openrag/src/services/flows_service.py
2025-11-19 16:18:26 -03:00

1023 lines
42 KiB
Python

from config.settings import (
AGENT_COMPONENT_DISPLAY_NAME,
DISABLE_INGEST_WITH_LANGFLOW,
LANGFLOW_URL_INGEST_FLOW_ID,
NUDGES_FLOW_ID,
LANGFLOW_URL,
LANGFLOW_CHAT_FLOW_ID,
LANGFLOW_INGEST_FLOW_ID,
OLLAMA_LLM_TEXT_COMPONENT_PATH,
OPENAI_EMBEDDING_COMPONENT_DISPLAY_NAME,
OPENAI_LLM_COMPONENT_DISPLAY_NAME,
WATSONX_LLM_TEXT_COMPONENT_PATH,
clients,
WATSONX_LLM_COMPONENT_PATH,
WATSONX_EMBEDDING_COMPONENT_PATH,
OLLAMA_LLM_COMPONENT_PATH,
OLLAMA_EMBEDDING_COMPONENT_PATH,
WATSONX_EMBEDDING_COMPONENT_DISPLAY_NAME,
WATSONX_LLM_COMPONENT_DISPLAY_NAME,
OLLAMA_EMBEDDING_COMPONENT_DISPLAY_NAME,
OLLAMA_LLM_COMPONENT_DISPLAY_NAME,
get_openrag_config,
)
import json
import os
import re
from utils.logging_config import get_logger
logger = get_logger(__name__)
class FlowsService:
def __init__(self):
# Cache for flow file mappings to avoid repeated filesystem scans
self._flow_file_cache = {}
def _get_flows_directory(self):
"""Get the flows directory path"""
current_file_dir = os.path.dirname(os.path.abspath(__file__)) # src/services/
src_dir = os.path.dirname(current_file_dir) # src/
project_root = os.path.dirname(src_dir) # project root
return os.path.join(project_root, "flows")
def _find_flow_file_by_id(self, flow_id: str):
"""
Scan the flows directory and find the JSON file that contains the specified flow ID.
Args:
flow_id: The flow ID to search for
Returns:
str: The path to the flow file, or None if not found
"""
if not flow_id:
raise ValueError("flow_id is required")
# Check cache first
if flow_id in self._flow_file_cache:
cached_path = self._flow_file_cache[flow_id]
if os.path.exists(cached_path):
return cached_path
else:
# Remove stale cache entry
del self._flow_file_cache[flow_id]
flows_dir = self._get_flows_directory()
if not os.path.exists(flows_dir):
logger.warning(f"Flows directory not found: {flows_dir}")
return None
# Scan all JSON files in the flows directory
try:
for filename in os.listdir(flows_dir):
if not filename.endswith(".json"):
continue
file_path = os.path.join(flows_dir, filename)
try:
with open(file_path, "r") as f:
flow_data = json.load(f)
# Check if this file contains the flow we're looking for
if flow_data.get("id") == flow_id:
# Cache the result
self._flow_file_cache[flow_id] = file_path
logger.info(f"Found flow {flow_id} in file: {filename}")
return file_path
except (json.JSONDecodeError, FileNotFoundError) as e:
logger.warning(f"Error reading flow file {filename}: {e}")
continue
except Exception as e:
logger.error(f"Error scanning flows directory: {e}")
return None
logger.warning(f"Flow with ID {flow_id} not found in flows directory")
return None
async def reset_langflow_flow(self, flow_type: str):
"""Reset a Langflow flow by uploading the corresponding JSON file
Args:
flow_type: Either 'nudges', 'retrieval', or 'ingest'
Returns:
dict: Success/error response
"""
if not LANGFLOW_URL:
raise ValueError("LANGFLOW_URL environment variable is required")
# Determine flow ID based on type
if flow_type == "nudges":
flow_id = NUDGES_FLOW_ID
elif flow_type == "retrieval":
flow_id = LANGFLOW_CHAT_FLOW_ID
elif flow_type == "ingest":
flow_id = LANGFLOW_INGEST_FLOW_ID
elif flow_type == "url_ingest":
flow_id = LANGFLOW_URL_INGEST_FLOW_ID
else:
raise ValueError(
"flow_type must be either 'nudges', 'retrieval', 'ingest', or 'url_ingest'"
)
if not flow_id:
raise ValueError(f"Flow ID not configured for flow_type '{flow_type}'")
# Dynamically find the flow file by ID
flow_path = self._find_flow_file_by_id(flow_id)
if not flow_path:
raise FileNotFoundError(f"Flow file not found for flow ID: {flow_id}")
# Load flow JSON file
try:
with open(flow_path, "r") as f:
flow_data = json.load(f)
logger.info(
f"Successfully loaded flow data for {flow_type} from {os.path.basename(flow_path)}"
)
except json.JSONDecodeError as e:
raise ValueError(f"Invalid JSON in flow file {flow_path}: {e}")
except FileNotFoundError:
