openrag/src/agent.py
2025-08-27 23:09:48 -04:00

352 lines
No EOL
16 KiB
Python

# User-scoped conversation state - keyed by user_id -> response_id -> conversation
user_conversations = {} # user_id -> {response_id: {"messages": [...], "previous_response_id": parent_id, "created_at": timestamp, "last_activity": timestamp}}
def get_user_conversations(user_id: str):
"""Get all conversations for a user"""
if user_id not in user_conversations:
user_conversations[user_id] = {}
return user_conversations[user_id]
def get_conversation_thread(user_id: str, previous_response_id: str = None):
"""Get or create a specific conversation thread"""
conversations = get_user_conversations(user_id)
if previous_response_id and previous_response_id in conversations:
# Update last activity and return existing conversation
conversations[previous_response_id]["last_activity"] = __import__('datetime').datetime.now()
return conversations[previous_response_id]
# Create new conversation thread
from datetime import datetime
new_conversation = {
"messages": [{"role": "system", "content": "You are a helpful assistant. Always use the search_tools to answer questions."}],
"previous_response_id": previous_response_id, # Parent response_id for branching
"created_at": datetime.now(),
"last_activity": datetime.now()
}
return new_conversation
def store_conversation_thread(user_id: str, response_id: str, conversation_state: dict):
"""Store a conversation thread with its response_id"""
conversations = get_user_conversations(user_id)
conversations[response_id] = conversation_state
# Legacy function for backward compatibility
def get_user_conversation(user_id: str):
"""Get the most recent conversation for a user (for backward compatibility)"""
conversations = get_user_conversations(user_id)
if not conversations:
return get_conversation_thread(user_id)
# Return the most recently active conversation
latest_conversation = max(conversations.values(), key=lambda c: c["last_activity"])
return latest_conversation
# Generic async response function for streaming
async def async_response_stream(client, prompt: str, model: str, extra_headers: dict = None, previous_response_id: str = None, log_prefix: str = "response"):
print(f"user ==> {prompt}")
try:
# Build request parameters
request_params = {
"model": model,
"input": prompt,
"stream": True,
"include": ["tool_call.results"]
}
if previous_response_id is not None:
request_params["previous_response_id"] = previous_response_id
if "x-api-key" not in client.default_headers:
if hasattr(client, 'api_key') and extra_headers is not None:
extra_headers["x-api-key"] = client.api_key
if extra_headers:
request_params["extra_headers"] = extra_headers
response = await client.responses.create(**request_params)
full_response = ""
chunk_count = 0
async for chunk in response:
chunk_count += 1
print(f"[DEBUG] Chunk {chunk_count}: {chunk}")
# Yield the raw event as JSON for the UI to process
import json
# Also extract text content for logging
if hasattr(chunk, 'output_text') and chunk.output_text:
full_response += chunk.output_text
elif hasattr(chunk, 'delta') and chunk.delta:
# Handle delta properly - it might be a dict or string
if isinstance(chunk.delta, dict):
delta_text = chunk.delta.get('content', '') or chunk.delta.get('text', '') or str(chunk.delta)
else:
delta_text = str(chunk.delta)
full_response += delta_text
# Send the raw event as JSON followed by newline for easy parsing
try:
# Try to serialize the chunk object
if hasattr(chunk, 'model_dump'):
# Pydantic model
chunk_data = chunk.model_dump()
elif hasattr(chunk, '__dict__'):
chunk_data = chunk.__dict__
else:
chunk_data = str(chunk)
yield (json.dumps(chunk_data, default=str) + '\n').encode('utf-8')
except Exception as e:
# Fallback to string representation
print(f"[DEBUG] JSON serialization failed: {e}")
yield (json.dumps({"error": f"Serialization failed: {e}", "raw": str(chunk)}) + '\n').encode('utf-8')
print(f"[DEBUG] Stream complete. Total chunks: {chunk_count}")
print(f"{log_prefix} ==> {full_response}")
except Exception as e:
print(f"[ERROR] Exception in streaming: {e}")
import traceback
traceback.print_exc()
raise
