
What is OpenRAG?
OpenRAG is an open-source package for building agentic RAG systems that integrates

with a wide range of orchestration tools, vector databases, and LLM providers.

OpenRAG connects and amplifies three popular, proven open-source projects into one

powerful platform:

Langflow: Langflow is a versatile tool for building and deploying AI agents and MCP

servers. It supports all major LLMs, vector databases, and a growing library of AI

tools.

OpenSearch: OpenSearch is a community-driven, Apache 2.0-licensed open source

search and analytics suite that makes it easy to ingest, search, visualize, and analyze

data.

Docling: Docling simplifies document processing, parsing diverse formats —

including advanced PDF understanding — and providing seamless integrations with

the gen AI ecosystem.

OpenRAG builds on Langflow's familiar interface while adding OpenSearch for vector

storage and Docling for simplified document parsing, with opinionated flows that serve

as ready-to-use recipes for ingestion, retrieval, and generation from popular sources like

Google Drive, OneDrive, and Sharepoint.

What's more, every part of the stack is swappable. Write your own custom components

in Python, try different language models, and customize your flows to build an agentic

RAG system.

Ready to get started? Install OpenRAG and then run the Quickstart to create a powerful

RAG pipeline.

OpenRAG architecture

OpenRAG deploys and orchestrates a lightweight, container-based architecture that

combines Langflow, OpenSearch, and Docling into a cohesive RAG platform.

The OpenRAG Backend is the central orchestration service that coordinates all other

components.

https://docs.langflow.org/
https://docs.opensearch.org/latest/
https://docling-project.github.io/docling/

Langflow provides a visual workflow engine for building AI agents, and connects to

OpenSearch for vector storage and retrieval.

Docling Serve is a local document processing service managed by the OpenRAG

Backend.

Third Party Services like Google Drive connect to the OpenRAG Backend through

OAuth authentication, allowing synchronication of cloud storage with the OpenSearch

knowledge base.

The OpenRAG Frontend provides the user interface for interacting with the system.

Performance expectations

On a local VM with 7 vCPUs and 8 GiB RAM, OpenRAG ingested approximately 5.03 GB

across 1,083 files in about 42 minutes. This equates to approximately 2.4 documents per

second.

You can generally expect equal or better performance on developer laptops and

significantly faster on servers. Throughput scales with CPU cores, memory, storage

speed, and configuration choices such as embedding model, chunk size and overlap, and

concurrency.

This test returned 12 errors (approximately 1.1%). All errors were file‑specific, and they

didn't stop the pipeline.

Ingestion dataset:

Total files: 1,083 items mounted

Total size on disk: 5,026,474,862 bytes (approximately 5.03 GB)

Hardware specifications:

Machine: Apple M4 Pro

Podman VM:

Name: podman-machine-default
Type: applehv

vCPUs: 7

Memory: 8 GiB

Disk size: 100 GiB

Test results:

Elapsed time: ~42 minutes 15 seconds (2,535 seconds)

Throughput: ~2.4 documents/second

2025-09-24T22:40:45.542190Z /app/src/main.py:231 Ingesting default
documents when ready disable_langflow_ingest=False
2025-09-24T22:40:45.546385Z /app/src/main.py:270 Using Langflow
ingestion pipeline for default documents file_count=1082
...
2025-09-24T23:19:44.866365Z /app/src/main.py:351 Langflow ingestion
completed success_count=1070 error_count=12 total_files=1082

Quickstart
Get started with OpenRAG by loading your knowledge, swapping out your language

model, and then chatting with the Langflow API.

Prerequisites

TIP

This quickstart uses a minimal setup to demonstrate OpenRAG's core functionality.

After you complete the quickstart, it is recommended that you reinstall OpenRAG

with your preferred configuration because some settings are immutable after initial

setup. For all installation options, see Install OpenRAG with TUI and Install OpenRAG

with containers.

Install OpenRAG with the automatic installer. The script detects and installs uv,

Docker/Podman, and Docker Compose prerequisites, and then starts OpenRAG with

uvx .

1. Create a directory to store the OpenRAG configuration files:

2. Run the installer:

The TUI creates a .env file and docker-compose files in the current working

directory, and then starts OpenRAG.