raise ValueError(f"Flow file not found: {flow_path}")
# Make PATCH request to Langflow API to update the flow using shared client
try:
response = await clients.langflow_request(
"PATCH", f"/api/v1/flows/{flow_id}", json=flow_data
)
if response.status_code == 200:
result = response.json()
logger.info(
f"Successfully reset {flow_type} flow",
flow_id=flow_id,
flow_file=os.path.basename(flow_path),
)
# Now update the flow with current configuration settings
try:
config = get_openrag_config()
# Check if configuration has been edited (onboarding completed)
if config.edited:
logger.info(
f"Updating {flow_type} flow with current configuration settings"
)
# Get LLM provider (used for most flows)
llm_provider = config.agent.llm_provider.lower()
embedding_provider = config.knowledge.embedding_provider.lower()
# Get provider-specific endpoint if needed
llm_provider_config = config.get_llm_provider_config()
endpoint = getattr(llm_provider_config, "endpoint", None)
# Step 2: Update model values for the specific flow being reset
single_flow_config = [
{
"name": flow_type,
"flow_id": flow_id,
}
]
logger.info(f"Updating {flow_type} flow model values")
# Use LLM provider for most flows, embedding provider for ingest flows
provider_to_use = embedding_provider if flow_type in ["ingest", "url_ingest"] else llm_provider
update_result = await self.change_langflow_model_value(
provider=provider_to_use,
embedding_model=config.knowledge.embedding_model if flow_type in ["ingest", "url_ingest"] else None,
llm_model=config.agent.llm_model if flow_type not in ["ingest", "url_ingest"] else None,
endpoint=endpoint,
flow_configs=single_flow_config,
)
if update_result.get("success"):
logger.info(
f"Successfully updated {flow_type} flow with current configuration"
)
else:
logger.warning(
f"Failed to update {flow_type} flow with current configuration: {update_result.get('error', 'Unknown error')}"
)
else:
logger.info(
f"Configuration not yet edited (onboarding not completed), skipping model updates for {flow_type} flow"
)
except Exception as e:
logger.error(
f"Error updating {flow_type} flow with current configuration",
error=str(e),
)
# Don't fail the entire reset operation if configuration update fails
return {
"success": True,
"message": f"Successfully reset {flow_type} flow",
"flow_id": flow_id,
"flow_type": flow_type,
}
else:
error_text = response.text
logger.error(
f"Failed to reset {flow_type} flow",
status_code=response.status_code,
error=error_text,
)
return {
"success": False,
"error": f"Failed to reset flow: HTTP {response.status_code} - {error_text}",
}
except Exception as e:
logger.error(f"Error while resetting {flow_type} flow", error=str(e))
return {"success": False, "error": f"Error: {str(e)}"}
# async def assign_model_provider(self, provider: str, is_embedding: bool = False):
# """
# Replace OpenAI components with the specified provider components in all flows
# Args:
# provider: "watsonx", "ollama", "openai" or "anthropic"
# Returns:
# dict: Success/error response with details for each flow
# """
# if provider not in ["watsonx", "ollama", "openai", "anthropic"]:
# raise ValueError("provider must be 'watsonx', 'ollama', 'openai', or 'anthropic'")
# if provider == "openai":
# logger.info("Provider is already OpenAI, no changes needed")
# return {
# "success": True,
# "message": "Provider is already OpenAI, no changes needed",
# }
# try:
# # Load component templates based on provider
# llm_template, embedding_template, llm_text_template = (
# self._load_component_templates(provider)
# )
# logger.info(f"Assigning {provider} components")
# # Define flow configurations (removed hardcoded file paths)
# flow_configs = [
# {
# "name": "nudges",
# "flow_id": NUDGES_FLOW_ID,
# "embedding_name": OPENAI_EMBEDDING_COMPONENT_DISPLAY_NAME,
# "llm_text_name": OPENAI_LLM_COMPONENT_DISPLAY_NAME,
# "llm_name": None,
# },
# {
# "name": "retrieval",
# "flow_id": LANGFLOW_CHAT_FLOW_ID,