# Generic async response function for non-streaming
async def async_response(client, prompt: str, model: str, extra_headers: dict = None, previous_response_id: str = None, log_prefix: str = "response"):
print(f"user ==> {prompt}")
# Build request parameters
request_params = {
"model": model,
"input": prompt,
"stream": False,
"include": ["tool_call.results"]
}
if previous_response_id is not None:
request_params["previous_response_id"] = previous_response_id
if extra_headers:
request_params["extra_headers"] = extra_headers
response = await client.responses.create(**request_params)
response_text = response.output_text
print(f"{log_prefix} ==> {response_text}")
# Extract and store response_id if available
response_id = getattr(response, 'id', None) or getattr(response, 'response_id', None)
return response_text, response_id
# Unified streaming function for both chat and langflow
async def async_stream(client, prompt: str, model: str, extra_headers: dict = None, previous_response_id: str = None, log_prefix: str = "response"):
async for chunk in async_response_stream(client, prompt, model, extra_headers=extra_headers, previous_response_id=previous_response_id, log_prefix=log_prefix):
yield chunk
# Async langflow function (non-streaming only)
async def async_langflow(langflow_client, flow_id: str, prompt: str, extra_headers: dict = None, previous_response_id: str = None):
response_text, response_id = await async_response(langflow_client, prompt, flow_id, extra_headers=extra_headers, previous_response_id=previous_response_id, log_prefix="langflow")
return response_text, response_id
# Async langflow function for streaming (alias for compatibility)
async def async_langflow_stream(langflow_client, flow_id: str, prompt: str, extra_headers: dict = None, previous_response_id: str = None):
print(f"[DEBUG] Starting langflow stream for prompt: {prompt}")
try:
async for chunk in async_stream(langflow_client, prompt, flow_id, extra_headers=extra_headers, previous_response_id=previous_response_id, log_prefix="langflow"):
print(f"[DEBUG] Yielding chunk from langflow_stream: {chunk[:100]}...")
yield chunk
print(f"[DEBUG] Langflow stream completed")
except Exception as e:
print(f"[ERROR] Exception in langflow_stream: {e}")
import traceback
traceback.print_exc()
raise
# Async chat function (non-streaming only)
async def async_chat(async_client, prompt: str, user_id: str, model: str = "gpt-4.1-mini", previous_response_id: str = None):
print(f"[DEBUG] async_chat called with user_id: {user_id}, previous_response_id: {previous_response_id}")
# Get the specific conversation thread (or create new one)
conversation_state = get_conversation_thread(user_id, previous_response_id)
print(f"[DEBUG] Got conversation_state with {len(conversation_state['messages'])} messages")
# Add user message to conversation with timestamp
from datetime import datetime
user_message = {
"role": "user",
"content": prompt,
"timestamp": datetime.now()
}
conversation_state["messages"].append(user_message)
print(f"[DEBUG] Added user message, now {len(conversation_state['messages'])} messages")
response_text, response_id = await async_response(async_client, prompt, model, previous_response_id=previous_response_id, log_prefix="agent")
print(f"[DEBUG] Got response_text: {response_text[:50]}..., response_id: {response_id}")
# Add assistant response to conversation with response_id and timestamp
assistant_message = {
"role": "assistant",
"content": response_text,
"response_id": response_id,
"timestamp": datetime.now()
}
conversation_state["messages"].append(assistant_message)
print(f"[DEBUG] Added assistant message, now {len(conversation_state['messages'])} messages")
# Store the conversation thread with its response_id
if response_id:
conversation_state["last_activity"] = datetime.now()
store_conversation_thread(user_id, response_id, conversation_state)
print(f"[DEBUG] Stored conversation thread for user {user_id} with response_id: {response_id}")
# Debug: Check what's in user_conversations now
conversations = get_user_conversations(user_id)
print(f"[DEBUG] user_conversations now has {len(conversations)} conversations: {list(conversations.keys())}")
else:
print(f"[DEBUG] WARNING: No response_id received, conversation not stored!")