3. Select Basic Setup.

4. To generate a password for OpenSearch, click Generate Passwords. The other

fields aren't required.

mkdir openrag-workspace
cd openrag-workspace

curl -fsSL
https://docs.openr.ag/files/run_openrag_with_prereqs.sh | bash

5. To start OpenRAG, click Start All Services. Startup pulls container images and runs

them, so it can take some time. When startup is complete, the TUI displays the

following:

6. To open the OpenRAG application, navigate to the TUI main menu, and then click

Open App. Alternatively, in your browser, navigate to localhost:3000 .

7. For your model provider, select OpenAI.

8. In the OpenAI API key field, paste your OpenAI API key. The default model settings

are fine for the quickstart.

9. To confirm your provider settings, click Complete.

10. To complete onboarding, click What is OpenRAG, and then click Add a document.

Alternatively, click Skip overview.

To quit OpenRAG, navigate to the TUI main menu and press q . To start OpenRAG again,

run uvx openrag .

Load and chat with your own documents

1. In OpenRAG, click Chat. The chat is powered by the OpenRAG OpenSearch

Agent. For more information, see Langflow in OpenRAG.

2. Ask What documents are available to you? The agent responds with a

message summarizing the documents that OpenRAG loads by default. Knowledge is

stored in OpenSearch. For more information, see OpenSearch in OpenRAG.

3. To confirm the agent is correct about the default knowledge, click Knowledge.

The Knowledge page lists the documents OpenRAG has ingested into the

OpenSearch vector database. Click on a document to display the chunks derived

from splitting the default documents into the OpenSearch vector database.

4. To add documents to your knowledge base, click Add Knowledge.

Select File to add a single file from your local machine.

Services started successfully
Command completed successfully

Select Folder to process an entire folder of documents from your local

machine. The default directory is /documents in your OpenRAG directory.

Select your cloud storage provider to add knowledge from an OAuth-connected

storage provider. For more information, see OAuth ingestion.

5. Return to the Chat window and ask a question about your loaded data. For example,

with a manual about a PC tablet loaded, ask How do I connect this device to

WiFi? The agent responds with a message indicating it now has your knowledge as

context for answering questions.

6. Click Function Call: search_documents (tool_call). This log describes how the

agent uses tools. This is helpful for troubleshooting when the agent isn't responding

as expected.

Swap out the language model to modify agent behavior

To modify the knowledge ingestion or Agent behavior, click Settings.

In this example, you'll try a different LLM to demonstrate how the Agent's response

changes.

1. To edit the Agent's behavior, click Edit in Langflow. You can more quickly access

these parameters in the Language model and Agent Instructions fields in this

page, but for illustration purposes, navigate to the Langflow visual builder. To revert

the flow to its initial state, click Restore flow.

2. OpenRAG warns you that you're entering Langflow. Click Proceed.

If Langflow requests login information, enter the LANGFLOW_SUPERUSER and

LANGFLOW_SUPERUSER_PASSWORD from the .env file in your OpenRAG directory.

The OpenRAG OpenSearch Agent flow appears in a new browser window.

3. Find the Language Model component, and then change the Model Name field to a

different OpenAI model.

4. Save your flow with Command+S (Mac) or Ctrl+S (Windows).

5. Return to the OpenRAG browser window, and start a new conversation by clicking

 in the Conversations tab.

6. Ask the same question you asked before to see how the response differs between

models.

Integrate OpenRAG into your application

Langflow in OpenRAG includes pre-built flows that you can integrate into your

applications using the Langflow API.

The Langflow API accepts Python, TypeScript, or curl requests to run flows and get

responses. You can use these flows as-is or modify them to better suit your needs.

In this section, you'll run the OpenRAG OpenSearch Agent flow and get a response using

the API.

1. To navigate to the OpenRAG OpenSearch Agent flow in Langflow, click Settings,

and then click Edit in Langflow in the OpenRAG OpenSearch Agent flow.

https://docs.langflow.org/api-reference-api-examples

2. Create a Langflow API key.

A Langflow API key is a user-specific token you can use with Langflow. It is only

used for sending requests to the Langflow server. It does not access OpenRAG.

To create a Langflow API key, do the following:

i. Open Langflow, click your user icon, and then select Settings.

ii. Click Langflow API Keys, and then click Add New.

iii. Name your key, and then click Create API Key.

iv. Copy the API key and store it securely.

