSON schema.\\n\"\n \"- Return it as valid JSON.\\n\"\n \"- Do not include format instructions, explanations, or extra text.\\n\\n\"\n \"Input:\\n\"\n f\"{json.dumps(schema_dict, indent=2)}\\n\\n\"\n \"Output (only JSON schema):\"\n )\n system_components.append(schema_info)\n except (ValidationError, ValueError, TypeError, KeyError) as e:\n await logger.aerror(f\"Could not build schema for prompt: {e}\", exc_info=True)\n\n # Combine all components\n combined_instructions = \"\\n\\n\".join(system_components) if system_components else \"\"\n llm_model, self.chat_history, self.tools = await self.get_agent_requirements()\n self.set(\n llm=llm_model,\n tools=self.tools or [],\n chat_history=self.chat_history,\n input_value=self.input_value,\n system_prompt=combined_instructions,\n )\n\n # Create and run structured chat agent\n try:\n structured_agent = self.create_agent_runnable()\n except (NotImplementedError, ValueError, TypeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n raise\n try:\n result = await self.run_agent(structured_agent)\n except (ExceptionWithMessageError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error with structured agent result: {e}\")\n raise\n # Extract content from structured agent result\n if hasattr(result, \"content\"):\n content = result.content\n elif hasattr(result, \"text\"):\n content = result.text\n else:\n content = str(result)\n\n except (ExceptionWithMessageError, ValueError, TypeError, NotImplementedError, AttributeError) as e:\n await logger.aerror(f\"Error with structured chat agent: {e}\")\n # Fallback to regular agent\n content_str = \"No content returned from agent\"\n return Data(data={\"content\": content_str, \"error\": str(e)})\n\n # Process with structured output validation\n try:\n structured_output = await self.build_structured_output_base(content)\n\n # Handle different output formats\n if isinstance(structured_output, list) and structured_output:\n if len(structured_output) == 1:\n return Data(data=structured_output[0])\n return Data(data={\"results\": structured_output})\n if isinstance(structured_output, dict):\n return Data(data=structured_output)\n return Data(data={\"content\": content})\n\n except (ValueError, TypeError) as e:\n await logger.aerror(f\"Error in structured output processing: {e}\")\n return Data(data={\"content\": content, \"error\": str(e)})\n\n async def get_memory_data(self):\n # TODO: This is a temporary fix to avoid message duplication. We should develop a function for this.\n messages = (\n await MemoryComponent(**self.get_base_args())\n .set(session_id=self.graph.session_id, order=\"Ascending\", n_messages=self.n_messages)\n .retrieve_messages()\n )\n return [\n message for message in messages if getattr(message, \"id\", None) != getattr(self.input_value, \"id\", None)\n ]\n\n async def get_llm(self):\n if not isinstance(self.agent_llm, str):\n return self.agent_llm, None\n\n try:\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if not provider_info:\n msg = f\"Invalid model provider: {self.agent_llm}\"\n raise ValueError(msg)\n\n component_class = provider_info.get(\"component_class\")\n display_name = component_class.display_name\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\", \"\")\n\n return self._build_llm_model(component_class, inputs, prefix), display_name\n\n except (AttributeError, ValueError, TypeError, RuntimeError) as e:\n await logger.aerror(f\"Error building {self.agent_llm} language model: {e!s}\")\n msg = f\"Failed to initialize language model: {e!s}\"\n raise ValueError(msg) from e\n\n def _build_llm_model(self, component, inputs, prefix=\"\"):\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n return component.set(**model_kwargs).build_model()\n\n def set_component_params(self, component):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n inputs = provider_info.get(\"inputs\")\n prefix = provider_info.get(\"prefix\")\n # Filter out json_mode and only use attributes that exist on this component\n model_kwargs = {}\n for input_ in inputs:\n if hasattr(self, f\"{prefix}{input_.name}\"):\n model_kwargs[input_.name] = getattr(self, f\"{prefix}{input_.name}\")\n\n return component.set(**model_kwargs)\n return component\n\n def delete_fields(self, build_config: dotdict, fields: dict | list[str]) -> None:\n \"\"\"Delete specified fields from build_config.\"\"\"\n for field in fields:\n build_config.pop(field, None)\n\n def update_input_types(self, build_config: dotdict) -> dotdict:\n \"\"\"Update input types for all fields in build_config.