365 lines
14 KiB
Python
365 lines
14 KiB
Python
from typing import Any, Dict, List, Optional
|
|
|
|
from config.settings import LANGFLOW_INGEST_FLOW_ID, clients
|
|
from utils.logging_config import get_logger
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
class LangflowFileService:
|
|
def __init__(self):
|
|
self.flow_id_ingest = LANGFLOW_INGEST_FLOW_ID
|
|
|
|
async def upload_user_file(
|
|
self, file_tuple, jwt_token: Optional[str] = None
|
|
) -> Dict[str, Any]:
|
|
"""Upload a file using Langflow Files API v2: POST /api/v2/files.
|
|
Returns JSON with keys: id, name, path, size, provider.
|
|
"""
|
|
logger.debug("[LF] Upload (v2) -> /api/v2/files")
|
|
resp = await clients.langflow_request(
|
|
"POST",
|
|
"/api/v2/files",
|
|
files={"file": file_tuple},
|
|
headers={"Content-Type": None},
|
|
)
|
|
logger.debug(
|
|
"[LF] Upload response",
|
|
status_code=resp.status_code,
|
|
reason=resp.reason_phrase,
|
|
)
|
|
if resp.status_code >= 400:
|
|
logger.error(
|
|
"[LF] Upload failed",
|
|
status_code=resp.status_code,
|
|
reason=resp.reason_phrase,
|
|
body=resp.text,
|
|
)
|
|
resp.raise_for_status()
|
|
return resp.json()
|
|
|
|
async def delete_user_file(self, file_id: str) -> None:
|
|
"""Delete a file by id using v2: DELETE /api/v2/files/{id}."""
|
|
# NOTE: use v2 root, not /api/v1
|
|
logger.debug("[LF] Delete (v2) -> /api/v2/files/{id}", file_id=file_id)
|
|
resp = await clients.langflow_request("DELETE", f"/api/v2/files/{file_id}")
|
|
logger.debug(
|
|
"[LF] Delete response",
|
|
status_code=resp.status_code,
|
|
reason=resp.reason_phrase,
|
|
)
|
|
if resp.status_code >= 400:
|
|
logger.error(
|
|
"[LF] Delete failed",
|
|
status_code=resp.status_code,
|
|
reason=resp.reason_phrase,
|
|
body=resp.text[:500],
|
|
)
|
|
resp.raise_for_status()
|
|
|
|
async def run_ingestion_flow(
|
|
self,
|
|
file_paths: List[str],
|
|
file_tuples: list[tuple[str, str, str]],
|
|
jwt_token: str,
|
|
session_id: Optional[str] = None,
|
|
tweaks: Optional[Dict[str, Any]] = None,
|
|
owner: Optional[str] = None,
|
|
owner_name: Optional[str] = None,
|
|
owner_email: Optional[str] = None,
|
|
connector_type: Optional[str] = None,
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Trigger the ingestion flow with provided file paths.
|
|
The flow must expose a File component path in input schema or accept files parameter.
