openrag/src/services/langflow_file_service.py

365 lines
14 KiB
Python

from typing import Any, Dict, List, Optional
from config.settings import LANGFLOW_INGEST_FLOW_ID, clients
from utils.logging_config import get_logger
logger = get_logger(__name__)
class LangflowFileService:
def __init__(self):
self.flow_id_ingest = LANGFLOW_INGEST_FLOW_ID
async def upload_user_file(
self, file_tuple, jwt_token: Optional[str] = None
) -> Dict[str, Any]:
"""Upload a file using Langflow Files API v2: POST /api/v2/files.
Returns JSON with keys: id, name, path, size, provider.
"""
logger.debug("[LF] Upload (v2) -> /api/v2/files")
resp = await clients.langflow_request(
"POST",
"/api/v2/files",
files={"file": file_tuple},
headers={"Content-Type": None},
)
logger.debug(
"[LF] Upload response",
status_code=resp.status_code,
reason=resp.reason_phrase,
)
if resp.status_code >= 400:
logger.error(
"[LF] Upload failed",
status_code=resp.status_code,
reason=resp.reason_phrase,
body=resp.text,
)
resp.raise_for_status()
return resp.json()
async def delete_user_file(self, file_id: str) -> None:
"""Delete a file by id using v2: DELETE /api/v2/files/{id}."""
# NOTE: use v2 root, not /api/v1
logger.debug("[LF] Delete (v2) -> /api/v2/files/{id}", file_id=file_id)
resp = await clients.langflow_request("DELETE", f"/api/v2/files/{file_id}")
logger.debug(
"[LF] Delete response",
status_code=resp.status_code,
reason=resp.reason_phrase,
)
if resp.status_code >= 400:
logger.error(
"[LF] Delete failed",
status_code=resp.status_code,
reason=resp.reason_phrase,
body=resp.text[:500],
)
resp.raise_for_status()
async def run_ingestion_flow(
self,
file_paths: List[str],
file_tuples: list[tuple[str, str, str]],
jwt_token: str,
session_id: Optional[str] = None,
tweaks: Optional[Dict[str, Any]] = None,
owner: Optional[str] = None,
owner_name: Optional[str] = None,
owner_email: Optional[str] = None,
connector_type: Optional[str] = None,
) -> Dict[str, Any]:
"""
Trigger the ingestion flow with provided file paths.
The flow must expose a File component path in input schema or accept files parameter.
"""
if not self.flow_id_ingest:
logger.error("[LF] LANGFLOW_INGEST_FLOW_ID is not configured")
raise ValueError("LANGFLOW_INGEST_FLOW_ID is not configured")
payload: Dict[str, Any] = {
"input_value": "Ingest files",
"input_type": "chat",
"output_type": "text", # Changed from "json" to "text"
}
if not tweaks:
tweaks = {}
# Pass files via tweaks to File component (File-PSU37 from the flow)
if file_paths:
tweaks["DoclingRemote-Dp3PX"] = {"path": file_paths}
# Pass JWT token via tweaks using the x-langflow-global-var- pattern
if jwt_token:
# Using the global variable pattern that Langflow expects for OpenSearch components
tweaks["OpenSearchVectorStoreComponentMultimodalMultiEmbedding-By9U4"] = {"jwt_token": jwt_token}
logger.debug("[LF] Added JWT token to tweaks for OpenSearch components")
else:
logger.warning("[LF] No JWT token provided")
# Pass metadata via tweaks to OpenSearch component
metadata_tweaks = []
if owner or owner is None:
metadata_tweaks.append({"key": "owner", "value": owner})
if owner_name:
metadata_tweaks.append({"key": "owner_name", "value": owner_name})
if owner_email:
metadata_tweaks.append({"key": "owner_email", "value": owner_email})
if connector_type:
metadata_tweaks.append({"key": "connector_type", "value": connector_type})
logger.info(f"[LF] Metadata tweaks {metadata_tweaks}")