return response_text, response_id
# Async chat function for streaming (alias for compatibility)
async def async_chat_stream(async_client, prompt: str, user_id: str, model: str = "gpt-4.1-mini", previous_response_id: str = None):
# Get the specific conversation thread (or create new one)
conversation_state = get_conversation_thread(user_id, previous_response_id)
# Add user message to conversation with timestamp
from datetime import datetime
user_message = {
"role": "user",
"content": prompt,
"timestamp": datetime.now()
}
conversation_state["messages"].append(user_message)
full_response = ""
response_id = None
async for chunk in async_stream(async_client, prompt, model, previous_response_id=previous_response_id, log_prefix="agent"):
# Extract text content to build full response for history
try:
import json
chunk_data = json.loads(chunk.decode('utf-8'))
if 'delta' in chunk_data and 'content' in chunk_data['delta']:
full_response += chunk_data['delta']['content']
# Extract response_id from chunk
if 'id' in chunk_data:
response_id = chunk_data['id']
elif 'response_id' in chunk_data:
response_id = chunk_data['response_id']
except:
pass
yield chunk
# Add the complete assistant response to message history with response_id and timestamp
if full_response:
assistant_message = {
"role": "assistant",
"content": full_response,
"response_id": response_id,
"timestamp": datetime.now()
}
conversation_state["messages"].append(assistant_message)
# Store the conversation thread with its response_id
if response_id:
conversation_state["last_activity"] = datetime.now()
store_conversation_thread(user_id, response_id, conversation_state)
print(f"Stored conversation thread for user {user_id} with response_id: {response_id}")
# Async langflow function with conversation storage (non-streaming)
async def async_langflow_chat(langflow_client, flow_id: str, prompt: str, user_id: str, extra_headers: dict = None, previous_response_id: str = None):
print(f"[DEBUG] async_langflow_chat called with user_id: {user_id}, previous_response_id: {previous_response_id}")
# Get the specific conversation thread (or create new one)
conversation_state = get_conversation_thread(user_id, previous_response_id)
print(f"[DEBUG] Got langflow conversation_state with {len(conversation_state['messages'])} messages")
# Add user message to conversation with timestamp
from datetime import datetime
user_message = {
"role": "user",
"content": prompt,
"timestamp": datetime.now()
}
conversation_state["messages"].append(user_message)
print(f"[DEBUG] Added user message to langflow, now {len(conversation_state['messages'])} messages")
response_text, response_id = await async_response(langflow_client, prompt, flow_id, extra_headers=extra_headers, previous_response_id=previous_response_id, log_prefix="langflow")
print(f"[DEBUG] Got langflow response_text: {response_text[:50]}..., response_id: {response_id}")
# Add assistant response to conversation with response_id and timestamp
assistant_message = {
"role": "assistant",
"content": response_text,
"response_id": response_id,
"timestamp": datetime.now()
}
conversation_state["messages"].append(assistant_message)
print(f"[DEBUG] Added assistant message to langflow, now {len(conversation_state['messages'])} messages")
# Store the conversation thread with its response_id
if response_id:
conversation_state["last_activity"] = datetime.now()
store_conversation_thread(user_id, response_id, conversation_state)
print(f"[DEBUG] Stored langflow conversation thread for user {user_id} with response_id: {response_id}")
# Debug: Check what's in user_conversations now
conversations = get_user_conversations(user_id)
print(f"[DEBUG] user_conversations now has {len(conversations)} conversations: {list(conversations.keys())}")
else:
print(f"[DEBUG] WARNING: No response_id received from langflow, conversation not stored!")
return response_text, response_id
# Async langflow function with conversation storage (streaming)
async def async_langflow_chat_stream(langflow_client, flow_id: str, prompt: str, user_id: str, extra_headers: dict = None, previous_response_id: str = None):
print(f"[DEBUG] async_langflow_chat_stream called with user_id: {user_id}, previous_response_id: {previous_response_id}")
# Get the specific conversation thread (or create new one)
conversation_state = get_conversation_thread(user_id, previous_response_id)
# Add user message to conversation with timestamp
from datetime import datetime
user_message = {
"role": "user",
"content": prompt,
"timestamp": datetime.now()
}
conversation_state["messages"].append(user_message)
full_response = ""
response_id = None
async for chunk in async_stream(langflow_client, prompt, flow_id, extra_headers=extra_headers, previous_response_id=previous_response_id, log_prefix="langflow"):
# Extract text content to build full response for history
try:
import json
chunk_data = json.loads(chunk.decode('utf-8'))
if 'delta' in chunk_data and 'content' in chunk_data['delta']:
full_response += chunk_data['delta']['content']
# Extract response_id from chunk
if 'id' in chunk_data:
response_id = chunk_data['id']
elif 'response_id' in chunk_data:
response_id = chunk_data['response_id']
except:
pass
yield chunk
# Add the complete assistant response to message history with response_id and timestamp
if full_response:
assistant_message = {
"role": "assistant",
"content": full_response,
"response_id": response_id,
"timestamp": datetime.now()
}
conversation_state["messages"].append(assistant_message)
# Store the conversation thread with its response_id
if response_id:
conversation_state["last_activity"] = datetime.now()
store_conversation_thread(user_id, response_id, conversation_state)
print(f"[DEBUG] Stored langflow conversation thread for user {user_id} with response_id: {response_id}")