# "embedding_name": OPENAI_EMBEDDING_COMPONENT_DISPLAY_NAME,
# "llm_name": OPENAI_LLM_COMPONENT_DISPLAY_NAME,
# "llm_text_name": None,
# },
# {
# "name": "ingest",
# "flow_id": LANGFLOW_INGEST_FLOW_ID,
# "embedding_name": OPENAI_EMBEDDING_COMPONENT_DISPLAY_NAME,
# "llm_name": None, # Ingestion flow might not have LLM
# "llm_text_name": None,
# },
# {
# "name": "url_ingest",
# "flow_id": LANGFLOW_URL_INGEST_FLOW_ID,
# "embedding_name": OPENAI_EMBEDDING_COMPONENT_DISPLAY_NAME,
# "llm_name": None,
# "llm_text_name": None,
# },
# ]
# results = []
# # Process each flow sequentially
# for config in flow_configs:
# try:
# result = await self._update_flow_components(
# config, llm_template, embedding_template, llm_text_template, is_embedding
# )
# results.append(result)
# logger.info(f"Successfully updated {config['name']} flow")
# except Exception as e:
# error_msg = f"Failed to update {config['name']} flow: {str(e)}"
# logger.error(error_msg)
# results.append(
# {"flow": config["name"], "success": False, "error": error_msg}
# )
# # Continue with other flows even if one fails
# # Check if all flows were successful
# all_success = all(r.get("success", False) for r in results)
# return {
# "success": all_success,
# "message": f"Model provider assignment to {provider} {'completed' if all_success else 'completed with errors'}",
# "provider": provider,
# "results": results,
# }
# except Exception as e:
# logger.error(f"Error assigning model provider {provider}", error=str(e))
# return {
# "success": False,
# "error": f"Failed to assign model provider: {str(e)}",
# }
# def _load_component_templates(self, provider: str):
# """Load component templates for the specified provider"""
# if provider == "watsonx":
# llm_path = WATSONX_LLM_COMPONENT_PATH
# embedding_path = WATSONX_EMBEDDING_COMPONENT_PATH
# llm_text_path = WATSONX_LLM_TEXT_COMPONENT_PATH
# elif provider == "ollama":
# llm_path = OLLAMA_LLM_COMPONENT_PATH
# embedding_path = OLLAMA_EMBEDDING_COMPONENT_PATH
# llm_text_path = OLLAMA_LLM_TEXT_COMPONENT_PATH
# else:
# raise ValueError(f"Unsupported provider: {provider}")
# # Get the project root directory (same logic as reset_langflow_flow)
# current_file_dir = os.path.dirname(os.path.abspath(__file__)) # src/services/
# src_dir = os.path.dirname(current_file_dir) # src/
# project_root = os.path.dirname(src_dir) # project root
# # Load LLM template
# llm_full_path = os.path.join(project_root, llm_path)
# if not os.path.exists(llm_full_path):
# raise FileNotFoundError(
# f"LLM component template not found at: {llm_full_path}"
# )
# with open(llm_full_path, "r") as f:
# llm_template = json.load(f)
# # Load embedding template
# embedding_full_path = os.path.join(project_root, embedding_path)
# if not os.path.exists(embedding_full_path):
# raise FileNotFoundError(
# f"Embedding component template not found at: {embedding_full_path}"
# )
# with open(embedding_full_path, "r") as f:
# embedding_template = json.load(f)
# # Load LLM Text template
# llm_text_full_path = os.path.join(project_root, llm_text_path)
# if not os.path.exists(llm_text_full_path):
# raise FileNotFoundError(
# f"LLM Text component template not found at: {llm_text_full_path}"
# )
# with open(llm_text_full_path, "r") as f:
# llm_text_template = json.load(f)
# logger.info(f"Loaded component templates for {provider}")
# return llm_template, embedding_template, llm_text_template
# async def _update_flow_components(
# self, config, llm_template, embedding_template, llm_text_template, is_embedding: bool = False
# ):
# """Update components in a specific flow"""
# flow_name = config["name"]
# flow_id = config["flow_id"]
# old_embedding_name = config["embedding_name"]
# old_llm_name = config["llm_name"]
# old_llm_text_name = config["llm_text_name"]
# # Extract IDs from templates
# new_llm_id = llm_template["data"]["id"]
# new_embedding_id = embedding_template["data"]["id"]
# new_llm_text_id = llm_text_template["data"]["id"]
# # Dynamically