# if metadata_tweaks:
# # Initialize the OpenSearch component tweaks if not already present
# if "OpenSearchVectorStoreComponentMultimodalMultiEmbedding-By9U4" not in tweaks:
# tweaks["OpenSearchVectorStoreComponentMultimodalMultiEmbedding-By9U4"] = {}
# tweaks["OpenSearchVectorStoreComponentMultimodalMultiEmbedding-By9U4"]["docs_metadata"] = metadata_tweaks
# logger.debug(
# "[LF] Added metadata to tweaks", metadata_count=len(metadata_tweaks)
# )
if tweaks:
payload["tweaks"] = tweaks
logger.debug(f"[LF] Tweaks {tweaks}")
if session_id:
payload["session_id"] = session_id
logger.debug(
"[LF] Run ingestion -> /run/%s | files=%s session_id=%s tweaks_keys=%s jwt_present=%s",
self.flow_id_ingest,
len(file_paths) if file_paths else 0,
session_id,
list(tweaks.keys()) if isinstance(tweaks, dict) else None,
bool(jwt_token),
)
# To compute the file size in bytes, use len() on the file content (which should be bytes)
file_size_bytes = len(file_tuples[0][1]) if file_tuples and len(file_tuples[0]) > 1 else 0
# Avoid logging full payload to prevent leaking sensitive data (e.g., JWT)
# Extract file metadata if file_tuples is provided
filename = str(file_tuples[0][0]) if file_tuples and len(file_tuples) > 0 else ""
mimetype = str(file_tuples[0][2]) if file_tuples and len(file_tuples) > 0 and len(file_tuples[0]) > 2 else ""
# Get the current embedding model and provider credentials from config
from config.settings import get_openrag_config
from utils.langflow_headers import add_provider_credentials_to_headers
config = get_openrag_config()
embedding_model = config.knowledge.embedding_model
headers={
"X-Langflow-Global-Var-JWT": str(jwt_token),
"X-Langflow-Global-Var-OWNER": str(owner),
"X-Langflow-Global-Var-OWNER_NAME": str(owner_name),
"X-Langflow-Global-Var-OWNER_EMAIL": str(owner_email),
"X-Langflow-Global-Var-CONNECTOR_TYPE": str(connector_type),
"X-Langflow-Global-Var-FILENAME": filename,
"X-Langflow-Global-Var-MIMETYPE": mimetype,
"X-Langflow-Global-Var-FILESIZE": str(file_size_bytes),
"X-Langflow-Global-Var-SELECTED_EMBEDDING_MODEL": str(embedding_model),
}
# Add provider credentials as global variables for ingestion
add_provider_credentials_to_headers(headers, config)
logger.info(f"[LF] Headers {headers}")
logger.info(f"[LF] Payload {payload}")
resp = await clients.langflow_request(
"POST",
f"/api/v1/run/{self.flow_id_ingest}",
json=payload,
headers=headers,
)
logger.debug(
"[LF] Run response", status_code=resp.status_code, reason=resp.reason_phrase
)
if resp.status_code >= 400:
logger.error(
"[LF] Run failed",
status_code=resp.status_code,
reason=resp.reason_phrase,
body=resp.text[:1000],
)
resp.raise_for_status()
# Check if response is actually JSON before parsing
content_type = resp.headers.get("content-type", "")
if "application/json" not in content_type:
logger.error(
"[LF] Unexpected response content type from Langflow",
content_type=content_type,
status_code=resp.status_code,
body=resp.text[:1000],
)
raise ValueError(
f"Langflow returned {content_type} instead of JSON. "
f"This may indicate the ingestion flow failed or the endpoint is incorrect. "
f"Response preview: {resp.text[:500]}"
)
try:
resp_json = resp.json()
except Exception as e:
logger.error(
"[LF] Failed to parse run response as JSON",
body=resp.text[:1000],
error=str(e),
)
raise
return resp_json
async def upload_and_ingest_file(
self,
file_tuple,
session_id: Optional[str] = None,
tweaks: Optional[Dict[str, Any]] = None,
settings: Optional[Dict[str, Any]] = None,
jwt_token: Optional[str] = None,
delete_after_ingest: bool = True,
owner: Optional[str] = None,
owner_name: Optional[str] = None,
owner_email: Optional[str] = None,
connector_type: Optional[str] = None,
) -> Dict[str, Any]:
"""
Combined upload, ingest, and delete operation.
First uploads the file, then runs ingestion on it, then optionally deletes the file.
