openrag/src/utils/embeddings.py
Lucas Oliveira e0015f35db
fix: update onboarding design, make opensearch index be initialized after onboarding, make flow reset change the models to the provider chosen (#100)
* changed tooltip stype

* added start on label wrapper

* changed switch to checkbox on openai onboarding and changed copies

* made border be red when api key is invalid

* Added embedding configuration after onboarding

* changed openrag ingest docling to have same embedding model component as other flows

* changed flows service to get flow by id, not by path

* modify reset_langflow to also put right embedding model

* added endpoint and project id to provider config

* added replacing the model with the provider model when resetting

* Moved consts to settings.py

* raise when flow_id is not found
2025-09-26 12:04:17 -03:00

64 lines
No EOL
2.4 KiB
Python

from config.settings import OLLAMA_EMBEDDING_DIMENSIONS, OPENAI_EMBEDDING_DIMENSIONS, VECTOR_DIM, WATSONX_EMBEDDING_DIMENSIONS
from utils.logging_config import get_logger
logger = get_logger(__name__)
def get_embedding_dimensions(model_name: str) -> int:
"""Get the embedding dimensions for a given model name."""
# Check all model dictionaries
all_models = {**OPENAI_EMBEDDING_DIMENSIONS, **OLLAMA_EMBEDDING_DIMENSIONS, **WATSONX_EMBEDDING_DIMENSIONS}
if model_name in all_models:
dimensions = all_models[model_name]
logger.info(f"Found dimensions for model '{model_name}': {dimensions}")
return dimensions
logger.warning(
f"Unknown embedding model '{model_name}', using default dimensions: {VECTOR_DIM}"
)
return VECTOR_DIM
def create_dynamic_index_body(embedding_model: str) -> dict:
"""Create a dynamic index body configuration based on the embedding model."""
dimensions = get_embedding_dimensions(embedding_model)
return {
"settings": {
"index": {"knn": True},
"number_of_shards": 1,
"number_of_replicas": 1,
},
"mappings": {
"properties": {
"document_id": {"type": "keyword"},
"filename": {"type": "keyword"},
"mimetype": {"type": "keyword"},
"page": {"type": "integer"},
"text": {"type": "text"},
"chunk_embedding": {
"type": "knn_vector",
"dimension": dimensions,
"method": {
"name": "disk_ann",
"engine": "jvector",
"space_type": "l2",
"parameters": {"ef_construction": 100, "m": 16},
},
},
"source_url": {"type": "keyword"},
"connector_type": {"type": "keyword"},
"owner": {"type": "keyword"},
"allowed_users": {"type": "keyword"},
"allowed_groups": {"type": "keyword"},
"user_permissions": {"type": "object"},
"group_permissions": {"type": "object"},
"created_time": {"type": "date"},
"modified_time": {"type": "date"},
"indexed_time": {"type": "date"},
"metadata": {"type": "object"},
}
},
}