|
|
"""
|
|
if not self.flow_id_ingest:
|
|
logger.error("[LF] LANGFLOW_INGEST_FLOW_ID is not configured")
|
|
raise ValueError("LANGFLOW_INGEST_FLOW_ID is not configured")
|
|
|
|
payload: Dict[str, Any] = {
|
|
"input_value": "Ingest files",
|
|
"input_type": "chat",
|
|
"output_type": "text", # Changed from "json" to "text"
|
|
}
|
|
if not tweaks:
|
|
tweaks = {}
|
|
|
|
# Pass files via tweaks to File component (File-PSU37 from the flow)
|
|
if file_paths:
|
|
tweaks["DoclingRemote-Dp3PX"] = {"path": file_paths}
|
|
|
|
|
|
|
|
# Pass JWT token via tweaks using the x-langflow-global-var- pattern
|
|
if jwt_token:
|
|
# Using the global variable pattern that Langflow expects for OpenSearch components
|
|
tweaks["OpenSearchVectorStoreComponentMultimodalMultiEmbedding-By9U4"] = {"jwt_token": jwt_token}
|
|
logger.debug("[LF] Added JWT token to tweaks for OpenSearch components")
|
|
else:
|
|
logger.warning("[LF] No JWT token provided")
|
|
|
|
# Pass metadata via tweaks to OpenSearch component
|
|
metadata_tweaks = []
|
|
if owner or owner is None:
|
|
metadata_tweaks.append({"key": "owner", "value": owner})
|
|
if owner_name:
|
|
metadata_tweaks.append({"key": "owner_name", "value": owner_name})
|
|
if owner_email:
|
|
metadata_tweaks.append({"key": "owner_email", "value": owner_email})
|
|
if connector_type:
|
|
metadata_tweaks.append({"key": "connector_type", "value": connector_type})
|
|
logger.info(f"[LF] Metadata tweaks {metadata_tweaks}")
|
|
# if metadata_tweaks:
|
|
# # Initialize the OpenSearch component tweaks if not already present
|
|
# if "OpenSearchVectorStoreComponentMultimodalMultiEmbedding-By9U4" not in tweaks:
|
|
# tweaks["OpenSearchVectorStoreComponentMultimodalMultiEmbedding-By9U4"] = {}
|
|
# tweaks["OpenSearchVectorStoreComponentMultimodalMultiEmbedding-By9U4"]["docs_metadata"] = metadata_tweaks
|
|
# logger.debug(
|
|
# "[LF] Added metadata to tweaks", metadata_count=len(metadata_tweaks)
|
|
# )
|
|
if tweaks:
|
|
payload["tweaks"] = tweaks
|
|
logger.debug(f"[LF] Tweaks {tweaks}")
|
|
if session_id:
|
|
payload["session_id"] = session_id
|
|
|
|
logger.debug(
|
|
"[LF] Run ingestion -> /run/%s | files=%s session_id=%s tweaks_keys=%s jwt_present=%s",
|
|
self.flow_id_ingest,
|
|
len(file_paths) if file_paths else 0,
|
|
session_id,
|
|
list(tweaks.keys()) if isinstance(tweaks, dict) else None,
|
|
bool(jwt_token),
|
|
)
|
|
# To compute the file size in bytes, use len() on the file content (which should be bytes)
|
|
file_size_bytes = len(file_tuples[0][1]) if file_tuples and len(file_tuples[0]) > 1 else 0
|
|
# Avoid logging full payload to prevent leaking sensitive data (e.g., JWT)
|
|
|
|
# Extract file metadata if file_tuples is provided
|
|
filename = str(file_tuples[0][0]) if file_tuples and len(file_tuples) > 0 else ""
|
|
mimetype = str(file_tuples[0][2]) if file_tuples and len(file_tuples) > 0 and len(file_tuples[0]) > 2 else ""
|
|
|
|
# Get the current embedding model and provider credentials from config
|
|
from config.settings import get_openrag_config
|
|
from utils.langflow_headers import add_provider_credentials_to_headers
|
|
|
|
config = get_openrag_config()
|
|
embedding_model = config.knowledge.embedding_model
|
|
|
|
headers={
|
|
"X-Langflow-Global-Var-JWT": str(jwt_token),
|
|
"X-Langflow-Global-Var-OWNER": str(owner),
|
|
"X-Langflow-Global-Var-OWNER_NAME": str(owner_name),
|
|
