* models query combined * make endpoint to handle provider health * provider health banner * update-pdf-to-include-provider-selection (#344) * polishing the error fixing experience * fix agent instructions and up char limit * fix provider * disable tracing in langflow * improve docling serve banner remove false positives * Changed pyproject.toml docling versions * Added another uv lock revision * version bump * unused things and fix bad conflicts * add isFetching to the hook * put back settings for models queries to never cache results * update banner refetching indicator * validate provider settings when saving * fix settings page layout issue * Added retry as false on the get models, to not take a long time --------- Co-authored-by: Mendon Kissling <59585235+mendonk@users.noreply.github.com> Co-authored-by: Mike Fortman <michael.fortman@datastax.com> Co-authored-by: phact <estevezsebastian@gmail.com> Co-authored-by: Lucas Oliveira <lucas.edu.oli@hotmail.com>
944 lines
39 KiB
Python
944 lines
39 KiB
Python
import json
|
|
import platform
|
|
import time
|
|
from starlette.responses import JSONResponse
|
|
from utils.container_utils import transform_localhost_url
|
|
from utils.logging_config import get_logger
|
|
from config.settings import (
|
|
DISABLE_INGEST_WITH_LANGFLOW,
|
|
LANGFLOW_URL,
|
|
LANGFLOW_CHAT_FLOW_ID,
|
|
LANGFLOW_INGEST_FLOW_ID,
|
|
LANGFLOW_PUBLIC_URL,
|
|
LOCALHOST_URL,
|
|
clients,
|
|
get_openrag_config,
|
|
config_manager,
|
|
)
|
|
from api.provider_validation import validate_provider_setup
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
# Docling preset configurations
|
|
def get_docling_preset_configs(table_structure=False, ocr=False, picture_descriptions=False):
|
|
"""Get docling preset configurations based on toggle settings
|
|
|
|
Args:
|
|
table_structure: Enable table structure parsing (default: False)
|
|
ocr: Enable OCR for text extraction from images (default: False)
|
|
picture_descriptions: Enable picture descriptions/captions (default: False)
|
|
"""
|
|
is_macos = platform.system() == "Darwin"
|
|
|
|
config = {
|
|
"do_ocr": ocr,
|
|
"ocr_engine": "ocrmac" if is_macos else "easyocr",
|
|
"do_table_structure": table_structure,
|
|
"do_picture_classification": picture_descriptions,
|
|
"do_picture_description": picture_descriptions,
|
|
"picture_description_local": {
|
|
"repo_id": "HuggingFaceTB/SmolVLM-256M-Instruct",
|
|
"prompt": "Describe this image in a few sentences.",
|
|
}
|
|
}
|
|
|
|
return config
|
|
|
|
|
|
async def get_settings(request, session_manager):
|
|
"""Get application settings"""
|
|
try:
|
|
openrag_config = get_openrag_config()
|
|
|
|
provider_config = openrag_config.provider
|
|
knowledge_config = openrag_config.knowledge
|
|
agent_config = openrag_config.agent
|
|
# Return public settings that are safe to expose to frontend
|
|
settings = {
|
|
"langflow_url": LANGFLOW_URL,
|
|
"flow_id": LANGFLOW_CHAT_FLOW_ID,
|
|
"ingest_flow_id": LANGFLOW_INGEST_FLOW_ID,
|
|
"langflow_public_url": LANGFLOW_PUBLIC_URL,
|
|
"edited": openrag_config.edited,
|
|
# OpenRAG configuration
|
|
"provider": {
|
|
"model_provider": provider_config.model_provider,
|
|
"endpoint": provider_config.endpoint if provider_config.endpoint else None,
|
|
"project_id": provider_config.project_id if provider_config.project_id else None,
|
|
# Note: API key is not exposed for security
|
|
},
|
|
"knowledge": {
|
|
"embedding_model": knowledge_config.embedding_model,
|
|
"chunk_size": knowledge_config.chunk_size,
|
|
"chunk_overlap": knowledge_config.chunk_overlap,
|
|
"table_structure": knowledge_config.table_structure,
|
|
"ocr": knowledge_config.ocr,
|
|
"picture_descriptions": knowledge_config.picture_descriptions,
|
|
},
|
|
"agent": {
|
|
"llm_model": agent_config.llm_model,
|
|
"system_prompt": agent_config.system_prompt,
|
|
},
|
|
"localhost_url": LOCALHOST_URL,
|
|
}
|
|
|
|
# Only expose edit URLs when a public URL is configured
|
|
if LANGFLOW_PUBLIC_URL and LANGFLOW_CHAT_FLOW_ID:
|
|
settings["langflow_edit_url"] = (
|
|