find the flow file by ID
# flow_path = self._find_flow_file_by_id(flow_id)
# if not flow_path:
# raise FileNotFoundError(f"Flow file not found for flow ID: {flow_id}")
# # Load flow JSON
# with open(flow_path, "r") as f:
# flow_data = json.load(f)
# # Find and replace components
# components_updated = []
# # Replace embedding component
# if not DISABLE_INGEST_WITH_LANGFLOW and is_embedding:
# embedding_node, _ = self._find_node_in_flow(flow_data, display_name=old_embedding_name)
# if embedding_node:
# # Preserve position
# original_position = embedding_node.get("position", {})
# # Replace with new template
# new_embedding_node = embedding_template.copy()
# new_embedding_node["position"] = original_position
# # Replace in flow
# self._replace_node_in_flow(flow_data, old_embedding_name, new_embedding_node)
# components_updated.append(
# f"embedding: {old_embedding_name} -> {new_embedding_id}"
# )
# # Replace LLM component (if exists in this flow)
# if old_llm_name and not is_embedding:
# llm_node, _ = self._find_node_in_flow(flow_data, display_name=old_llm_name)
# if llm_node:
# # Preserve position
# original_position = llm_node.get("position", {})
# # Replace with new template
# new_llm_node = llm_template.copy()
# new_llm_node["position"] = original_position
# # Replace in flow
# self._replace_node_in_flow(flow_data, old_llm_name, new_llm_node)
# components_updated.append(f"llm: {old_llm_name} -> {new_llm_id}")
# # Replace LLM component (if exists in this flow)
# if old_llm_text_name and not is_embedding:
# llm_text_node, _ = self._find_node_in_flow(flow_data, display_name=old_llm_text_name)
# if llm_text_node:
# # Preserve position
# original_position = llm_text_node.get("position", {})
# # Replace with new template
# new_llm_text_node = llm_text_template.copy()
# new_llm_text_node["position"] = original_position
# # Replace in flow
# self._replace_node_in_flow(flow_data, old_llm_text_name, new_llm_text_node)
# components_updated.append(f"llm: {old_llm_text_name} -> {new_llm_text_id}")
# old_embedding_id = None
# old_llm_id = None
# old_llm_text_id = None
# if embedding_node:
# old_embedding_id = embedding_node.get("data", {}).get("id")
# if old_llm_name and llm_node:
# old_llm_id = llm_node.get("data", {}).get("id")
# if old_llm_text_name and llm_text_node:
# old_llm_text_id = llm_text_node.get("data", {}).get("id")
# # Update all edge references using regex replacement
# flow_json_str = json.dumps(flow_data)
# # Replace embedding ID references
# if not DISABLE_INGEST_WITH_LANGFLOW and is_embedding:
# flow_json_str = re.sub(
# re.escape(old_embedding_id), new_embedding_id, flow_json_str
# )
# flow_json_str = re.sub(
# re.escape(old_embedding_id.split("-")[0]),
# new_embedding_id.split("-")[0],
# flow_json_str,
# )
# # Replace LLM ID references (if applicable)
# if old_llm_id and not is_embedding:
# flow_json_str = re.sub(
# re.escape(old_llm_id), new_llm_id, flow_json_str
# )
# flow_json_str = re.sub(
# re.escape(old_llm_id.split("-")[0]),
# new_llm_id.split("-")[0],
# flow_json_str,
# )
# # Replace text LLM ID references (if applicable)
# if old_llm_text_id and not is_embedding:
# flow_json_str = re.sub(
# re.escape(old_llm_text_id), new_llm_text_id, flow_json_str
# )
# flow_json_str = re.sub(
# re.escape(old_llm_text_id.split("-")[0]),
# new_llm_text_id.split("-")[0],
# flow_json_str,
# )
# # Convert back to JSON
# flow_data = json.loads(flow_json_str)
# # PATCH the updated flow
# response = await clients.langflow_request(
# "PATCH", f"/api/v1/flows/{flow_id}", json=flow_data
# )
# if response.status_code != 200:
# raise Exception(
# f"Failed to update flow: HTTP {response.status_code} - {response.text}"
# )
# return {
# "flow": flow_name,
# "success": True,
# "components_updated": components_updated,
# "flow_id": flow_id,
# }
def _find_node_in_flow(self, flow_data, node_id=None, display_name=None):
"""
Helper function to find a node in flow data by ID or display name.