Args:
file_tuple: File tuple (filename, content, content_type)
session_id: Optional session ID for the ingestion flow
tweaks: Optional tweaks for the ingestion flow
settings: Optional UI settings to convert to component tweaks
jwt_token: Optional JWT token for authentication
delete_after_ingest: Whether to delete the file from Langflow after ingestion (default: True)
Returns:
Combined result with upload info, ingestion result, and deletion status
"""
logger.debug("[LF] Starting combined upload and ingest operation")
# Step 1: Upload the file
try:
upload_result = await self.upload_user_file(file_tuple, jwt_token=jwt_token)
logger.debug(
"[LF] Upload completed successfully",
extra={
"file_id": upload_result.get("id"),
"file_path": upload_result.get("path"),
},
)
except Exception as e:
logger.error(
"[LF] Upload failed during combined operation", extra={"error": str(e)}
)
raise Exception(f"Upload failed: {str(e)}")
# Step 2: Prepare for ingestion
file_path = upload_result.get("path")
if not file_path:
raise ValueError("Upload successful but no file path returned")
# Convert UI settings to component tweaks if provided
final_tweaks = tweaks.copy() if tweaks else {}
if settings:
logger.debug(
"[LF] Applying ingestion settings", extra={"settings": settings}
)
# Split Text component tweaks (SplitText-QIKhg)
if (
settings.get("chunkSize")
or settings.get("chunkOverlap")
or settings.get("separator")
):
if "SplitText-QIKhg" not in final_tweaks:
final_tweaks["SplitText-QIKhg"] = {}
if settings.get("chunkSize"):
final_tweaks["SplitText-QIKhg"]["chunk_size"] = settings[
"chunkSize"
]
if settings.get("chunkOverlap"):
final_tweaks["SplitText-QIKhg"]["chunk_overlap"] = settings[
"chunkOverlap"
]
if settings.get("separator"):
final_tweaks["SplitText-QIKhg"]["separator"] = settings["separator"]
# OpenAI Embeddings component tweaks (OpenAIEmbeddings-joRJ6)
if settings.get("embeddingModel"):
if "OpenAIEmbeddings-joRJ6" not in final_tweaks:
final_tweaks["OpenAIEmbeddings-joRJ6"] = {}
final_tweaks["OpenAIEmbeddings-joRJ6"]["model"] = settings[
"embeddingModel"
]
logger.debug(
"[LF] Final tweaks with settings applied",
extra={"tweaks": final_tweaks},
)
# Step 3: Run ingestion
try:
ingest_result = await self.run_ingestion_flow(
file_paths=[file_path],
file_tuples=[file_tuple],
jwt_token=jwt_token,
session_id=session_id,
tweaks=final_tweaks,
owner=owner,
owner_name=owner_name,
owner_email=owner_email,
connector_type=connector_type,
)
logger.debug("[LF] Ingestion completed successfully")
except Exception as e:
logger.error(
"[LF] Ingestion failed during combined operation",
extra={"error": str(e), "file_path": file_path},
)
# Note: We could optionally delete the uploaded file here if ingestion fails
raise Exception(f"Ingestion failed: {str(e)}")
# Step 4: Delete file from Langflow (optional)
file_id = upload_result.get("id")
delete_result = None
delete_error = None
if delete_after_ingest and file_id:
try:
logger.debug(
"[LF] Deleting file after successful ingestion",
extra={"file_id": file_id},
)
await self.delete_user_file(file_id)
delete_result = {"status": "deleted", "file_id": file_id}
logger.debug("[LF] File deleted successfully")
except Exception as e:
delete_error = str(e)
logger.warning(
"[LF] Failed to delete file after ingestion",
extra={"error": delete_error, "file_id": file_id},
)
delete_result = {
"status": "delete_failed",
"file_id": file_id,
"error": delete_error,
}
# Return combined result
result = {
"status": "success",
"upload": upload_result,
"ingestion": ingest_result,
"message": f"File '{upload_result.get('name')}' uploaded and ingested successfully",
}
if delete_after_ingest:
result["deletion"] = delete_result
if delete_result and delete_result.get("status") == "deleted":
result["message"] += " and cleaned up"
elif delete_error:
result["message"] += f" (cleanup warning: {delete_error})"
return result