f"{LANGFLOW_PUBLIC_URL.rstrip('/')}/flow/{LANGFLOW_CHAT_FLOW_ID}"
|
|
)
|
|
|
|
if LANGFLOW_PUBLIC_URL and LANGFLOW_INGEST_FLOW_ID:
|
|
settings["langflow_ingest_edit_url"] = (
|
|
f"{LANGFLOW_PUBLIC_URL.rstrip('/')}/flow/{LANGFLOW_INGEST_FLOW_ID}"
|
|
)
|
|
|
|
# Fetch ingestion flow configuration to get actual component defaults
|
|
if LANGFLOW_INGEST_FLOW_ID and openrag_config.edited:
|
|
try:
|
|
response = await clients.langflow_request(
|
|
"GET", f"/api/v1/flows/{LANGFLOW_INGEST_FLOW_ID}"
|
|
)
|
|
if response.status_code == 200:
|
|
flow_data = response.json()
|
|
|
|
# Extract component defaults (ingestion-specific settings only)
|
|
# Start with configured defaults
|
|
ingestion_defaults = {
|
|
"chunkSize": knowledge_config.chunk_size,
|
|
"chunkOverlap": knowledge_config.chunk_overlap,
|
|
"separator": "\\n", # Keep hardcoded for now as it's not in config
|
|
"embeddingModel": knowledge_config.embedding_model,
|
|
}
|
|
|
|
if flow_data.get("data", {}).get("nodes"):
|
|
for node in flow_data["data"]["nodes"]:
|
|
node_template = (
|
|
node.get("data", {}).get("node", {}).get("template", {})
|
|
)
|
|
|
|
# Split Text component (SplitText-QIKhg)
|
|
if node.get("id") == "SplitText-QIKhg":
|
|
if node_template.get("chunk_size", {}).get("value"):
|
|
ingestion_defaults["chunkSize"] = node_template[
|
|
"chunk_size"
|
|
]["value"]
|
|
if node_template.get("chunk_overlap", {}).get("value"):
|
|
ingestion_defaults["chunkOverlap"] = node_template[
|
|
"chunk_overlap"
|
|
]["value"]
|
|
if node_template.get("separator", {}).get("value"):
|
|
ingestion_defaults["separator"] = node_template[
|
|
"separator"
|
|
]["value"]
|
|
|
|
# OpenAI Embeddings component (OpenAIEmbeddings-joRJ6)
|
|
elif node.get("id") == "OpenAIEmbeddings-joRJ6":
|
|
if node_template.get("model", {}).get("value"):
|
|
ingestion_defaults["embeddingModel"] = (
|
|
node_template["model"]["value"]
|
|
)
|
|
|
|
# Note: OpenSearch component settings are not exposed for ingestion
|
|
# (search-related parameters like number_of_results, score_threshold
|
|
# are for retrieval, not ingestion)
|
|
|
|
settings["ingestion_defaults"] = ingestion_defaults
|
|
|
|
except Exception as e:
|
|
logger.warning(f"Failed to fetch ingestion flow defaults: {e}")
|
|
# Continue without ingestion defaults
|
|
|
|
return JSONResponse(settings)
|
|
|
|
except Exception as e:
|
|
return JSONResponse(
|
|
{"error": f"Failed to retrieve settings: {str(e)}"}, status_code=500
|
|
)
|
|
|
|
|
|
async def update_settings(request, session_manager):
|
|
"""Update application settings"""
|
|
try:
|
|
# Get current configuration
|
|
current_config = get_openrag_config()
|
|
|
|
# Check if config is marked as edited
|
|
if not current_config.edited:
|
|
return JSONResponse(
|
|
{
|
|
"error": "Configuration must be marked as edited before updates are allowed"
|
|
},
|
|
status_code=403,
|
|
)
|
|
|
|
# Parse request body
|
|
body = await request.json()
|
|
|
|
# Validate allowed fields
|
|
allowed_fields = {
|
|
"llm_model",
|
|
"system_prompt",
|
|
"chunk_size",
|
|
"chunk_overlap",
|
|
"table_structure",
|
|
"ocr",
|
|
"picture_descriptions",
|
|
"embedding_model",
|
|
"model_provider",
|
|
"api_key",
|
|
"endpoint",
|
|
"project_id",
|
|
}
|
|
|
|
# Check for invalid fields
|
|
invalid_fields = set(body.keys()) - allowed_fields
|
|
if invalid_fields:
|
|
return JSONResponse(
|
|
{
|
|
"error": f"Invalid fields: {', '.join(invalid_fields)}. Allowed fields: {', '.join(allowed_fields)}"
|
|
},
|
|
status_code=400,
|
|
)
|
|
|
|
# Validate types early before modifying config
|
|
if "embedding_model" in body:
|
|
if (
|
|
not isinstance(body["embedding_model"], str)
|
|
or not body["embedding_model"].strip()
|
|
):
|
|
return JSONResponse(
|
|
{"error": "embedding_model must be a non-empty string"},
|
|
status_code=400,
|
|
)
|
|
|
|
if "table_structure" in body:
|
|
if not isinstance(body["table_structure"], bool):
|
|
return JSONResponse(
|
|
{"error": "table_structure must be a boolean"}, status_code=400
|
|
)
|
|
|
|
if "ocr" in body:
|