\"\"\"\n for key, value in build_config.items():\n if isinstance(value, dict):\n if value.get(\"input_types\") is None:\n build_config[key][\"input_types\"] = []\n elif hasattr(value, \"input_types\") and value.input_types is None:\n value.input_types = []\n return build_config\n\n async def update_build_config(\n self, build_config: dotdict, field_value: str, field_name: str | None = None\n ) -> dotdict:\n # Iterate over all providers in the MODEL_PROVIDERS_DICT\n # Existing logic for updating build_config\n if field_name in (\"agent_llm\",):\n build_config[\"agent_llm\"][\"value\"] = field_value\n provider_info = MODEL_PROVIDERS_DICT.get(field_value)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call the component class's update_build_config method\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n\n provider_configs: dict[str, tuple[dict, list[dict]]] = {\n provider: (\n MODEL_PROVIDERS_DICT[provider][\"fields\"],\n [\n MODEL_PROVIDERS_DICT[other_provider][\"fields\"]\n for other_provider in MODEL_PROVIDERS_DICT\n if other_provider != provider\n ],\n )\n for provider in MODEL_PROVIDERS_DICT\n }\n if field_value in provider_configs:\n fields_to_add, fields_to_delete = provider_configs[field_value]\n\n # Delete fields from other providers\n for fields in fields_to_delete:\n self.delete_fields(build_config, fields)\n\n # Add provider-specific fields\n if field_value == \"OpenAI\" and not any(field in build_config for field in fields_to_add):\n build_config.update(fields_to_add)\n else:\n build_config.update(fields_to_add)\n # Reset input types for agent_llm\n build_config[\"agent_llm\"][\"input_types\"] = []\n elif field_value == \"Custom\":\n # Delete all provider fields\n self.delete_fields(build_config, ALL_PROVIDER_FIELDS)\n # Update with custom component\n custom_component = DropdownInput(\n name=\"agent_llm\",\n display_name=\"Language Model\",\n options=[*sorted(MODEL_PROVIDERS), \"Custom\"],\n value=\"Custom\",\n real_time_refresh=True,\n input_types=[\"LanguageModel\"],\n options_metadata=[MODELS_METADATA[key] for key in sorted(MODELS_METADATA.keys())]\n + [{\"icon\": \"brain\"}],\n )\n build_config.update({\"agent_llm\": custom_component.to_dict()})\n # Update input types for all fields\n build_config = self.update_input_types(build_config)\n\n # Validate required keys\n default_keys = [\n \"code\",\n \"_type\",\n \"agent_llm\",\n \"tools\",\n \"input_value\",\n \"add_current_date_tool\",\n \"system_prompt\",\n \"agent_description\",\n \"max_iterations\",\n \"handle_parsing_errors\",\n \"verbose\",\n ]\n missing_keys = [key for key in default_keys if key not in build_config]\n if missing_keys:\n msg = f\"Missing required keys in build_config: {missing_keys}\"\n raise ValueError(msg)\n if (\n isinstance(self.agent_llm, str)\n and self.agent_llm in MODEL_PROVIDERS_DICT\n and field_name in MODEL_DYNAMIC_UPDATE_FIELDS\n ):\n provider_info = MODEL_PROVIDERS_DICT.get(self.agent_llm)\n if provider_info:\n component_class = provider_info.get(\"component_class\")\n component_class = self.set_component_params(component_class)\n prefix = provider_info.get(\"prefix\")\n if component_class and hasattr(component_class, \"update_build_config\"):\n # Call each component class's update_build_config method\n # remove the prefix from the field_name\n if isinstance(field_name, str) and isinstance(prefix, str):\n field_name = field_name.replace(prefix, \"\")\n build_config = await update_component_build_config(\n component_class, build_config, field_value, \"model_name\"\n )\n return dotdict({k: v.to_dict() if hasattr(v, \"to_dict\") else v for k, v in build_config.items()})\n\n async def _get_tools(self) -> list[Tool]:\n component_toolkit = _get_component_toolkit()\n tools_names = self._build_tools_names()\n agent_description = self.get_tool_description()\n # TODO: Agent Description Depreciated Feature to be removed\n description = f\"{agent_description}{tools_names}\"\n tools = component_toolkit(component=self).get_tools(\n tool_name=\"Call_Agent\", tool_description=description, callbacks=self.get_langchain_callbacks()\n )\n if hasattr(self, \"tools_metadata\"):\n tools = component_toolkit(component=self, metadata=self.tools_metadata).update_tools_metadata(tools=tools)\n return tools\n"
|
||
},
|
||
"format_instructions": {
|
||
"_input_type": "MultilineInput",
|
||
"advanced": true,
|
||
"copy_field": false,
|
||
"display_name": "Output Format Instructions",
|
||
"dynamic": false,
|
||
"info": "Generic Template for structured output formatting. Valid only with Structured response.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"multiline": true,
|
||
"name": "format_instructions",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "You are an AI that extracts structured JSON objects from unstructured text. Use a predefined schema with expected types (str, int, float, bool, dict). Extract ALL relevant instances that match the schema - if multiple patterns exist, capture them all. Fill missing or ambiguous values with defaults: null for missing values. Remove exact duplicates but keep variations that have different field values. Always return valid JSON in the expected format, never throw errors. If multiple objects can be extracted, return them all in the structured format."