3. Langflow includes code snippets for the request to the Langflow API. To retrieve the

code snippet, click Share, and then click API access.

The default code in the API access pane constructs a request with the Langflow

server url , headers , and a payload of request data. The code snippets

automatically include the LANGFLOW_SERVER_ADDRESS and FLOW_ID values for the

flow.

Python

import requests
import os
import uuid
api_key = 'LANGFLOW_API_KEY'
url = "http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID" # The
complete API endpoint URL for this flow
Request payload configuration
payload = {
 "output_type": "chat",
 "input_type": "chat",
 "input_value": "hello world!"
}
payload["session_id"] = str(uuid.uuid4())
headers = {"x-api-key": api_key}
try:
 # Send API request
 response = requests.request("POST", url, json=payload,
headers=headers)
 response.raise_for_status() # Raise exception for bad status
codes

https://docs.langflow.org/api-keys-and-authentication

TypeScript

curl

 # Print response
 print(response.text)
except requests.exceptions.RequestException as e:
 print(f"Error making API request: {e}")
except ValueError as e:
 print(f"Error parsing response: {e}")

const crypto = require('crypto');
const apiKey = 'LANGFLOW_API_KEY';
const payload = {
 "output_type": "chat",
 "input_type": "chat",
 "input_value": "hello world!"
};
payload.session_id = crypto.randomUUID();
const options = {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 "x-api-key": apiKey
 },
 body: JSON.stringify(payload)
};
fetch('http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID', options)
 .then(response => response.json())
 .then(response => console.warn(response))
 .catch(err => console.error(err));

curl --request POST \
 --url 'http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID?
stream=false' \
 --header 'Content-Type: application/json' \
 --header "x-api-key: LANGFLOW_API_KEY" \
 --data '{
 "output_type": "chat",
 "input_type": "chat",

4. Copy the snippet, paste it in a script file, and then run the script to send the request.

If you are using the curl snippet, you can run the command directly in your terminal.

If the request is successful, the response includes many details about the flow run,

including the session ID, inputs, outputs, components, durations, and more.

To further explore the API, see:

The Langflow Quickstart extends this example with extracting fields from the

response.

Get started with the Langflow API

 "input_value": "hello world!"
 }'

https://docs.langflow.org/quickstart#extract-data-from-the-response
https://docs.langflow.org/api-reference-api-examples

Install OpenRAG with TUI
Install OpenRAG and then run the OpenRAG Terminal User Interface(TUI) to start your

OpenRAG deployment with a guided setup process.

The OpenRAG Terminal User Interface (TUI) allows you to set up, configure, and monitor

your OpenRAG deployment directly from the terminal.

OpenRAG TUI

██████╗ ██████╗ ███████╗███╗ ██╗██████╗ █████╗ ██████╗
██╔═══██╗██╔══██╗██╔════╝████╗ ██║██╔══██╗██╔══██╗██╔════╝
██║ ██║██████╔╝█████╗ ██╔██╗ ██║██████╔╝███████║██║ ███╗
██║ ██║██╔═══╝ ██╔══╝ ██║╚██╗██║██╔══██╗██╔══██║██║ ██║
╚██████╔╝██║ ███████╗██║ ╚████║██║ ██║██║ ██║╚██████╔╝
╚═════╝ ╚═╝ ╚══════╝╚═╝ ╚═══╝╚═╝ ╚═╝╚═╝ ╚═╝╚═════╝

Terminal User Interface for OpenRAG

OAuth credentials detected — Advanced Setup recommended

▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔ ▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔
 Advanced Setup Monitor Services

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

 q Quit 1 Basic Setup 2 Advanced Setup 3 Monitor Services 4 Diagnostics ▏^p palette

Instead of starting OpenRAG using Docker commands and manually editing values in the

.env file, the TUI walks you through the setup. It prompts for variables where required,

creates a .env file for you, and then starts OpenRAG.

Once OpenRAG is running, use the TUI to monitor your application, control your

containers, and retrieve logs.

If you prefer running Podman or Docker containers and manually editing .env files, see

Install OpenRAG Containers.