|
if not isinstance(body["ocr"], bool):
|
|
return JSONResponse(
|
|
{"error": "ocr must be a boolean"}, status_code=400
|
|
)
|
|
|
|
if "picture_descriptions" in body:
|
|
if not isinstance(body["picture_descriptions"], bool):
|
|
return JSONResponse(
|
|
{"error": "picture_descriptions must be a boolean"}, status_code=400
|
|
)
|
|
|
|
if "chunk_size" in body:
|
|
if not isinstance(body["chunk_size"], int) or body["chunk_size"] <= 0:
|
|
return JSONResponse(
|
|
{"error": "chunk_size must be a positive integer"}, status_code=400
|
|
)
|
|
|
|
if "chunk_overlap" in body:
|
|
if not isinstance(body["chunk_overlap"], int) or body["chunk_overlap"] < 0:
|
|
return JSONResponse(
|
|
{"error": "chunk_overlap must be a non-negative integer"},
|
|
status_code=400,
|
|
)
|
|
|
|
if "model_provider" in body:
|
|
if (
|
|
not isinstance(body["model_provider"], str)
|
|
or not body["model_provider"].strip()
|
|
):
|
|
return JSONResponse(
|
|
{"error": "model_provider must be a non-empty string"},
|
|
status_code=400,
|
|
)
|
|
|
|
if "api_key" in body:
|
|
if not isinstance(body["api_key"], str):
|
|
return JSONResponse(
|
|
{"error": "api_key must be a string"}, status_code=400
|
|
)
|
|
|
|
if "endpoint" in body:
|
|
if not isinstance(body["endpoint"], str) or not body["endpoint"].strip():
|
|
return JSONResponse(
|
|
{"error": "endpoint must be a non-empty string"}, status_code=400
|
|
)
|
|
|
|
if "project_id" in body:
|
|
if (
|
|
not isinstance(body["project_id"], str)
|
|
or not body["project_id"].strip()
|
|
):
|
|
return JSONResponse(
|
|
{"error": "project_id must be a non-empty string"}, status_code=400
|
|
)
|
|
|
|
# Validate provider setup if provider-related fields are being updated
|
|
# Do this BEFORE modifying any config
|
|
provider_fields = ["model_provider", "api_key", "endpoint", "project_id", "llm_model", "embedding_model"]
|
|
should_validate = any(field in body for field in provider_fields)
|
|
|
|
if should_validate:
|
|
try:
|
|
logger.info("Running provider validation before modifying config")
|
|
|
|
provider = body.get("model_provider", current_config.provider.model_provider)
|
|
api_key = body.get("api_key") if "api_key" in body and body["api_key"].strip() else current_config.provider.api_key
|
|
endpoint = body.get("endpoint", current_config.provider.endpoint)
|
|
project_id = body.get("project_id", current_config.provider.project_id)
|
|
llm_model = body.get("llm_model", current_config.agent.llm_model)
|
|
embedding_model = body.get("embedding_model", current_config.knowledge.embedding_model)
|
|
|
|
await validate_provider_setup(
|
|
provider=provider,
|
|
api_key=api_key,
|
|
embedding_model=embedding_model,
|
|
llm_model=llm_model,
|
|
endpoint=endpoint,
|
|
project_id=project_id,
|
|
)
|
|
|
|
logger.info(f"Provider validation successful for {provider}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Provider validation failed: {str(e)}")
|
|
return JSONResponse(
|
|
{"error": f"{str(e)}"},
|
|
status_code=400
|
|
)
|
|
|
|
# Update configuration
|
|
# Only reached if validation passed or wasn't needed
|
|
config_updated = False
|
|
|
|
# Update agent settings
|
|
if "llm_model" in body:
|
|
current_config.agent.llm_model = body["llm_model"]
|
|
config_updated = True
|
|
|
|
# Also update the chat flow with the new model
|
|
try:
|
|
flows_service = _get_flows_service()
|
|
await flows_service.update_chat_flow_model(body["llm_model"], current_config.provider.model_provider.lower())
|
|
logger.info(
|
|
f"Successfully updated chat flow model to '{body['llm_model']}'"
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Failed to update chat flow model: {str(e)}")
|
|
# Don't fail the entire settings update if flow update fails
|
|
# The config will still be saved
|
|
|
|
if "system_prompt" in body:
|
|
current_config.agent.system_prompt = body["system_prompt"]
|
|
config_updated = True
|
|
|
|
# Also update the chat flow with the new system prompt
|
|
try:
|
|
flows_service = _get_flows_service()
|
|
await flows_service.update_chat_flow_system_prompt(