|
||
},
|
||
"handle_parsing_errors": {
|
||
"_input_type": "BoolInput",
|
||
"advanced": true,
|
||
"display_name": "Handle Parse Errors",
|
||
"dynamic": false,
|
||
"info": "Should the Agent fix errors when reading user input for better processing?",
|
||
"input_types": [],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "handle_parsing_errors",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "bool",
|
||
"value": true
|
||
},
|
||
"input_value": {
|
||
"_input_type": "MessageInput",
|
||
"advanced": false,
|
||
"display_name": "Input",
|
||
"dynamic": false,
|
||
"info": "The input provided by the user for the agent to process.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "input_value",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": true,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": ""
|
||
},
|
||
"max_iterations": {
|
||
"_input_type": "IntInput",
|
||
"advanced": true,
|
||
"display_name": "Max Iterations",
|
||
"dynamic": false,
|
||
"info": "The maximum number of attempts the agent can make to complete its task before it stops.",
|
||
"input_types": [],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "max_iterations",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "int",
|
||
"value": 15
|
||
},
|
||
"n_messages": {
|
||
"_input_type": "IntInput",
|
||
"advanced": true,
|
||
"display_name": "Number of Chat History Messages",
|
||
"dynamic": false,
|
||
"info": "Number of chat history messages to retrieve.",
|
||
"input_types": [],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "n_messages",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "int",
|
||
"value": 100
|
||
},
|
||
"output_schema": {
|
||
"_input_type": "TableInput",
|
||
"advanced": true,
|
||
"display_name": "Output Schema",
|
||
"dynamic": false,
|
||
"info": "Schema Validation: Define the structure and data types for structured output. No validation if no output schema.",
|
||
"input_types": [],
|
||
"is_list": true,
|
||
"list_add_label": "Add More",
|
||
"name": "output_schema",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"table_icon": "Table",
|
||
"table_schema": {
|
||
"columns": [
|
||
{
|
||
"default": "field",
|
||
"description": "Specify the name of the output field.",
|
||
"disable_edit": false,
|
||
"display_name": "Name",
|
||
"edit_mode": "inline",
|
||
"filterable": true,
|
||
"formatter": "text",
|
||
"hidden": false,
|
||
"name": "name",
|
||
"sortable": true,
|
||
"type": "str"
|
||
},
|
||
{
|
||
"default": "description of field",
|
||
"description": "Describe the purpose of the output field.",
|
||
"disable_edit": false,
|
||
"display_name": "Description",
|
||
"edit_mode": "popover",
|
||
"filterable": true,
|
||
"formatter": "text",
|
||
"hidden": false,
|
||
"name": "description",
|
||
"sortable": true,
|
||
"type": "str"
|
||
},
|
||
{
|
||
"default": "str",
|
||
"description": "Indicate the data type of the output field (e.g., str, int, float, bool, dict).",
|
||
"disable_edit": false,
|
||
"display_name": "Type",
|
||
"edit_mode": "inline",
|
||
"filterable": true,
|
||
"formatter": "text",
|
||
"hidden": false,
|
||
"name": "type",
|
||
"options": [
|
||
"str",
|
||
"int",
|
||
"float",
|
||
"bool",
|
||
"dict"
|
||
],
|
||
"sortable": true,
|
||
"type": "str"
|
||
},
|
||
{
|
||
"default": false,
|
||
"description": "Set to True if this output field should be a list of the specified type.",
|
||
"disable_edit": false,
|
||
"display_name": "As List",
|
||
"edit_mode": "inline",
|
||
"filterable": true,
|
||
"formatter": "boolean",
|
||
"hidden": false,
|
||
"name": "multiple",
|
||
"sortable": true,
|
||
"type": "boolean"
|
||
}
|
||
]
|
||
},
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"trigger_icon": "Table",
|
||
"trigger_text": "Open table",
|
||
"type": "table",
|
||
"value": []
|
||
},
|
||
"system_prompt": {
|
||
"_input_type": "MultilineInput",
|
||
"advanced": false,
|
||
"copy_field": false,
|
||
"display_name": "Agent Instructions",
|
||
"dynamic": false,
|
||
"info": "System Prompt: Initial instructions and context provided to guide the agent's behavior.",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"multiline": true,
|
||
"name": "system_prompt",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "You are a helpful assistant that can use tools to answer questions and perform tasks."