"X-Langflow-Global-Var-OWNER_EMAIL": str(owner_email),
|
|
"X-Langflow-Global-Var-CONNECTOR_TYPE": str(connector_type),
|
|
"X-Langflow-Global-Var-FILENAME": filename,
|
|
"X-Langflow-Global-Var-MIMETYPE": mimetype,
|
|
"X-Langflow-Global-Var-FILESIZE": str(file_size_bytes),
|
|
"X-Langflow-Global-Var-SELECTED_EMBEDDING_MODEL": str(embedding_model),
|
|
}
|
|
|
|
# Add provider credentials as global variables for ingestion
|
|
add_provider_credentials_to_headers(headers, config)
|
|
logger.info(f"[LF] Headers {headers}")
|
|
logger.info(f"[LF] Payload {payload}")
|
|
resp = await clients.langflow_request(
|
|
"POST",
|
|
f"/api/v1/run/{self.flow_id_ingest}",
|
|
json=payload,
|
|
headers=headers,
|
|
)
|
|
logger.debug(
|
|
"[LF] Run response", status_code=resp.status_code, reason=resp.reason_phrase
|
|
)
|
|
if resp.status_code >= 400:
|
|
logger.error(
|
|
"[LF] Run failed",
|
|
status_code=resp.status_code,
|
|
reason=resp.reason_phrase,
|
|
body=resp.text[:1000],
|
|
)
|
|
resp.raise_for_status()
|
|
|
|
# Check if response is actually JSON before parsing
|
|
content_type = resp.headers.get("content-type", "")
|
|
if "application/json" not in content_type:
|
|
logger.error(
|
|
"[LF] Unexpected response content type from Langflow",
|
|
content_type=content_type,
|
|
status_code=resp.status_code,
|
|
body=resp.text[:1000],
|
|
)
|
|
raise ValueError(
|
|
f"Langflow returned {content_type} instead of JSON. "
|
|
f"This may indicate the ingestion flow failed or the endpoint is incorrect. "
|
|
f"Response preview: {resp.text[:500]}"
|
|
)
|
|
|
|
try:
|
|
resp_json = resp.json()
|
|
except Exception as e:
|
|
logger.error(
|
|
"[LF] Failed to parse run response as JSON",
|
|
body=resp.text[:1000],
|
|
error=str(e),
|
|
)
|
|
|
|
raise
|
|
return resp_json
|
|
|
|
async def upload_and_ingest_file(
|
|
self,
|
|
file_tuple,
|
|
session_id: Optional[str] = None,
|
|
tweaks: Optional[Dict[str, Any]] = None,
|
|
settings: Optional[Dict[str, Any]] = None,
|
|
jwt_token: Optional[str] = None,
|
|
delete_after_ingest: bool = True,
|
|
owner: Optional[str] = None,
|
|
owner_name: Optional[str] = None,
|
|
owner_email: Optional[str] = None,
|
|
connector_type: Optional[str] = None,
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Combined upload, ingest, and delete operation.
|
|
First uploads the file, then runs ingestion on it, then optionally deletes the file.
|
|
|
|
Args:
|
|
file_tuple: File tuple (filename, content, content_type)
|
|
session_id: Optional session ID for the ingestion flow
|
|
tweaks: Optional tweaks for the ingestion flow
|
|
settings: Optional UI settings to convert to component tweaks
|
|
jwt_token: Optional JWT token for authentication
|
|
delete_after_ingest: Whether to delete the file from Langflow after ingestion (default: True)
|
|
|
|
Returns:
|
|
Combined result with upload info, ingestion result, and deletion status
|
|
"""
|
|
logger.debug("[LF] Starting combined upload and ingest operation")
|
|
|
|
# Step 1: Upload the file
|
|
try:
|
|
upload_result = await self.upload_user_file(file_tuple, jwt_token=jwt_token)
|
|
logger.debug(
|
|
"[LF] Upload completed successfully",
|
|
extra={
|
|
"file_id": upload_result.get("id"),
|
|
"file_path": upload_result.get("path"),
|
|
},
|
|
)
|
|
except Exception as e:
|
|
logger.error(
|
|
"[LF] Upload failed during combined operation", extra={"error": str(e)}
|
|
)
|
|