|
|
body["system_prompt"],
|
|
current_config.agent.system_prompt
|
|
)
|
|
logger.info(f"Successfully updated chat flow system prompt")
|
|
except Exception as e:
|
|
logger.error(f"Failed to update chat flow system prompt: {str(e)}")
|
|
# Don't fail the entire settings update if flow update fails
|
|
# The config will still be saved
|
|
|
|
# Update knowledge settings
|
|
if "embedding_model" in body:
|
|
new_embedding_model = body["embedding_model"].strip()
|
|
current_config.knowledge.embedding_model = new_embedding_model
|
|
config_updated = True
|
|
|
|
# Also update the ingest flow with the new embedding model
|
|
try:
|
|
flows_service = _get_flows_service()
|
|
await flows_service.update_ingest_flow_embedding_model(
|
|
new_embedding_model,
|
|
current_config.provider.model_provider.lower()
|
|
)
|
|
logger.info(
|
|
f"Successfully updated ingest flow embedding model to '{body['embedding_model'].strip()}'"
|
|
)
|
|
|
|
provider = (
|
|
current_config.provider.model_provider.lower()
|
|
if current_config.provider.model_provider
|
|
else "openai"
|
|
)
|
|
endpoint = current_config.provider.endpoint or None
|
|
llm_model = current_config.agent.llm_model
|
|
|
|
change_result = await flows_service.change_langflow_model_value(
|
|
provider=provider,
|
|
embedding_model=new_embedding_model,
|
|
llm_model=llm_model,
|
|
endpoint=endpoint,
|
|
)
|
|
|
|
if not change_result.get("success", False):
|
|
logger.warning(
|
|
"Change embedding model across flows completed with issues",
|
|
provider=provider,
|
|
embedding_model=new_embedding_model,
|
|
change_result=change_result,
|
|
)
|
|
else:
|
|
logger.info(
|
|
"Successfully updated embedding model across Langflow flows",
|
|
provider=provider,
|
|
embedding_model=new_embedding_model,
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Failed to update ingest flow embedding model: {str(e)}")
|
|
# Don't fail the entire settings update if flow update fails
|
|
# The config will still be saved
|
|
|
|
if "table_structure" in body:
|
|
current_config.knowledge.table_structure = body["table_structure"]
|
|
config_updated = True
|
|
|
|
# Also update the flow with the new docling settings
|
|
try:
|
|
flows_service = _get_flows_service()
|
|
preset_config = get_docling_preset_configs(
|
|
table_structure=body["table_structure"],
|
|
ocr=current_config.knowledge.ocr,
|
|
picture_descriptions=current_config.knowledge.picture_descriptions
|
|
)
|
|
await flows_service.update_flow_docling_preset("custom", preset_config)
|
|
logger.info(f"Successfully updated table_structure setting in flow")
|
|
except Exception as e:
|
|
logger.error(f"Failed to update docling settings in flow: {str(e)}")
|
|
|
|
if "ocr" in body:
|
|
current_config.knowledge.ocr = body["ocr"]
|
|
config_updated = True
|
|
|
|
# Also update the flow with the new docling settings
|
|
try:
|
|
flows_service = _get_flows_service()
|
|
preset_config = get_docling_preset_configs(
|
|
table_structure=current_config.knowledge.table_structure,
|
|
ocr=body["ocr"],
|
|
picture_descriptions=current_config.knowledge.picture_descriptions
|
|
)
|
|
await flows_service.update_flow_docling_preset("custom", preset_config)
|
|
logger.info(f"Successfully updated ocr setting in flow")
|
|
except Exception as e:
|
|
logger.error(f"Failed to update docling settings in flow: {str(e)}")
|
|
|
|
if "picture_descriptions" in body:
|
|
current_config.knowledge.picture_descriptions = body["picture_descriptions"]
|
|
config_updated = True
|
|
|
|
# Also update the flow with the new docling settings
|
|
try:
|
|
flows_service = _get_flows_service()
|
|
preset_config = get_docling_preset_configs(
|
|
table_structure=current_config.knowledge.table_structure,
|
|
ocr=current_config.knowledge.ocr,
|
|
picture_descriptions=body["picture_descriptions"]
|
|
)
|
|
await flows_service.update_flow_docling_preset("custom", preset_config)
|
|
logger.info(f"Successfully updated picture_descriptions setting in flow")
|
|
except Exception as e:
|
|
logger.error(f"Failed to update docling settings in flow: {str(e)}")