Prerequisites

Install Python Version 3.10 to 3.13

Install uv

Install Podman (recommended) or Docker

https://www.python.org/downloads/release/python-3100/
https://docs.astral.sh/uv/getting-started/installation/
https://podman.io/docs/installation
https://docs.docker.com/get-docker/

Install Docker Compose. If using Podman, use podman-compose or alias Docker

compose commands to Podman commands.

Optional: Create an OpenAI API key. During Application Onboarding, you can provide

this key or choose a different model provider.

Optional: Install GPU support with an NVIDIA GPU, CUDA support, and compatible

NVIDIA drivers on the OpenRAG host machine. If you don't have GPU capabilities,

OpenRAG provides an alternate CPU-only deployment.

Install OpenRAG

WINDOWS USERS

To use OpenRAG on Windows, use WSL (Windows Subsystem for Linux).

Choose an installation method based on your needs:

For new users, the automatic installer script detects and installs prerequisites and

then runs OpenRAG.

For a quick test, use uvx to run OpenRAG without creating a project or modifying

files.

Use uv add to install OpenRAG as a managed dependency in a new or existing

Python project.

Use uv pip install to install OpenRAG into an existing virtual environment.

Automatic installer

The script detects and installs uv, Docker/Podman, and Docker Compose prerequisites,

then runs OpenRAG with uvx .

1. Create a directory to store the OpenRAG configuration files:

2. Run the installer:

mkdir openrag-workspace
cd openrag-workspace

curl -fsSL

https://docs.docker.com/compose/install/
https://docs.podman.io/en/latest/markdown/podman-compose.1.html
https://platform.openai.com/api-keys
https://docs.nvidia.com/cuda/
https://learn.microsoft.com/en-us/windows/wsl/install

The TUI creates a .env file and docker-compose files in the current working directory.

Quick test with uvx

Use uvx to quickly run OpenRAG without creating a project or modifying any files.

1. Create a directory to store the OpenRAG configuration files:

2. Run OpenRAG:

To run a specific version:

The TUI creates a .env file and docker-compose files in the current working directory.

Python project with uv add

Use uv add to install OpenRAG as a dependency in your Python project. This adds

OpenRAG to your pyproject.toml and lockfile, making your installation reproducible

and version-controlled.

1. Create a new project with a virtual environment:

The (venv) prompt doesn't change, but uv commands will automatically use the

project's virtual environment.

https://docs.openr.ag/files/run_openrag_with_prereqs.sh | bash

mkdir openrag-workspace
cd openrag-workspace

uvx openrag

uvx --from openrag==0.1.30 openrag

uv init YOUR_PROJECT_NAME
cd YOUR_PROJECT_NAME

2. Add OpenRAG to your project:

To add a specific version:

3. Start the OpenRAG TUI:

Install a local wheel

If you downloaded the OpenRAG wheel to your local machine, install it by specifying its

path:

1. Add the wheel to your project:

Replace PATH/TO/ and VERSION with the path and version of your downloaded

OpenRAG .whl file.

2. Run OpenRAG:

Existing virtual environment with uv pip install

Use uv pip install to install OpenRAG into an existing virtual environment that isn't

managed by uv .

TIP

uv add openrag

uv add openrag==0.1.30

uv run openrag

uv add PATH/TO/openrag-VERSION-py3-none-any.whl

uv run openrag

For new projects, uv add is recommended as it manages dependencies in your

project's lockfile.

1. Activate your virtual environment.

2. Install OpenRAG:

3. Run OpenRAG:

Continue with Set up OpenRAG with the TUI.

Set up OpenRAG with the TUI

The TUI creates a .env file in your OpenRAG directory root and starts OpenRAG. If the

TUI detects a .env file in the OpenRAG root directory, it sources any variables from the

.env file. If the TUI detects OAuth credentials, it enforces the Advanced Setup path.

Basic setup

Basic Setup can generate all of the required values for OpenRAG. The OpenAI API key is

optional and can be provided during onboarding. Basic Setup does not set up OAuth

connections for ingestion from cloud providers. For OAuth setup, use Advanced Setup.

For information about the difference between basic (no auth) and OAuth in OpenRAG,

see Authentication and document access.