Returns tuple of (node, node_index) or (None, None) if not found.
"""
nodes = flow_data.get("data", {}).get("nodes", [])
for i, node in enumerate(nodes):
node_data = node.get("data", {})
node_template = node_data.get("node", {})
# Check by ID if provided
if node_id and node_data.get("id") == node_id:
return node, i
# Check by display_name if provided
if display_name and node_template.get("display_name") == display_name:
return node, i
return None, None
async def _update_flow_field(self, flow_id: str, field_name: str, field_value: str, node_display_name: str = None):
"""
Generic helper function to update any field in any Langflow component.
Args:
flow_id: The ID of the flow to update
field_name: The name of the field to update (e.g., 'model_name', 'system_message', 'docling_serve_opts')
field_value: The new value to set
node_display_name: The display name to search for (optional)
node_id: The node ID to search for (optional, used as fallback or primary)
"""
if not flow_id:
raise ValueError("flow_id is required")
# Get the current flow data from Langflow
response = await clients.langflow_request("GET", f"/api/v1/flows/{flow_id}")
if response.status_code != 200:
raise Exception(
f"Failed to get flow: HTTP {response.status_code} - {response.text}"
)
flow_data = response.json()
# Find the target component by display name first, then by ID as fallback
target_node, target_node_index = None, None
if node_display_name:
target_node, target_node_index = self._find_node_in_flow(
flow_data, display_name=node_display_name
)
if target_node is None:
identifier = node_display_name
raise Exception(f"Component '{identifier}' not found in flow {flow_id}")
# Update the field value directly in the existing node
template = target_node.get("data", {}).get("node", {}).get("template", {})
if template.get(field_name):
flow_data["data"]["nodes"][target_node_index]["data"]["node"]["template"][field_name]["value"] = field_value
if "options" in flow_data["data"]["nodes"][target_node_index]["data"]["node"]["template"][field_name] and field_value not in flow_data["data"]["nodes"][target_node_index]["data"]["node"]["template"][field_name]["options"]:
flow_data["data"]["nodes"][target_node_index]["data"]["node"]["template"][field_name]["options"].append(field_value)
else:
identifier = node_display_name
raise Exception(f"{field_name} field not found in {identifier} component")
# Update the flow via PATCH request
patch_response = await clients.langflow_request(
"PATCH", f"/api/v1/flows/{flow_id}", json=flow_data
)
if patch_response.status_code != 200:
raise Exception(
f"Failed to update flow: HTTP {patch_response.status_code} - {patch_response.text}"
)
async def update_chat_flow_model(self, model_name: str, provider: str):
"""Helper function to update the model in the chat flow"""
if not LANGFLOW_CHAT_FLOW_ID:
raise ValueError("LANGFLOW_CHAT_FLOW_ID is not configured")
# Determine target component IDs based on provider
target_llm_id = self._get_provider_component_ids(provider)[1]
await self._update_flow_field(LANGFLOW_CHAT_FLOW_ID, "model_name", model_name,
node_display_name=target_llm_id)
async def update_chat_flow_system_prompt(self, system_prompt: str, provider: str):
"""Helper function to update the system prompt in the chat flow"""
if not LANGFLOW_CHAT_FLOW_ID:
raise ValueError("LANGFLOW_CHAT_FLOW_ID is not configured")
# Determine target component IDs based on provider
target_agent_id = self._get_provider_component_ids(provider)[1]
await self._update_flow_field(LANGFLOW_CHAT_FLOW_ID, "system_prompt", system_prompt,
node_display_name=target_agent_id)
async def update_flow_docling_preset(self, preset: str, preset_config: dict):
"""Helper function to update docling preset in the ingest flow"""
if not LANGFLOW_INGEST_FLOW_ID:
raise ValueError("LANGFLOW_INGEST_FLOW_ID is not configured")
from config.settings import DOCLING_COMPONENT_DISPLAY_NAME
await self._update_flow_field(LANGFLOW_INGEST_FLOW_ID, "docling_serve_opts", preset_config,