|
||
},
|
||
"tools": {
|
||
"_input_type": "HandleInput",
|
||
"advanced": false,
|
||
"display_name": "Tools",
|
||
"dynamic": false,
|
||
"info": "These are the tools that the agent can use to help with tasks.",
|
||
"input_types": [
|
||
"Tool"
|
||
],
|
||
"list": true,
|
||
"list_add_label": "Add More",
|
||
"name": "tools",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"trace_as_metadata": true,
|
||
"type": "other",
|
||
"value": ""
|
||
},
|
||
"verbose": {
|
||
"_input_type": "BoolInput",
|
||
"advanced": true,
|
||
"display_name": "Verbose",
|
||
"dynamic": false,
|
||
"info": "",
|
||
"input_types": [],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "verbose",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "bool",
|
||
"value": true
|
||
}
|
||
},
|
||
"tool_mode": false
|
||
},
|
||
"selected_output": "response",
|
||
"showNode": true,
|
||
"type": "Agent"
|
||
},
|
||
"dragging": false,
|
||
"id": "Agent-crjWf",
|
||
"measured": {
|
||
"height": 429,
|
||
"width": 320
|
||
},
|
||
"position": {
|
||
"x": 1686.5732118555798,
|
||
"y": 317.94354236557473
|
||
},
|
||
"selected": false,
|
||
"type": "genericNode"
|
||
},
|
||
{
|
||
"data": {
|
||
"id": "TextInput-aHsQb",
|
||
"node": {
|
||
"base_classes": [
|
||
"Message"
|
||
],
|
||
"beta": false,
|
||
"conditional_paths": [],
|
||
"custom_fields": {},
|
||
"description": "Get user text inputs.",
|
||
"display_name": "Text Input",
|
||
"documentation": "https://docs.langflow.org/components-io#text-input",
|
||
"edited": true,
|
||
"field_order": [
|
||
"input_value"
|
||
],
|
||
"frozen": false,
|
||
"icon": "type",
|
||
"legacy": false,
|
||
"lf_version": "1.5.0.post1",
|
||
"metadata": {},
|
||
"minimized": false,
|
||
"output_types": [],
|
||
"outputs": [
|
||
{
|
||
"allows_loop": false,
|
||
"cache": true,
|
||
"display_name": "Output Text",
|
||
"group_outputs": false,
|
||
"hidden": null,
|
||
"method": "text_response",
|
||
"name": "text",
|
||
"options": null,
|
||
"required_inputs": null,
|
||
"selected": "Message",
|
||
"tool_mode": true,
|
||
"types": [
|
||
"Message"
|
||
],
|
||
"value": "__UNDEFINED__"
|
||
}
|
||
],
|
||
"pinned": false,
|
||
"template": {
|
||
"_type": "Component",
|
||
"code": {
|
||
"advanced": true,
|
||
"dynamic": true,
|
||
"fileTypes": [],
|
||
"file_path": "",
|
||
"info": "",
|
||
"list": false,
|
||
"load_from_db": false,
|
||
"multiline": true,
|
||
"name": "code",
|
||
"password": false,
|
||
"placeholder": "",
|
||
"required": true,
|
||
"show": true,
|
||
"title_case": false,
|
||
"type": "code",
|
||
"value": "from langflow.base.io.text import TextComponent\nfrom langflow.io import SecretStrInput, Output\nfrom langflow.schema.message import Message\n\n\nclass TextInputComponent(TextComponent):\n display_name = \"Text Input\"\n description = \"Get user text inputs.\"\n documentation: str = \"https://docs.langflow.org/components-io#text-input\"\n icon = \"type\"\n name = \"TextInput\"\n\n inputs = [\n SecretStrInput(\n name=\"input_value\",\n display_name=\"Text\",\n info=\"Text to be passed as input.\",\n ),\n ]\n outputs = [\n Output(display_name=\"Output Text\", name=\"text\", method=\"text_response\"),\n ]\n\n def text_response(self) -> Message:\n return Message(\n text=self.input_value,\n )\n"
|
||
},
|
||
"input_value": {