1. To install OpenRAG with Basic Setup, click Basic Setup or press 1 .

2. Click Generate Passwords to generate passwords for OpenSearch and Langflow.

The OpenSearch password is required. The Langflow admin password is optional. If

no Langflow admin password is generated, Langflow runs in autologin mode with no

password required.

uv pip install openrag

uv run openrag

https://docs.langflow.org/api-keys-and-authentication#langflow-auto-login

3. Optional: Paste your OpenAI API key in the OpenAI API key field. You can also

provide this during onboarding or choose a different model provider.

4. Click Save Configuration. Your passwords are saved in the .env file used to start

OpenRAG.

5. To start OpenRAG, click Start All Services. Startup pulls container images and runs

them, so it can take some time. When startup is complete, the TUI displays the

following:

6. To start the Docling service, under Native Services, click Start.

7. To open the OpenRAG application, navigate to the TUI main menu, and then click

Open App. Alternatively, in your browser, navigate to localhost:3000 .

8. Continue with Application Onboarding.

Advanced setup

1. To install OpenRAG with Advanced Setup, click Advanced Setup or press 2 .

2. Click Generate Passwords to generate passwords for OpenSearch and Langflow.

The OpenSearch password is required. The Langflow admin password is optional. If

no Langflow admin password is generated, Langflow runs in autologin mode with no

password required.

3. Paste your OpenAI API key in the OpenAI API key field.

4. Add your client and secret values for Google or Microsoft OAuth. These values can

be found with your OAuth provider. For more information, see the Google OAuth

client or Microsoft Graph OAuth client documentation.

5. The OpenRAG TUI presents redirect URIs for your OAuth app. These are the URLs

your OAuth provider will redirect back to after user sign-in. Register these redirect

values with your OAuth provider as they are presented in the TUI.

Services started successfully
Command completed successfully

https://docs.langflow.org/api-keys-and-authentication#langflow-auto-login
https://developers.google.com/identity/protocols/oauth2
https://developers.google.com/identity/protocols/oauth2
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/graph-oauth

6. Click Save Configuration.

7. To start OpenRAG, click Start All Services. Startup pulls container images and runs

them, so it can take some time. When startup is complete, the TUI displays the

following:

8. To start the Docling service, under Native Services, click Start.

9. To open the OpenRAG application, navigate to the TUI main menu, and then click

Open App. Alternatively, in your browser, navigate to localhost:3000 . You are

presented with your provider's OAuth sign-in screen. After sign-in, you are

redirected to the redirect URI.

Two additional variables are available for Advanced Setup:

The LANGFLOW_PUBLIC_URL controls where the Langflow web interface can be

accessed. This is where users interact with their flows in a browser.

The WEBHOOK_BASE_URL controls where the endpoint for

/connectors/CONNECTOR_TYPE/webhook will be available. This connection

enables real-time document synchronization with external services. Supported

webhook endpoints:

Google Drive: /connectors/google_drive/webhook
OneDrive: /connectors/onedrive/webhook

SharePoint: /connectors/sharepoint/webhook

10. Continue with Application Onboarding.

Application onboarding

The first time you start OpenRAG, whether using the TUI or a .env file, you must

complete application onboarding.

WARNING

Services started successfully
Command completed successfully

Most values from onboarding can be changed later in the OpenRAG Settings page,

but there are important restrictions.

The language model provider and embeddings model provider can only be

selected at onboarding. To change your provider selection later, you must reinstall

OpenRAG.

You can use different providers for your language model and embedding model,

such as Anthropic for the language model and OpenAI for the embeddings model.

Choose one LLM provider and complete these steps:

Anthropic

INFO

Anthropic does not provide embedding models. If you select Anthropic for your

language model, you must then select a different provider for embeddings.

1. Enable Use environment Anthropic API key to automatically use your key from the

.env file. Alternatively, paste an Anthropic API key into the field.

2. Under Advanced settings, select your Language Model.

3. Click Complete.

4. In the second onboarding panel, select a provider for embeddings and select your

Embedding Model.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a

Document. Alternatively, click Skip overview.

6. Continue with the Quickstart.

OpenAI

1. Enable Get API key from environment variable to automatically enter your key

from the TUI-generated .env file. Alternatively, paste an OpenAI API key into the

field.

2. Under Advanced settings, select your Language Model.

3. Click Complete.

4. In the second onboarding panel, select a provider for embeddings and select your

Embedding Model.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a

Document. Alternatively, click Skip overview.