raise Exception(f"Upload failed: {str(e)}")
|
|
|
|
# Step 2: Prepare for ingestion
|
|
file_path = upload_result.get("path")
|
|
if not file_path:
|
|
raise ValueError("Upload successful but no file path returned")
|
|
|
|
# Convert UI settings to component tweaks if provided
|
|
final_tweaks = tweaks.copy() if tweaks else {}
|
|
|
|
if settings:
|
|
logger.debug(
|
|
"[LF] Applying ingestion settings", extra={"settings": settings}
|
|
)
|
|
|
|
# Split Text component tweaks (SplitText-QIKhg)
|
|
if (
|
|
settings.get("chunkSize")
|
|
or settings.get("chunkOverlap")
|
|
or settings.get("separator")
|
|
):
|
|
if "SplitText-QIKhg" not in final_tweaks:
|
|
final_tweaks["SplitText-QIKhg"] = {}
|
|
if settings.get("chunkSize"):
|
|
final_tweaks["SplitText-QIKhg"]["chunk_size"] = settings[
|
|
"chunkSize"
|
|
]
|
|
if settings.get("chunkOverlap"):
|
|
final_tweaks["SplitText-QIKhg"]["chunk_overlap"] = settings[
|
|
"chunkOverlap"
|
|
]
|
|
if settings.get("separator"):
|
|
final_tweaks["SplitText-QIKhg"]["separator"] = settings["separator"]
|
|
|
|
# OpenAI Embeddings component tweaks (OpenAIEmbeddings-joRJ6)
|
|
if settings.get("embeddingModel"):
|
|
if "OpenAIEmbeddings-joRJ6" not in final_tweaks:
|
|
final_tweaks["OpenAIEmbeddings-joRJ6"] = {}
|
|
final_tweaks["OpenAIEmbeddings-joRJ6"]["model"] = settings[
|
|
"embeddingModel"
|
|
]
|
|
|
|
logger.debug(
|
|
"[LF] Final tweaks with settings applied",
|
|
extra={"tweaks": final_tweaks},
|
|
)
|
|
|
|
# Step 3: Run ingestion
|
|
try:
|
|
ingest_result = await self.run_ingestion_flow(
|
|
file_paths=[file_path],
|
|
file_tuples=[file_tuple],
|
|
jwt_token=jwt_token,
|
|
session_id=session_id,
|
|
tweaks=final_tweaks,
|
|
owner=owner,
|
|
owner_name=owner_name,
|
|
owner_email=owner_email,
|
|
connector_type=connector_type,
|
|
)
|
|
logger.debug("[LF] Ingestion completed successfully")
|
|
except Exception as e:
|
|
logger.error(
|
|
"[LF] Ingestion failed during combined operation",
|
|
extra={"error": str(e), "file_path": file_path},
|
|
)
|
|
# Note: We could optionally delete the uploaded file here if ingestion fails
|
|
raise Exception(f"Ingestion failed: {str(e)}")
|
|
|
|
# Step 4: Delete file from Langflow (optional)
|
|
file_id = upload_result.get("id")
|
|
delete_result = None
|
|
delete_error = None
|
|
|
|
if delete_after_ingest and file_id:
|
|
try:
|
|
logger.debug(
|
|
"[LF] Deleting file after successful ingestion",
|
|
extra={"file_id": file_id},
|
|
)
|
|
await self.delete_user_file(file_id)
|
|
delete_result = {"status": "deleted", "file_id": file_id}
|
|
logger.debug("[LF] File deleted successfully")
|
|
except Exception as e:
|
|
delete_error = str(e)
|
|
logger.warning(
|
|
"[LF] Failed to delete file after ingestion",
|
|
extra={"error": delete_error, "file_id": file_id},
|
|
)
|
|
delete_result = {
|
|
"status": "delete_failed",
|
|
"file_id": file_id,
|
|
"error": delete_error,
|
|
}
|
|
|
|
# Return combined result
|
|
result = {
|
|
"status": "success",
|
|
"upload": upload_result,
|
|
"ingestion": ingest_result,
|
|
"message": f"File '{upload_result.get('name')}' uploaded and ingested successfully",
|
|
}
|
|
|
|
if delete_after_ingest:
|
|
result["deletion"] = delete_result
|
|
if delete_result and delete_result.get("status") == "deleted":
|
|
result["message"] += " and cleaned up"
|
|
elif delete_error:
|
|
result["message"] += f" (cleanup warning: {delete_error})"
|
|
|
|
return result
|