|
||
"_input_type": "SecretStrInput",
|
||
"advanced": false,
|
||
"display_name": "Text",
|
||
"dynamic": false,
|
||
"info": "Text to be passed as input.",
|
||
"input_types": [],
|
||
"load_from_db": true,
|
||
"name": "input_value",
|
||
"password": true,
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"type": "str",
|
||
"value": "OPENRAG-QUERY-FILTER"
|
||
}
|
||
},
|
||
"tool_mode": false
|
||
},
|
||
"showNode": true,
|
||
"type": "TextInput"
|
||
},
|
||
"dragging": false,
|
||
"id": "TextInput-aHsQb",
|
||
"measured": {
|
||
"height": 204,
|
||
"width": 320
|
||
},
|
||
"position": {
|
||
"x": 745.3341059713564,
|
||
"y": 95.0152511387621
|
||
},
|
||
"selected": false,
|
||
"type": "genericNode"
|
||
},
|
||
{
|
||
"data": {
|
||
"id": "LanguageModelComponent-0YME7",
|
||
"node": {
|
||
"base_classes": [
|
||
"LanguageModel",
|
||
"Message"
|
||
],
|
||
"beta": false,
|
||
"conditional_paths": [],
|
||
"custom_fields": {},
|
||
"description": "Runs a language model given a specified provider.",
|
||
"display_name": "Language Model",
|
||
"documentation": "https://docs.langflow.org/components-models",
|
||
"edited": false,
|
||
"field_order": [
|
||
"provider",
|
||
"model_name",
|
||
"api_key",
|
||
"input_value",
|
||
"system_message",
|
||
"stream",
|
||
"temperature"
|
||
],
|
||
"frozen": false,
|
||
"icon": "brain-circuit",
|
||
"last_updated": "2025-09-22T15:54:29.406Z",
|
||
"legacy": false,
|
||
"metadata": {
|
||
"code_hash": "6ac42a7167a4",
|
||
"dependencies": {
|
||
"dependencies": [
|
||
{
|
||
"name": "langchain_anthropic",
|
||
"version": "0.3.14"
|
||
},
|
||
{
|
||
"name": "langchain_google_genai",
|
||
"version": "2.0.6"
|
||
},
|
||
{
|
||
"name": "langchain_openai",
|
||
"version": "0.3.23"
|
||
},
|
||
{
|
||
"name": "langflow",
|
||
"version": null
|
||
}
|
||
],
|
||
"total_dependencies": 4
|
||
},
|
||
"keywords": [
|
||
"model",
|
||
"llm",
|
||
"language model",
|
||
"large language model"
|
||
],
|
||
"module": "langflow.components.models.language_model.LanguageModelComponent"
|
||
},
|
||
"minimized": false,
|
||
"output_types": [],
|
||
"outputs": [
|
||
{
|
||
"allows_loop": false,
|
||
"cache": true,
|
||
"display_name": "Model Response",
|
||
"group_outputs": false,
|
||
"method": "text_response",
|
||
"name": "text_output",
|
||
"options": null,
|
||
"required_inputs": null,
|
||
"selected": "Message",
|
||
"tool_mode": true,
|
||
"types": [
|
||
"Message"
|
||
],
|
||
"value": "__UNDEFINED__"
|
||
},
|
||
{
|
||
"allows_loop": false,
|
||
"cache": true,
|
||
"display_name": "Language Model",
|
||
"group_outputs": false,
|
||
"method": "build_model",
|
||
"name": "model_output",
|
||
"options": null,
|
||
"required_inputs": null,
|
||
"selected": "LanguageModel",
|
||
"tool_mode": true,
|
||
"types": [
|
||
"LanguageModel"
|
||
],
|
||
"value": "__UNDEFINED__"
|
||
}
|
||
],
|
||
"pinned": false,
|
||
"priority": 0,
|
||
"template": {
|
||
"_type": "Component",
|
||
"api_key": {
|
||
"_input_type": "SecretStrInput",
|
||
"advanced": false,
|
||
"display_name": "OpenAI API Key",
|
||
"dynamic": false,
|
||
"info": "Model Provider API key",
|
||
"input_types": [],
|
||
"load_from_db": true,
|
||
"name": "api_key",
|
||
"password": true,
|
||
"placeholder": "",
|
||
"real_time_refresh": true,