6. Continue with the Quickstart.

IBM watsonx.ai

1. Complete the fields for watsonx.ai API Endpoint, IBM Project ID, and IBM API key.

These values are found in your IBM watsonx deployment.

2. Under Advanced settings, select your Language Model.

3. Click Complete.

4. In the second onboarding panel, select a provider for embeddings and select your

Embedding Model.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a

Document. Alternatively, click Skip overview.

6. Continue with the Quickstart.

Ollama

TIP

Ollama is not included with OpenRAG. To install Ollama, see the Ollama

documentation.

1. To connect to an Ollama server running on your local machine, enter your Ollama

server's base URL address. The default Ollama server address is

http://localhost:11434 . OpenRAG connects to the Ollama server and

populates the model lists with the server's available models.

2. Select the Embedding Model and Language Model your Ollama server is running.

Ollama model selection and external server configuration

Using Ollama for your OpenRAG language model provider offers greater flexibility and

configuration, but can also be overwhelming to start. These recommendations are a

reasonable starting point for users with at least one GPU and experience running LLMs

locally.

For best performance, OpenRAG recommends OpenAI's gpt-oss:20b language model.

However, this model uses 16GB of RAM, so consider using Ollama Cloud or running

Ollama on a remote machine.

https://docs.ollama.com/
https://docs.ollama.com/

For generating embeddings, OpenRAG recommends the nomic-embed-text
embedding model, which provides high-quality embeddings optimized for retrieval tasks.

To run models in Ollama Cloud, follow these steps:

1. Sign in to Ollama Cloud. In a terminal, enter ollama signin to connect your local

environment with Ollama Cloud.

2. To run the model, in Ollama, select the gpt-oss:20b-cloud model, or run ollama

run gpt-oss:20b-cloud in a terminal. Ollama Cloud models are run at the same

URL as your local Ollama server at http://localhost:11434 , and automatically

offloaded to Ollama's cloud service.

3. Connect OpenRAG to the same local Ollama server as you would for local models in

onboarding, using the default address of http://localhost:11434 .

4. In the Language model field, select the gpt-oss:20b-cloud model.

To run models on a remote Ollama server, follow these steps:

1. Ensure your remote Ollama server is accessible from your OpenRAG instance.

2. In the Ollama Base URL field, enter your remote Ollama server's base URL, such as

http://your-remote-server:11434 . OpenRAG connects to the remote Ollama

server and populates the lists with the server's available models.

3. Select your Embedding model and Language model from the available options.

3. Click Complete.

4. To complete the onboarding tasks, click What is OpenRAG, and then click Add a

Document.

5. Continue with the Quickstart.

Close the OpenRAG TUI

To close the OpenRAG TUI, press q . The OpenRAG containers will continue to be served

until the containers are stopped. For more information, see Manage OpenRAG containers

with the TUI .

To start the TUI again, run uv run openrag .

Manage OpenRAG containers with the TUI

https://ollama.com/library/nomic-embed-text
https://docs.ollama.com/cloud

After installation, the TUI can deploy, manage, and upgrade your OpenRAG containers.

Start all services

Click Start All Services to start the OpenRAG containers. The TUI automatically detects

your container runtime, and then checks if your machine has compatible GPU support by

checking for CUDA , NVIDIA_SMI , and Docker/Podman runtime support. This check

determines which Docker Compose file OpenRAG uses. The TUI then pulls the images

and deploys the containers with the following command.

If images are missing, the TUI runs docker compose pull , then runs docker compose

up -d .

Status

The Status menu displays information on your container deployment. Here you can

check container health, find your service ports, view logs, and upgrade your containers.

To view streaming logs, select the container you want to view, and press l . To copy

your logs, click Copy to Clipboard.

To upgrade your containers, click Upgrade. Upgrade runs docker compose pull and

then docker compose up -d --force-recreate . For more information, see Upgrade

OpenRAG containers with the TUI.

To reset your containers, click Reset. Reset gives you a completely fresh start. Reset

deletes all of your data, including OpenSearch data, uploaded documents, and

authentication. Reset runs two commands. It first stops and removes all containers,

volumes, and local images.