node_display_name=DOCLING_COMPONENT_DISPLAY_NAME)
async def update_ingest_flow_chunk_size(self, chunk_size: int):
"""Helper function to update chunk size in the ingest flow"""
if not LANGFLOW_INGEST_FLOW_ID:
raise ValueError("LANGFLOW_INGEST_FLOW_ID is not configured")
await self._update_flow_field(
LANGFLOW_INGEST_FLOW_ID,
"chunk_size",
chunk_size,
node_display_name="Split Text",
)
async def update_ingest_flow_chunk_overlap(self, chunk_overlap: int):
"""Helper function to update chunk overlap in the ingest flow"""
if not LANGFLOW_INGEST_FLOW_ID:
raise ValueError("LANGFLOW_INGEST_FLOW_ID is not configured")
await self._update_flow_field(
LANGFLOW_INGEST_FLOW_ID,
"chunk_overlap",
chunk_overlap,
node_display_name="Split Text",
)
async def update_ingest_flow_embedding_model(self, embedding_model: str, provider: str):
"""Helper function to update embedding model in the ingest flow"""
if not LANGFLOW_INGEST_FLOW_ID:
raise ValueError("LANGFLOW_INGEST_FLOW_ID is not configured")
# Determine target component IDs based on provider
target_embedding_id = self._get_provider_component_ids(provider)[0]
await self._update_flow_field(LANGFLOW_INGEST_FLOW_ID, "model", embedding_model,
node_display_name=target_embedding_id)
def _replace_node_in_flow(self, flow_data, old_display_name, new_node):
"""Replace a node in the flow data"""
nodes = flow_data.get("data", {}).get("nodes", [])
for i, node in enumerate(nodes):
if node.get("data", {}).get("node", {}).get("display_name") == old_display_name:
nodes[i] = new_node
return True
return False
async def change_langflow_model_value(
self,
provider: str,
embedding_model: str = None,
llm_model: str = None,
endpoint: str = None,
flow_configs: list = None,
):
"""
Change dropdown values for provider-specific components across flows
Args:
provider: The provider ("watsonx", "ollama", "openai", "anthropic")
embedding_model: The embedding model name to set
llm_model: The LLM model name to set
endpoint: The endpoint URL (required for watsonx/ibm provider)
flow_configs: Optional list of specific flow configs to update. If None, updates all flows.
Returns:
dict: Success/error response with details for each flow
"""
if provider not in ["watsonx", "ollama", "openai", "anthropic"]:
raise ValueError("provider must be 'watsonx', 'ollama', 'openai', or 'anthropic'")
if provider == "watsonx" and not endpoint:
raise ValueError("endpoint is required for watsonx provider")
try:
logger.info(
f"Changing dropdown values for provider {provider}, embedding: {embedding_model}, llm: {llm_model}, endpoint: {endpoint}"
)
# Use provided flow_configs or default to all flows
if flow_configs is None:
flow_configs = [
{
"name": "nudges",
"flow_id": NUDGES_FLOW_ID,
},
{
"name": "retrieval",
"flow_id": LANGFLOW_CHAT_FLOW_ID,
},
{
"name": "ingest",
"flow_id": LANGFLOW_INGEST_FLOW_ID,
},
{
"name": "url_ingest",
"flow_id": LANGFLOW_URL_INGEST_FLOW_ID,
},
]
# Determine target component IDs based on provider
results = []
# Process each flow sequentially
for config in flow_configs:
try:
result = await self._update_provider_components(
config,
provider,
embedding_model,
llm_model,
endpoint,
)
results.append(result)
logger.info(
f"Successfully updated {config['name']} flow with {provider} models"
)
except Exception as e:
error_msg = f"Failed to update {config['name']} flow with {provider} models: {str(e)}"
logger.error(error_msg)
results.append(
{"flow": config["name"], "success": False, "error": error_msg}
)
# Continue with other flows even if one fails
# Check if all flows were successful
all_success = all(r.get("success", False) for r in results)
return {
"success": all_success,
"message": f"Provider model update {'completed' if all_success else 'completed with errors'}",
"provider": provider,
"embedding_model": embedding_model,
"llm_model": llm_model,
"endpoint": endpoint,
"results": results,
}
except Exception as e:
logger.error(
f"Error changing provider models for {provider}",
error=str(e),
)
return {
"success": False,