|
|
|
|
if "chunk_size" in body:
|
|
current_config.knowledge.chunk_size = body["chunk_size"]
|
|
config_updated = True
|
|
|
|
# Also update the ingest flow with the new chunk size
|
|
try:
|
|
flows_service = _get_flows_service()
|
|
await flows_service.update_ingest_flow_chunk_size(body["chunk_size"])
|
|
logger.info(
|
|
f"Successfully updated ingest flow chunk size to {body['chunk_size']}"
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Failed to update ingest flow chunk size: {str(e)}")
|
|
# Don't fail the entire settings update if flow update fails
|
|
# The config will still be saved
|
|
|
|
if "chunk_overlap" in body:
|
|
current_config.knowledge.chunk_overlap = body["chunk_overlap"]
|
|
config_updated = True
|
|
|
|
# Also update the ingest flow with the new chunk overlap
|
|
try:
|
|
flows_service = _get_flows_service()
|
|
await flows_service.update_ingest_flow_chunk_overlap(
|
|
body["chunk_overlap"]
|
|
)
|
|
logger.info(
|
|
f"Successfully updated ingest flow chunk overlap to {body['chunk_overlap']}"
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Failed to update ingest flow chunk overlap: {str(e)}")
|
|
# Don't fail the entire settings update if flow update fails
|
|
# The config will still be saved
|
|
|
|
# Update provider settings
|
|
if "model_provider" in body:
|
|
current_config.provider.model_provider = body["model_provider"].strip()
|
|
config_updated = True
|
|
|
|
if "api_key" in body:
|
|
# Only update if non-empty string (empty string means keep current value)
|
|
if body["api_key"].strip():
|
|
current_config.provider.api_key = body["api_key"]
|
|
config_updated = True
|
|
|
|
if "endpoint" in body:
|
|
current_config.provider.endpoint = body["endpoint"].strip()
|
|
config_updated = True
|
|
|
|
if "project_id" in body:
|
|
current_config.provider.project_id = body["project_id"].strip()
|
|
config_updated = True
|
|
|
|
if not config_updated:
|
|
return JSONResponse(
|
|
{"error": "No valid fields provided for update"}, status_code=400
|
|
)
|
|
|
|
# Save the updated configuration
|
|
if not config_manager.save_config_file(current_config):
|
|
return JSONResponse(
|
|
{"error": "Failed to save configuration"}, status_code=500
|
|
)
|
|
|
|
# Update Langflow global variables if provider settings changed
|
|
if any(key in body for key in ["model_provider", "api_key", "endpoint", "project_id"]):
|
|
try:
|
|
provider = current_config.provider.model_provider.lower() if current_config.provider.model_provider else "openai"
|
|
|
|
# Set API key for IBM/Watson providers
|
|
if (provider == "watsonx") and "api_key" in body:
|
|
api_key = body["api_key"]
|
|
await clients._create_langflow_global_variable(
|
|
"WATSONX_API_KEY", api_key, modify=True
|
|
)
|
|
logger.info("Set WATSONX_API_KEY global variable in Langflow")
|
|
|
|
# Set project ID for IBM/Watson providers
|
|
if (provider == "watsonx") and "project_id" in body:
|
|
project_id = body["project_id"]
|
|
await clients._create_langflow_global_variable(
|
|
"WATSONX_PROJECT_ID", project_id, modify=True
|
|
)
|
|
logger.info("Set WATSONX_PROJECT_ID global variable in Langflow")
|
|
|
|
# Set API key for OpenAI provider
|
|
if provider == "openai" and "api_key" in body:
|
|
api_key = body["api_key"]
|
|
await clients._create_langflow_global_variable(
|
|
"OPENAI_API_KEY", api_key, modify=True
|
|
)
|
|
logger.info("Set OPENAI_API_KEY global variable in Langflow")
|
|
|
|
# Set base URL for Ollama provider
|
|
if provider == "ollama" and "endpoint" in body:
|
|
endpoint = transform_localhost_url(body["endpoint"])
|
|
await clients._create_langflow_global_variable(
|
|
"OLLAMA_BASE_URL", endpoint, modify=True
|
|
)
|
|
logger.info("Set OLLAMA_BASE_URL global variable in Langflow")
|
|
|
|
# Update model values across flows if provider changed
|
|
if "model_provider" in body:
|
|
flows_service = _get_flows_service()
|
|
await flows_service.change_langflow_model_value(
|
|
provider,
|
|
current_config.knowledge.embedding_model,
|
|
current_config.agent.llm_model,
|
|