When the first command is complete, OpenRAG removes any additional Docker objects

with prune .

docker compose up -d

docker compose down --volumes --remove-orphans --rmi local

Native services status

A native service in OpenRAG refers to a service run locally on your machine, and not

within a container. The docling serve process is a native service in OpenRAG,

because it's a document processing service that is run on your local machine, and

controlled separately from the containers.

To start or stop docling serve or any other native services, in the TUI Status menu,

click Stop or Restart.

To view the status, port, or PID of a native service, in the TUI main menu, click Status.

Upgrade OpenRAG

To upgrade OpenRAG, upgrade the OpenRAG Python package, and then upgrade the

OpenRAG containers using the OpenRAG TUI.

Upgrading the OpenRAG Python package updates the TUI and Python code, but

container versions are controlled separately by environment variables in your .env file.

Upgrade OpenRAG python package

Use the following steps to upgrade the OpenRAG Python package to the latest version

from PyPI. After upgrading the Python package, you should also upgrade your OpenRAG

containers.

Automatic installer / uvx

If you installed OpenRAG using the automatic installer or uvx, follow these steps to

upgrade:

1. Navigate to your OpenRAG workspace directory:

2. Upgrade the OpenRAG package:

docker system prune -f

cd openrag-workspace

https://pypi.org/project/openrag/

To upgrade to a specific version:

3. After upgrading the Python package, upgrade your containers.

Python project with uv add

1. Navigate to your project directory:

2. Update OpenRAG to the latest version:

To upgrade to a specific version:

3. Start the OpenRAG TUI:

4. After upgrading the Python package, upgrade your containers.

Existing virtual environment with uv pip install

1. Activate your virtual environment.

2. Upgrade OpenRAG:

uvx --from openrag openrag

uvx --from openrag==0.1.33 openrag

cd YOUR_PROJECT_NAME

uv add --upgrade openrag

uv add --upgrade openrag==0.1.33

uv run openrag

uv pip install --upgrade openrag

To upgrade to a specific version:

3. Start the OpenRAG TUI:

4. After upgrading the Python package, upgrade your containers.

Upgrade OpenRAG containers with the TUI

After upgrading the OpenRAG Python package, upgrade your containers to ensure they

match the latest version. Upgrade runs docker compose pull , which pulls

container images based on versions specified in your .env file. OPENRAG_VERSION is

set to latest by default, so it pulls the latest available container images.

1. In the OpenRAG TUI, click Status, and then click Upgrade.

2. When the upgrade completes, close the Status window and continue using

OpenRAG.

If you encounter a langflow container already exists error during upgrade, see

Langflow container already exists during upgrade in the troubleshooting guide.

To pin container versions to a specific release other than latest , set the

OPENRAG_VERSION in your .env file:

For more information, see System settings environment variables.

Diagnostics

The Diagnostics menu provides health monitoring for your container runtimes and

monitoring of your OpenSearch security.

Reinstall OpenRAG

uv pip install --upgrade openrag==0.1.33

uv run openrag

OPENRAG_VERSION=0.1.33

To reinstall OpenRAG with a completely fresh setup:

1. Reset your containers using the Reset button in the TUI status menu. This removes

all containers, volumes, and data.

2. Optional: Delete your project's .env file. The Reset operation does not remove your

project's .env file, so your passwords, API keys, and OAuth settings can be

preserved. If you delete the .env file, run the Set up OpenRAG with the TUI process

again to create a new configuration.

3. In the TUI Setup menu, follow these steps from Basic Setup:

i. Click Start All Services to pull container images and start them.

ii. Under Native Services, click Start to start the Docling service.

iii. Click Open App to open the OpenRAG application.

iv. Continue with Application Onboarding.

Install OpenRAG containers
OpenRAG has two Docker Compose files. Both files deploy the same applications and

containers locally, but they are for different environments.

docker-compose.yml is an OpenRAG deployment with GPU support for

accelerated AI processing. This Docker Compose file requires an NVIDIA GPU with

CUDA support.

docker-compose-cpu.yml is a CPU-only version of OpenRAG for systems without

NVIDIA GPU support. Use this Docker Compose file for environments where GPU

drivers aren't available.

