openrag/docs/docs/get-started/quickstart.mdx
2025-09-26 09:36:28 -04:00

392 lines
No EOL
14 KiB
Text

---
title: Quickstart
slug: /quickstart
---
import Icon from "@site/src/components/icon/icon";
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
Get started with OpenRAG by loading your knowledge, swapping out your language model, and then chatting with the OpenRAG API.
## Prerequisites
- Install and start OpenRAG
## Find your way around
1. In OpenRAG, click <Icon name="MessageSquare" aria-hidden="true"/> **Chat**.
The chat is powered by the OpenRAG OpenSearch Agent.
For more information, see [Langflow Agents](/agents).
2. Ask `What documents are available to you?`
The agent responds with a message summarizing the documents that OpenRAG loads by default, which are PDFs about evaluating data quality when using LLMs in health care.
3. To confirm the agent is correct, click <Icon name="Library" aria-hidden="true"/> **Knowledge**.
The **Knowledge** page lists the documents OpenRAG has ingested into the OpenSearch vector database. Click on a document to display the chunks derived from splitting the default documents into the vector database.
## Add your own knowledge
1. To add documents to your knowledge base, click <Icon name="Plus" aria-hidden="true"/> **Add Knowledge**.
* Select **Add File** to add a single file from your local machine (mapped with the Docker volume mount).
* Select **Process Folder** to process an entire folder of documents from your local machine (mapped with the Docker volume mount).
2. Return to the Chat window and ask a question about your loaded data.
For example, with a manual about a PC tablet loaded, ask `How do I connect this device to WiFI?`
The agent responds with a message indicating it now has your knowledge as context for answering questions.
3. Click the <Icon name="Gear" aria-hidden="true"/> **Function Call: search_documents (tool_call)** that is printed in the Playground.
These events log the agent's request to the tool and the tool's response, so you have direct visibility into your agent's functionality.
If you aren't getting the results you need, you can further tune the knowledge ingestion and agent behavior in the next section.
## Swap out the language model to modify agent behavior {#change-components}
To modify the knowledge ingestion or Agent behavior, click <Icon name="Settings2" aria-hidden="true"/> **Settings**.
In this example, you'll try a different LLM to demonstrate how the Agent's response changes.
1. To edit the Agent's behavior, click **Edit in Langflow**.
2. OpenRAG warns you that you're entering Langflow. Click **Proceed**.
3. The OpenRAG OpenSearch Agent flow appears.
![OpenRAG OpenSearch Agent Flow](/img/opensearch-agent-flow.png)
4. In the **Language Model** component, under **Model Provider**, select **Anthropic**.
:::note
This guide uses an Anthropic model for demonstration purposes. If you want to use a different provider, change the **Model Provider** and **Model Name** fields, and then provide credentials for your selected provider.
:::
5. Save your flow with <kbd>Command+S</kbd>.
6. In OpenRAG, start a new conversation by clicking the <Icon name="Plus" aria-hidden="true"/> in the **Conversations** tab.
7. Ask the same question as before to demonstrate how a different language model changes the results.
## Integrate OpenRAG into your application
:::tip
Ensure the `openrag-backend` container has port 8000 exposed in your `docker-compose.yml`:
```yaml
openrag-backend:
ports:
- "8000:8000"
```
:::
OpenRAG provides a REST API that you can call from Python, TypeScript, or any HTTP client to chat with your documents.
These example requests are run assuming OpenRAG is in "no-auth" mode.
For complete API documentation, including authentication, request and response parameters, and example requests, see the API documentation.
### Chat with your documents
Prompt OpenRAG at the `/chat` API endpoint.