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"type": "str",
|
||
"value": "OPENAI_API_KEY"
|
||
},
|
||
"code": {
|
||
"advanced": true,
|
||
"dynamic": true,
|
||
"fileTypes": [],
|
||
"file_path": "",
|
||
"info": "",
|
||
"list": false,
|
||
"load_from_db": false,
|
||
"multiline": true,
|
||
"name": "code",
|
||
"password": false,
|
||
"placeholder": "",
|
||
"required": true,
|
||
"show": true,
|
||
"title_case": false,
|
||
"type": "code",
|
||
"value": "from typing import Any\n\nfrom langchain_anthropic import ChatAnthropic\nfrom langchain_google_genai import ChatGoogleGenerativeAI\nfrom langchain_openai import ChatOpenAI\n\nfrom langflow.base.models.anthropic_constants import ANTHROPIC_MODELS\nfrom langflow.base.models.google_generative_ai_constants import GOOGLE_GENERATIVE_AI_MODELS\nfrom langflow.base.models.model import LCModelComponent\nfrom langflow.base.models.openai_constants import OPENAI_CHAT_MODEL_NAMES, OPENAI_REASONING_MODEL_NAMES\nfrom langflow.field_typing import LanguageModel\nfrom langflow.field_typing.range_spec import RangeSpec\nfrom langflow.inputs.inputs import BoolInput\nfrom langflow.io import DropdownInput, MessageInput, MultilineInput, SecretStrInput, SliderInput\nfrom langflow.schema.dotdict import dotdict\n\n\nclass LanguageModelComponent(LCModelComponent):\n display_name = \"Language Model\"\n description = \"Runs a language model given a specified provider.\"\n documentation: str = \"https://docs.langflow.org/components-models\"\n icon = \"brain-circuit\"\n category = \"models\"\n priority = 0 # Set priority to 0 to make it appear first\n\n inputs = [\n DropdownInput(\n name=\"provider\",\n display_name=\"Model Provider\",\n options=[\"OpenAI\", \"Anthropic\", \"Google\"],\n value=\"OpenAI\",\n info=\"Select the model provider\",\n real_time_refresh=True,\n options_metadata=[{\"icon\": \"OpenAI\"}, {\"icon\": \"Anthropic\"}, {\"icon\": \"GoogleGenerativeAI\"}],\n ),\n DropdownInput(\n name=\"model_name\",\n display_name=\"Model Name\",\n options=OPENAI_CHAT_MODEL_NAMES + OPENAI_REASONING_MODEL_NAMES,\n value=OPENAI_CHAT_MODEL_NAMES[0],\n info=\"Select the model to use\",\n real_time_refresh=True,\n ),\n SecretStrInput(\n name=\"api_key\",\n display_name=\"OpenAI API Key\",\n info=\"Model Provider API key\",\n required=False,\n show=True,\n real_time_refresh=True,\n ),\n MessageInput(\n name=\"input_value\",\n display_name=\"Input\",\n info=\"The input text to send to the model\",\n ),\n MultilineInput(\n name=\"system_message\",\n display_name=\"System Message\",\n info=\"A system message that helps set the behavior of the assistant\",\n advanced=False,\n ),\n BoolInput(\n name=\"stream\",\n display_name=\"Stream\",\n info=\"Whether to stream the response\",\n value=False,\n advanced=True,\n ),\n SliderInput(\n name=\"temperature\",\n display_name=\"Temperature\",\n value=0.1,\n info=\"Controls randomness in responses\",\n range_spec=RangeSpec(min=0, max=1, step=0.01),\n advanced=True,\n ),\n ]\n\n def build_model(self) -> LanguageModel:\n provider = self.provider\n model_name = self.model_name\n temperature = self.temperature\n stream = self.stream\n\n if provider == \"OpenAI\":\n if not self.api_key:\n msg = \"OpenAI API key is required when using OpenAI provider\"\n raise ValueError(msg)\n\n if model_name in OPENAI_REASONING_MODEL_NAMES:\n # reasoning models do not support temperature (yet)\n temperature = None\n\n return ChatOpenAI(\n model_name=model_name,\n temperature=temperature,\n streaming=stream,\n openai_api_key=self.api_key,\n )\n if provider == \"Anthropic\":\n if not self.api_key:\n msg = \"Anthropic API key is required when using Anthropic provider\"\n raise ValueError(msg)\n return ChatAnthropic(\n model=model_name,\n temperature=temperature,\n streaming=stream,\n anthropic_api_key=self.api_key,\n )\n if provider == \"Google\":\n if not self.api_key:\n msg = \"Google API key is required when using Google provider\"\n raise ValueError(msg)\n return ChatGoogleGenerativeAI(\n model=model_name,\n temperature=temperature,\n streaming=stream,\n google_api_key=self.api_key,\n )\n msg = f\"Unknown provider: {provider}\"\n raise ValueError(msg)\n\n def update_build_config(self, build_config: dotdict, field_value: Any, field_name: str | None = None) -> dotdict:\n if field_name == \"provider\":\n if field_value == \"OpenAI\":\n build_config[\"model_name\"][\"options\"] = OPENAI_CHAT_MODEL_NAMES + OPENAI_REASONING_MODEL_NAMES\n build_config[\"model_name\"][\"value\"] = OPENAI_CHAT_MODEL_NAMES[0]\n build_config[\"api_key\"][\"display_name\"] = \"OpenAI API Key\"\n elif field_value == \"Anthropic\":\n build_config[\"model_name\"][\"options\"] = ANTHROPIC_MODELS\n build_config[\"model_name\"][\"value\"] = ANTHROPIC_MODELS[0]\n build_config[\"api_key\"][\"display_name\"] = \"Anthropic API Key\"\n elif field_value == \"Google\":\n build_config[\"model_name\"][\"options\"] = GOOGLE_GENERATIVE_AI_MODELS\n build_config[\"model_name\"][\"value\"] = GOOGLE_GENERATIVE_AI_MODELS[0]\n build_config[\"api_key\"][\"display_name\"] = \"Google API Key\"\n elif field_name == \"model_name\" and field_value.startswith(\"o1\") and self.provider == \"OpenAI\":\n # Hide system_message for o1 models - currently unsupported\n if \"system_message\" in build_config:\n build_config[\"system_message\"][\"show\"] = False\n elif field_name == \"model_name\" and not field_value.startswith(\"o1\") and \"system_message\" in build_config:\n build_config[\"system_message\"][\"show\"] = True\n return build_config\n"
|
||
},
|
||
"input_value": {
|
||
"_input_type": "MessageInput",
|
||
"advanced": false,
|
||
"display_name": "Input",
|
||
"dynamic": false,
|
||
"info": "The input text to send to the model",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"name": "input_value",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": ""
|
||
},
|
||
"model_name": {
|
||
"_input_type": "DropdownInput",
|
||
"advanced": false,
|
||
"combobox": false,
|
||
"dialog_inputs": {},
|
||
"display_name": "Model Name",
|
||
"dynamic": false,
|
||
"info": "Select the model to use",
|
||
"name": "model_name",
|
||
"options": [
|
||
"gpt-4o-mini",
|
||
"gpt-4o",
|
||
"gpt-4.1",
|
||
"gpt-4.1-mini",
|
||
"gpt-4.1-nano",
|
||
"gpt-4-turbo",
|
||
"gpt-4-turbo-preview",
|
||
"gpt-4",
|
||
"gpt-3.5-turbo",
|
||
"gpt-5",
|
||
"gpt-5-mini",
|
||
"gpt-5-nano",
|
||
"gpt-5-chat-latest",
|
||
"o1",
|
||
"o3-mini",
|
||
"o3",
|
||
"o3-pro",
|
||
"o4-mini",
|
||
"o4-mini-high"
|
||
],
|
||
"options_metadata": [],
|
||
"placeholder": "",
|
||
"real_time_refresh": true,
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"toggle": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "gpt-4o-mini"