"error": f"Failed to change provider models: {str(e)}",
}
# def _get_provider_component_ids(self, provider: str):
# """Get the component IDs for a specific provider"""
# if provider == "watsonx":
# return WATSONX_EMBEDDING_COMPONENT_DISPLAY_NAME, WATSONX_LLM_COMPONENT_DISPLAY_NAME
# elif provider == "ollama":
# return OLLAMA_EMBEDDING_COMPONENT_DISPLAY_NAME, OLLAMA_LLM_COMPONENT_DISPLAY_NAME
# elif provider == "openai":
# # OpenAI components are the default ones
# return OPENAI_EMBEDDING_COMPONENT_DISPLAY_NAME, OPENAI_LLM_COMPONENT_DISPLAY_NAME
# else:
# raise ValueError(f"Unsupported provider: {provider}")
async def _update_provider_components(
self,
config,
provider: str,
embedding_model: str = None,
llm_model: str = None,
endpoint: str = None,
):
"""Update provider components and their dropdown values in a flow"""
flow_name = config["name"]
flow_id = config["flow_id"]
# Get flow data from Langflow API instead of file
response = await clients.langflow_request("GET", f"/api/v1/flows/{flow_id}")
if response.status_code != 200:
raise Exception(
f"Failed to get flow from Langflow: HTTP {response.status_code} - {response.text}"
)
flow_data = response.json()
updates_made = []
# Update embedding component
if not DISABLE_INGEST_WITH_LANGFLOW and embedding_model:
embedding_node, _ = self._find_node_in_flow(flow_data, display_name=OPENAI_EMBEDDING_COMPONENT_DISPLAY_NAME)
if embedding_node:
if await self._update_component_fields(
embedding_node, provider, embedding_model, endpoint
):
updates_made.append(f"embedding model: {embedding_model}")
# Update LLM component (if exists in this flow)
if llm_model:
llm_node, _ = self._find_node_in_flow(flow_data, display_name=OPENAI_LLM_COMPONENT_DISPLAY_NAME)
if llm_node:
if await self._update_component_fields(
llm_node, provider, llm_model, endpoint
):
updates_made.append(f"llm model: {llm_model}")
# Update LLM component (if exists in this flow)
agent_node, _ = self._find_node_in_flow(flow_data, display_name=AGENT_COMPONENT_DISPLAY_NAME)
if agent_node:
if await self._update_component_fields(
agent_node, provider, llm_model, endpoint
):
updates_made.append(f"agent model: {llm_model}")
# If no updates were made, return skip message
if not updates_made:
return {
"flow": flow_name,
"success": True,
"message": f"No compatible components found in {flow_name} flow (skipped)",
"flow_id": flow_id,
}
logger.info(f"Updated {', '.join(updates_made)} in {flow_name} flow")
# PATCH the updated flow
response = await clients.langflow_request(
"PATCH", f"/api/v1/flows/{flow_id}", json=flow_data
)
if response.status_code != 200:
raise Exception(
f"Failed to update flow: HTTP {response.status_code} - {response.text}"
)
return {
"flow": flow_name,
"success": True,
"message": f"Successfully updated {', '.join(updates_made)}",
"flow_id": flow_id,
}
async def _update_component_fields(
self,
component_node,
provider: str,
model_value: str,
endpoint: str = None,
):
"""Update fields in a component node based on provider and component type"""
template = component_node.get("data", {}).get("node", {}).get("template", {})
if not template:
return False
updated = False
provider_name = "IBM watsonx.ai" if provider == "watsonx" else "Ollama" if provider == "ollama" else "Anthropic" if provider == "anthropic" else "OpenAI"
field_name = "provider" if "provider" in template else "agent_llm"
# Update provider field and call custom_component/update endpoint
if field_name in template:
# First, update the provider value
template[field_name]["value"] = provider_name
# Call custom_component/update endpoint to get updated template
# Only call if code field exists (custom components should have code)
if "code" in template and "value" in template["code"]:
code_value = template["code"]["value"]
field_value = provider_name
try:
update_payload = {
"code": code_value,
"template": template,
"field": field_name,
"field_value": field_value,
"tool_mode": False,
}
response = await clients.langflow_request(
"POST", "/api/v1/custom_component/update", json=update_payload