current_config.provider.endpoint,
|
|
)
|
|
logger.info(f"Successfully updated Langflow flows for provider {provider}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to update Langflow settings: {str(e)}")
|
|
# Don't fail the entire settings update if Langflow update fails
|
|
# The config was still saved
|
|
|
|
logger.info(
|
|
"Configuration updated successfully", updated_fields=list(body.keys())
|
|
)
|
|
return JSONResponse({"message": "Configuration updated successfully"})
|
|
|
|
except Exception as e:
|
|
logger.error("Failed to update settings", error=str(e))
|
|
return JSONResponse(
|
|
{"error": f"Failed to update settings: {str(e)}"}, status_code=500
|
|
)
|
|
|
|
|
|
async def onboarding(request, flows_service):
|
|
"""Handle onboarding configuration setup"""
|
|
try:
|
|
# Get current configuration
|
|
current_config = get_openrag_config()
|
|
|
|
# Warn if config was already edited (onboarding being re-run)
|
|
if current_config.edited:
|
|
logger.warning(
|
|
"Onboarding is being run although configuration was already edited before"
|
|
)
|
|
|
|
# Parse request body
|
|
body = await request.json()
|
|
|
|
# Validate allowed fields
|
|
allowed_fields = {
|
|
"model_provider",
|
|
"api_key",
|
|
"embedding_model",
|
|
"llm_model",
|
|
"sample_data",
|
|
"endpoint",
|
|
"project_id",
|
|
}
|
|
|
|
# Check for invalid fields
|
|
invalid_fields = set(body.keys()) - allowed_fields
|
|
if invalid_fields:
|
|
return JSONResponse(
|
|
{
|
|
"error": f"Invalid fields: {', '.join(invalid_fields)}. Allowed fields: {', '.join(allowed_fields)}"
|
|
},
|
|
status_code=400,
|
|
)
|
|
|
|
# Update configuration
|
|
config_updated = False
|
|
|
|
# Update provider settings
|
|
if "model_provider" in body:
|
|
if (
|
|
not isinstance(body["model_provider"], str)
|
|
or not body["model_provider"].strip()
|
|
):
|
|
return JSONResponse(
|
|
{"error": "model_provider must be a non-empty string"},
|
|
status_code=400,
|
|
)
|
|
current_config.provider.model_provider = body["model_provider"].strip()
|
|
config_updated = True
|
|
|
|
if "api_key" in body:
|
|
if not isinstance(body["api_key"], str):
|
|
return JSONResponse(
|
|
{"error": "api_key must be a string"}, status_code=400
|
|
)
|
|
current_config.provider.api_key = body["api_key"]
|
|
config_updated = True
|
|
|
|
# Update knowledge settings
|
|
if "embedding_model" in body and not DISABLE_INGEST_WITH_LANGFLOW:
|
|
if (
|
|
not isinstance(body["embedding_model"], str)
|
|
or not body["embedding_model"].strip()
|
|
):
|
|
return JSONResponse(
|
|
{"error": "embedding_model must be a non-empty string"},
|
|
status_code=400,
|
|
)
|
|
current_config.knowledge.embedding_model = body["embedding_model"].strip()
|
|
config_updated = True
|
|
|
|
# Update agent settings
|
|
if "llm_model" in body:
|
|
if not isinstance(body["llm_model"], str) or not body["llm_model"].strip():
|
|
return JSONResponse(
|
|
{"error": "llm_model must be a non-empty string"}, status_code=400
|
|
)
|
|
current_config.agent.llm_model = body["llm_model"].strip()
|
|
config_updated = True
|
|
|
|
if "endpoint" in body:
|
|
if not isinstance(body["endpoint"], str) or not body["endpoint"].strip():
|
|
return JSONResponse(
|
|
{"error": "endpoint must be a non-empty string"}, status_code=400
|
|
)
|
|
current_config.provider.endpoint = body["endpoint"].strip()
|
|
config_updated = True
|
|
|
|
if "project_id" in body:
|
|
if (
|
|
not isinstance(body["project_id"], str)
|
|
or not body["project_id"].strip()
|
|
):
|
|
return JSONResponse(
|
|
{"error": "project_id must be a non-empty string"}, status_code=400
|
|
)
|
|
current_config.provider.project_id = body["project_id"].strip()
|
|
config_updated = True
|
|
|
|
# Handle sample_data
|
|
should_ingest_sample_data = False
|
|
if "sample_data" in body:
|
|
if not isinstance(body["sample_data"], bool):
|
|
return JSONResponse(
|
|
{"error": "sample_data must be a boolean value"}, status_code=400
|
|
)
|
|
should_ingest_sample_data = body["sample_data"]
|
|
|
|
if not config_updated:
|
|
return JSONResponse(
|