<Tabs>
<TabItem value="python" label="Python">
```python
import requests
url = "http://localhost:8000/chat"
payload = {
"prompt": "What documents are available to you?",
"previous_response_id": None
}
response = requests.post(url, json=payload)
print("OpenRAG Response:", response.json())
```
</TabItem>
<TabItem value="typescript" label="TypeScript">
```typescript
import fetch from 'node-fetch';
const response = await fetch("http://localhost:8000/chat", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({
prompt: "What documents are available to you?",
previous_response_id: null
})
});
const data = await response.json();
console.log("OpenRAG Response:", data);
```
</TabItem>
<TabItem value="curl" label="curl">
```bash
curl -X POST "http://localhost:8000/chat" \
-H "Content-Type: application/json" \
-d '{
"prompt": "What documents are available to you?",
"previous_response_id": null
}'
```
</TabItem>
</Tabs>
<details closed>
<summary>Response</summary>
```
{
"response": "I have access to a wide range of documents depending on the context and the tools enabled in this environment. Specifically, I can search for and retrieve documents related to various topics such as technical papers, articles, manuals, guides, knowledge base entries, and other text-based resources. If you specify a particular subject or type of document you're interested in, I can try to locate relevant materials for you. Let me know what you need!",
"response_id": "resp_68d3fdbac93081958b8781b97919fe7007f98bd83932fa1a"
}
```
</details>
### Search your documents
Search your document knowledge base at the `/search` endpoint.
<Tabs>
<TabItem value="python" label="Python">
```python
import requests
url = "http://localhost:8000/search"
payload = {"query": "healthcare data quality", "limit": 5}
response = requests.post(url, json=payload)
results = response.json()
print("Search Results:")
for result in results.get("results", []):
print(f"- {result.get('filename')}: {result.get('text', '')[:100]}...")
```
</TabItem>
<TabItem value="typescript" label="TypeScript">
```typescript
const response = await fetch("http://localhost:8000/search", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({
query: "healthcare data quality",
limit: 5
})
});
const results = await response.json();
console.log("Search Results:");
results.results?.forEach((result, index) => {
const filename = result.filename || 'Unknown';
const text = result.text?.substring(0, 100) || '';
console.log(`${index + 1}. ${filename}: ${text}...`);
});
```
</TabItem>
<TabItem value="curl" label="curl">
```bash
curl -X POST "http://localhost:8000/search" \
-H "Content-Type: application/json" \
-d '{"query": "healthcare data quality", "limit": 5}'
```
</TabItem>
</Tabs>
<details closed>
<summary>Example response</summary>
```
Found 5 results
1. 2506.08231v1.pdf: variables with high performance metrics. These variables might also require fewer replication analys...
2. 2506.08231v1.pdf: on EHR data and may lack the clinical domain knowledge needed to perform well on the tasks where EHR...
3. 2506.08231v1.pdf: Abstract Large language models (LLMs) are increasingly used to extract clinical data from electronic...
4. 2506.08231v1.pdf: these multidimensional assessments, the framework not only quantifies accuracy, but can also be appl...
5. 2506.08231v1.pdf: observed in only the model metrics, but not the abstractor metrics, it indicates that model errors m...
```
</details>
### Use chat and search together
Create a complete chat application that combines an interactive terminal chat with session continuity and search functionality.
<Tabs>
<TabItem value="python" label="Python">
```python
import requests
# Configuration
OPENRAG_BASE_URL = "http://localhost:8000"
CHAT_URL = f"{OPENRAG_BASE_URL}/chat"
SEARCH_URL = f"{OPENRAG_BASE_URL}/search"
DEFAULT_SEARCH_LIMIT = 5
def chat_with_openrag(message, previous_response_id=None):
try:
response = requests.post(CHAT_URL, json={
"prompt": message,
"previous_response_id": previous_response_id
})
response.raise_for_status()
data = response.json()
return data.get("response"), data.get("response_id")
except Exception as e:
return f"Error: {str(e)}", None
def search_documents(query, limit=DEFAULT_SEARCH_LIMIT):
try:
response = requests.post(SEARCH_URL, json={
"query": query,
"limit": limit
})
response.raise_for_status()
data = response.json()
return data.get("results", [])
except Exception as e:
return []
# Interactive chat with session continuity and search
previous_response_id = None
while True:
question = input("Your question (or 'search <query>' to search): ").strip()
if question.lower() in ['quit', 'exit', 'q']:
break
if not question:
continue
if question.lower().startswith('search '):
query = question[7:].strip()
print("Searching documents...")