|
||
},
|
||
"provider": {
|
||
"_input_type": "DropdownInput",
|
||
"advanced": false,
|
||
"combobox": false,
|
||
"dialog_inputs": {},
|
||
"display_name": "Model Provider",
|
||
"dynamic": false,
|
||
"info": "Select the model provider",
|
||
"name": "provider",
|
||
"options": [
|
||
"OpenAI",
|
||
"Anthropic",
|
||
"Google"
|
||
],
|
||
"options_metadata": [
|
||
{
|
||
"icon": "OpenAI"
|
||
},
|
||
{
|
||
"icon": "Anthropic"
|
||
},
|
||
{
|
||
"icon": "GoogleGenerativeAI"
|
||
}
|
||
],
|
||
"placeholder": "",
|
||
"real_time_refresh": true,
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"toggle": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": "OpenAI"
|
||
},
|
||
"stream": {
|
||
"_input_type": "BoolInput",
|
||
"advanced": true,
|
||
"display_name": "Stream",
|
||
"dynamic": false,
|
||
"info": "Whether to stream the response",
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"name": "stream",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_metadata": true,
|
||
"type": "bool",
|
||
"value": false
|
||
},
|
||
"system_message": {
|
||
"_input_type": "MultilineInput",
|
||
"advanced": false,
|
||
"copy_field": false,
|
||
"display_name": "System Message",
|
||
"dynamic": false,
|
||
"info": "A system message that helps set the behavior of the assistant",
|
||
"input_types": [
|
||
"Message"
|
||
],
|
||
"list": false,
|
||
"list_add_label": "Add More",
|
||
"load_from_db": false,
|
||
"multiline": true,
|
||
"name": "system_message",
|
||
"placeholder": "",
|
||
"required": false,
|
||
"show": true,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"trace_as_input": true,
|
||
"trace_as_metadata": true,
|
||
"type": "str",
|
||
"value": ""
|
||
},
|
||
"temperature": {
|
||
"_input_type": "SliderInput",
|
||
"advanced": true,
|
||
"display_name": "Temperature",
|
||
"dynamic": false,
|
||
"info": "Controls randomness in responses",
|
||
"max_label": "",
|
||
"max_label_icon": "",
|
||
"min_label": "",
|
||
"min_label_icon": "",
|
||
"name": "temperature",
|
||
"placeholder": "",
|
||
"range_spec": {
|
||
"max": 1,
|
||
"min": 0,
|
||
"step": 0.01,
|
||
"step_type": "float"
|
||
},
|
||
"required": false,
|
||
"show": true,
|
||
"slider_buttons": false,
|
||
"slider_buttons_options": [],
|
||
"slider_input": false,
|
||
"title_case": false,
|
||
"tool_mode": false,
|
||
"type": "slider",
|
||
"value": 0.1
|
||
}
|
||
},
|
||
"tool_mode": false
|
||
},
|
||
"selected_output": "model_output",
|
||
"showNode": true,
|
||
"type": "LanguageModelComponent"
|
||
},
|
||
"dragging": false,
|
||
"id": "LanguageModelComponent-0YME7",
|
||
"measured": {
|
||
"height": 534,
|
||
"width": 320
|
||
},
|
||
"position": {
|
||
"x": 1206.0291133693556,
|
||
"y": -185.39565741253472
|
||
},
|
||
"selected": false,
|
||
"type": "genericNode"
|
||
}
|
||
],
|
||
"viewport": {
|
||
"x": -171.9254522389558,
|
||
"y": 141.41747076743695,
|
||
"zoom": 0.5223218120388116
|
||
}
|
||
},
|
||
"description": "OpenRAG Open Search Agent",
|
||
"endpoint_name": null,
|
||
"id": "1098eea1-6649-4e1d-aed1-b77249fb8dd0",
|
||
"is_component": false,
|
||
"last_tested_version": "1.5.0.post2",
|
||
"name": "OpenRAG Open Search Agent",
|
||
"tags": [
|
||
"assistants",
|
||
"agents"
|
||
]
|
||
} |