|
{"error": "No valid fields provided for update"}, status_code=400
|
|
)
|
|
|
|
# Validate provider setup before initializing OpenSearch index
|
|
try:
|
|
from api.provider_validation import validate_provider_setup
|
|
|
|
provider = current_config.provider.model_provider.lower() if current_config.provider.model_provider else "openai"
|
|
|
|
logger.info(f"Validating provider setup for {provider}")
|
|
await validate_provider_setup(
|
|
provider=provider,
|
|
api_key=current_config.provider.api_key,
|
|
embedding_model=current_config.knowledge.embedding_model,
|
|
llm_model=current_config.agent.llm_model,
|
|
endpoint=current_config.provider.endpoint,
|
|
project_id=current_config.provider.project_id,
|
|
)
|
|
logger.info(f"Provider setup validation completed successfully for {provider}")
|
|
except Exception as e:
|
|
logger.error(f"Provider validation failed: {str(e)}")
|
|
return JSONResponse(
|
|
{"error": str(e)},
|
|
status_code=400,
|
|
)
|
|
|
|
# Initialize the OpenSearch index now that we have the embedding model configured
|
|
try:
|
|
# Import here to avoid circular imports
|
|
from main import init_index
|
|
|
|
logger.info(
|
|
"Initializing OpenSearch index after onboarding configuration"
|
|
)
|
|
await init_index()
|
|
logger.info("OpenSearch index initialization completed successfully")
|
|
except Exception as e:
|
|
if isinstance(e, ValueError):
|
|
logger.error(
|
|
"Failed to initialize OpenSearch index after onboarding",
|
|
error=str(e),
|
|
)
|
|
return JSONResponse(
|
|
{
|
|
"error": str(e),
|
|
"edited": True,
|
|
},
|
|
status_code=400,
|
|
)
|
|
logger.error(
|
|
"Failed to initialize OpenSearch index after onboarding",
|
|
error=str(e),
|
|
)
|
|
# Don't fail the entire onboarding process if index creation fails
|
|
# The application can still work, but document operations may fail
|
|
|
|
# Save the updated configuration (this will mark it as edited)
|
|
|
|
# If model_provider was updated, assign the new provider to flows
|
|
if "model_provider" in body:
|
|
provider = body["model_provider"].strip().lower()
|
|
try:
|
|
flow_result = await flows_service.assign_model_provider(provider)
|
|
|
|
if flow_result.get("success"):
|
|
logger.info(
|
|
f"Successfully assigned {provider} to flows",
|
|
flow_result=flow_result,
|
|
)
|
|
else:
|
|
logger.warning(
|
|
f"Failed to assign {provider} to flows",
|
|
flow_result=flow_result,
|
|
)
|
|
# Continue even if flow assignment fails - configuration was still saved
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
"Error assigning model provider to flows",
|
|
provider=provider,
|
|
error=str(e),
|
|
)
|
|
raise
|
|
|
|
# Set Langflow global variables based on provider
|
|
try:
|
|
# Set API key for IBM/Watson providers
|
|
if (provider == "watsonx") and "api_key" in body:
|
|
api_key = body["api_key"]
|
|
await clients._create_langflow_global_variable(
|
|
"WATSONX_API_KEY", api_key, modify=True
|
|
)
|
|
logger.info("Set WATSONX_API_KEY global variable in Langflow")
|
|
|
|
# Set project ID for IBM/Watson providers
|
|
if (provider == "watsonx") and "project_id" in body:
|
|
project_id = body["project_id"]
|
|
await clients._create_langflow_global_variable(
|
|
"WATSONX_PROJECT_ID", project_id, modify=True
|
|
)
|
|
logger.info(
|
|
"Set WATSONX_PROJECT_ID global variable in Langflow"
|
|
)
|
|
|
|
# Set API key for OpenAI provider
|
|
if provider == "openai" and "api_key" in body:
|
|
api_key = body["api_key"]
|
|
await clients._create_langflow_global_variable(
|
|
"OPENAI_API_KEY", api_key, modify=True
|
|
)
|
|
logger.info("Set OPENAI_API_KEY global variable in Langflow")
|
|
|
|
# Set base URL for Ollama provider
|
|
if provider == "ollama" and "endpoint" in body:
|
|
endpoint = transform_localhost_url(body["endpoint"])
|
|
|
|
await clients._create_langflow_global_variable(
|
|
"OLLAMA_BASE_URL", endpoint, modify=True
|
|
)
|
|
logger.info("Set OLLAMA_BASE_URL global variable in Langflow")
|
|
|
|
await flows_service.change_langflow_model_value(
|
|
provider,
|
|
body.get("embedding_model"),