results = search_documents(query)
print(f"\nFound {len(results)} results:")
for i, result in enumerate(results, 1):
filename = result.get('filename', 'Unknown')
text = result.get('text', '')[:100]
print(f"{i}. {filename}: {text}...")
print()
else:
print("OpenRAG is thinking...")
result, response_id = chat_with_openrag(question, previous_response_id)
print(f"OpenRAG: {result}\n")
previous_response_id = response_id
```
</TabItem>
<TabItem value="typescript" label="TypeScript">
```ts
import fetch from 'node-fetch';
// Configuration
const OPENRAG_BASE_URL = "http://localhost:8000";
const CHAT_URL = `${OPENRAG_BASE_URL}/chat`;
const SEARCH_URL = `${OPENRAG_BASE_URL}/search`;
const DEFAULT_SEARCH_LIMIT = 5;
async function chatWithOpenRAG(message: string, previousResponseId?: string | null) {
try {
const response = await fetch(CHAT_URL, {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({
prompt: message,
previous_response_id: previousResponseId
})
});
const data = await response.json();
return [data.response || "No response received", data.response_id || null];
} catch (error) {
return [`Error: ${error}`, null];
}
}
async function searchDocuments(query: string, limit: number = DEFAULT_SEARCH_LIMIT) {
try {
const response = await fetch(SEARCH_URL, {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ query, limit })
});
const data = await response.json();
return data.results || [];
} catch (error) {
return [];
}
}
// Interactive chat with session continuity and search
let previousResponseId = null;
const readline = require('readline');
const rl = readline.createInterface({ input: process.stdin, output: process.stdout });
const askQuestion = () => {
rl.question("Your question (or 'search <query>' to search): ", async (question) => {
if (question.toLowerCase() === 'quit' || question.toLowerCase() === 'exit' || question.toLowerCase() === 'q') {
console.log("Goodbye!");
rl.close();
return;
}
if (!question.trim()) {
askQuestion();
return;
}
if (question.toLowerCase().startsWith('search ')) {
const query = question.substring(7).trim();
console.log("Searching documents...");
const results = await searchDocuments(query);
console.log(`\nFound ${results.length} results:`);
results.forEach((result, i) => {
const filename = result.filename || 'Unknown';
const text = result.text?.substring(0, 100) || '';
console.log(`${i + 1}. ${filename}: ${text}...`);
});
console.log();
} else {
console.log("OpenRAG is thinking...");
const [result, responseId] = await chatWithOpenRAG(question, previousResponseId);
console.log(`\nOpenRAG: ${result}\n`);
previousResponseId = responseId;
}
askQuestion();
});
};
console.log("OpenRAG Chat Interface");
console.log("Ask questions about your documents. Type 'quit' to exit.");
console.log("Use 'search <query>' to search documents directly.\n");
askQuestion();
```
</TabItem>
</Tabs>
<details closed>
<summary>Example response</summary>
```
Your question (or 'search <query>' to search): search healthcare
Searching documents...
Found 5 results:
1. 2506.08231v1.pdf: variables with high performance metrics. These variables might also require fewer replication analys...
2. 2506.08231v1.pdf: on EHR data and may lack the clinical domain knowledge needed to perform well on the tasks where EHR...
3. 2506.08231v1.pdf: Abstract Large language models (LLMs) are increasingly used to extract clinical data from electronic...
4. 2506.08231v1.pdf: Acknowledgements Darren Johnson for support in publication planning and management. The authors used...
5. 2506.08231v1.pdf: Ensuring Reliability of Curated EHR-Derived Data: The Validation of Accuracy for LLM/ML-Extracted In...
Your question (or 'search <query>' to search): what's the weather today?
OpenRAG is thinking...
OpenRAG: I don't have access to real-time weather data. Could you please provide me with your location? Then I can help you find the weather information.
Your question (or 'search <query>' to search): newark nj
OpenRAG is thinking...
```
</details>
## Next steps
TBD