)
if response.status_code == 200:
response_data = response.json()
# Update template with the new template from response.data
if "template" in response_data:
# Update the template in component_node
component_node["data"]["node"]["template"] = response_data["template"]
# Update local template reference
template = response_data["template"]
logger.info(f"Successfully updated template via custom_component/update for provider: {provider_name}")
else:
logger.warning("Response from custom_component/update missing 'data' field")
else:
logger.warning(
f"Failed to call custom_component/update: HTTP {response.status_code} - {response.text}"
)
except Exception as e:
logger.error(f"Error calling custom_component/update: {str(e)}")
# Continue with manual updates even if API call fails
updated = True
# Update model_name field (common to all providers)
if "model" in template:
template["model"]["value"] = model_value
template["model"]["options"] = [model_value]
template["model"]["advanced"] = False
updated = True
elif "model_name" in template:
template["model_name"]["value"] = model_value
template["model_name"]["options"] = [model_value]
template["model_name"]["advanced"] = False
updated = True
# Update endpoint/URL field based on provider
if endpoint:
if provider == "watsonx" and "base_url" in template:
# Watson uses "url" field
template["base_url"]["value"] = endpoint
template["base_url"]["options"] = [endpoint]
template["base_url"]["show"] = True
template["base_url"]["advanced"] = False
updated = True
if provider == "watsonx" and "base_url_ibm_watsonx" in template:
# Watson uses "url" field
template["base_url_ibm_watsonx"]["value"] = endpoint
template["base_url_ibm_watsonx"]["show"] = True
template["base_url_ibm_watsonx"]["advanced"] = False
updated = True
if provider == "openai" and "api_key" in template:
template["api_key"]["value"] = "OPENAI_API_KEY"
template["api_key"]["load_from_db"] = True
template["api_key"]["show"] = True
template["api_key"]["advanced"] = False
updated = True
if provider == "openai" and "api_base" in template:
template["api_base"]["value"] = ""
template["api_base"]["load_from_db"] = False
template["api_base"]["show"] = True
template["api_base"]["advanced"] = False
updated = True
if provider == "anthropic" and "api_key" in template:
template["api_key"]["value"] = "ANTHROPIC_API_KEY"
template["api_key"]["load_from_db"] = True
template["api_key"]["show"] = True
template["api_key"]["advanced"] = False
updated = True
if provider == "anthropic" and "base_url" in template:
template["base_url"]["value"] = "https://api.anthropic.com"
template["base_url"]["load_from_db"] = False
template["base_url"]["show"] = True
template["base_url"]["advanced"] = True
updated = True
if provider == "ollama" and "base_url" in template:
template["base_url"]["value"] = "OLLAMA_BASE_URL"
template["base_url"]["load_from_db"] = True
template["base_url"]["show"] = True
template["base_url"]["advanced"] = False
updated = True
if provider == "ollama" and "api_base" in template:
template["api_base"]["value"] = "OLLAMA_BASE_URL"
template["api_base"]["load_from_db"] = True
template["api_base"]["show"] = True
template["api_base"]["advanced"] = False
updated = True
if provider == "ollama" and "ollama_base_url" in template:
template["ollama_base_url"]["value"] = "OLLAMA_BASE_URL"
template["ollama_base_url"]["load_from_db"] = True
template["ollama_base_url"]["show"] = True
template["ollama_base_url"]["advanced"] = False
updated = True
if provider == "watsonx" and "project_id" in template:
template["project_id"]["value"] = "WATSONX_PROJECT_ID"
template["project_id"]["load_from_db"] = True
template["project_id"]["show"] = True
template["project_id"]["advanced"] = False
updated = True
if provider == "watsonx" and "api_key" in template:
template["api_key"]["value"] = "WATSONX_API_KEY"
template["api_key"]["load_from_db"] = True
template["api_key"]["show"] = True
template["api_key"]["advanced"] = False
updated = True
return updated