|
|
body.get("llm_model"),
|
|
body.get("endpoint"),
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
"Failed to set Langflow global variables",
|
|
provider=provider,
|
|
error=str(e),
|
|
)
|
|
raise
|
|
|
|
# Handle sample data ingestion if requested
|
|
if should_ingest_sample_data:
|
|
try:
|
|
# Import the function here to avoid circular imports
|
|
from main import ingest_default_documents_when_ready
|
|
|
|
# Get services from the current app state
|
|
# We need to access the app instance to get services
|
|
app = request.scope.get("app")
|
|
if app and hasattr(app.state, "services"):
|
|
services = app.state.services
|
|
logger.info(
|
|
"Starting sample data ingestion as requested in onboarding"
|
|
)
|
|
await ingest_default_documents_when_ready(services)
|
|
logger.info("Sample data ingestion completed successfully")
|
|
else:
|
|
logger.error(
|
|
"Could not access services for sample data ingestion"
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
"Failed to complete sample data ingestion", error=str(e)
|
|
)
|
|
# Don't fail the entire onboarding process if sample data fails
|
|
if config_manager.save_config_file(current_config):
|
|
updated_fields = [
|
|
k for k in body.keys() if k != "sample_data"
|
|
] # Exclude sample_data from log
|
|
logger.info(
|
|
"Onboarding configuration updated successfully",
|
|
updated_fields=updated_fields,
|
|
)
|
|
|
|
else:
|
|
return JSONResponse(
|
|
{"error": "Failed to save configuration"}, status_code=500
|
|
)
|
|
|
|
return JSONResponse(
|
|
{
|
|
"message": "Onboarding configuration updated successfully",
|
|
"edited": True, # Confirm that config is now marked as edited
|
|
"sample_data_ingested": should_ingest_sample_data,
|
|
}
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error("Failed to update onboarding settings", error=str(e))
|
|
return JSONResponse(
|
|
{"error": str(e)},
|
|
status_code=500,
|
|
)
|
|
|
|
|
|
def _get_flows_service():
|
|
"""Helper function to get flows service instance"""
|
|
from services.flows_service import FlowsService
|
|
|
|
return FlowsService()
|
|
|
|
|
|
async def update_docling_preset(request, session_manager):
|
|
"""Update docling settings in the ingest flow - deprecated endpoint, use /settings instead"""
|
|
try:
|
|
# Parse request body
|
|
body = await request.json()
|
|
|
|
# Support old preset-based API for backwards compatibility
|
|
if "preset" in body:
|
|
# Map old presets to new toggle settings
|
|
preset_map = {
|
|
"standard": {"table_structure": False, "ocr": False, "picture_descriptions": False},
|
|
"ocr": {"table_structure": False, "ocr": True, "picture_descriptions": False},
|
|
"picture_description": {"table_structure": False, "ocr": True, "picture_descriptions": True},
|
|
"VLM": {"table_structure": False, "ocr": False, "picture_descriptions": False},
|
|
}
|
|
|
|
preset = body["preset"]
|
|
if preset not in preset_map:
|
|
return JSONResponse(
|
|
{"error": f"Invalid preset '{preset}'. Valid presets: {', '.join(preset_map.keys())}"},
|
|
status_code=400,
|
|
)
|
|
|
|
settings = preset_map[preset]
|
|
else:
|
|
# Support new toggle-based API
|
|
settings = {
|
|
"table_structure": body.get("table_structure", False),
|
|
"ocr": body.get("ocr", False),
|
|
"picture_descriptions": body.get("picture_descriptions", False),
|
|
}
|
|
|
|
# Get the preset configuration
|
|
preset_config = get_docling_preset_configs(**settings)
|
|
|
|
# Use the helper function to update the flow
|
|
flows_service = _get_flows_service()
|
|
await flows_service.update_flow_docling_preset("custom", preset_config)
|
|
|
|
logger.info(f"Successfully updated docling settings in ingest flow")
|
|
|
|
return JSONResponse(
|
|
{
|
|
"message": f"Successfully updated docling settings",
|
|
"settings": settings,
|
|
"preset_config": preset_config,
|
|
}
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error("Failed to update docling settings", error=str(e))
|
|
return JSONResponse(
|
|
{"error": f"Failed to update docling settings: {str(e)}"}, status_code=500
|
|
)
|