Prerequisites

Install Python Version 3.10 to 3.13

Install uv

Install Podman (recommended) or Docker

Install Docker Compose. If using Podman, use podman-compose or alias Docker

compose commands to Podman commands.

Optional: Create an OpenAI API key. You can provide this key during Application

Onboarding or choose a different model provider.

Optional: Install GPU support with an NVIDIA GPU, CUDA support, and compatible

NVIDIA drivers on the OpenRAG host machine. If you don't have GPU capabilities,

OpenRAG provides an alternate CPU-only deployment.

Install OpenRAG with Docker Compose

To install OpenRAG with Docker Compose, do the following:

1. Clone the OpenRAG repository.

2. Install dependencies.

git clone https://github.com/langflow-ai/openrag.git
cd openrag

https://github.com/langflow-ai/openrag/blob/main/docker-compose.yml
https://docs.nvidia.com/cuda/
https://github.com/langflow-ai/openrag/blob/main/docker-compose-cpu.yml
https://www.python.org/downloads/release/python-3100/
https://docs.astral.sh/uv/getting-started/installation/
https://podman.io/docs/installation
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/
https://docs.podman.io/en/latest/markdown/podman-compose.1.html
https://platform.openai.com/api-keys
https://docs.nvidia.com/cuda/

3. Copy the example .env file included in the repository root. The example file

includes all environment variables with comments to guide you in finding and setting

their values.

Alternatively, create a new .env file in the repository root.

4. The Docker Compose files are populated with the values from your .env file. The

OPENSEARCH_PASSWORD value must be set. OPENSEARCH_PASSWORD can be

automatically generated when using the TUI, but for a Docker Compose installation,

you can set it manually instead. To generate an OpenSearch admin password, see

the OpenSearch documentation.

The following values are optional:

OPENAI_API_KEY is optional. You can provide it during Application Onboarding or

choose a different model provider. If you want to set it in your .env file, you can find

your OpenAI API key in your OpenAI account.

LANGFLOW_SECRET_KEY is optional. Langflow will auto-generate it if not set. For

more information, see the Langflow documentation.

The following Langflow configuration values are optional but important to consider:

uv sync

cp .env.example .env

touch .env

OPENAI_API_KEY=your_openai_api_key
LANGFLOW_SECRET_KEY=your_secret_key

LANGFLOW_SUPERUSER=admin
LANGFLOW_SUPERUSER_PASSWORD=your_langflow_password

https://docs.opensearch.org/latest/security/configuration/demo-configuration/#setting-up-a-custom-admin-password
https://platform.openai.com/api-keys
https://docs.langflow.org/api-keys-and-authentication#langflow-secret-key

LANGFLOW_SUPERUSER defaults to admin . You can omit it or set it to a different

username. LANGFLOW_SUPERUSER_PASSWORD is optional. If omitted, Langflow runs

in autologin mode with no password required. If set, Langflow requires password

authentication.

For more information on configuring OpenRAG with environment variables, see

Environment variables.

5. Start docling serve on the host machine. OpenRAG Docker installations require

that docling serve is running on port 5001 on the host machine. This enables

Mac MLX support for document processing.

6. Confirm docling serve is running.

Make sure the response shows that docling serve is running, for example:

7. Deploy OpenRAG locally with Docker Compose based on your deployment type.

docker-compose.yml

docker-compose-cpu.yml

uv run python scripts/docling_ctl.py start --port 5001

uv run python scripts/docling_ctl.py status

Status: running
Endpoint: http://127.0.0.1:5001
Docs: http://127.0.0.1:5001/docs
PID: 27746

docker compose build
docker compose up -d

docker compose -f docker-compose-cpu.yml up -d

https://docs.langflow.org/api-keys-and-authentication#langflow-auto-login
https://opensource.apple.com/projects/mlx/

The OpenRAG Docker Compose file starts five containers:

Container Name Default Address Purpose

OpenRAG Backend http://localhost:8000 FastAPI server and core
functionality.

OpenRAG Frontend http://localhost:3000 React web interface for users.

Langflow http://localhost:7860 AI workflow engine and flow
management.

OpenSearch http://localhost:9200 Vector database for document
storage.

OpenSearch
Dashboards http://localhost:5601 Database administration interface.

8. Verify installation by confirming all services are running.

You can now access OpenRAG at the following endpoints:

Frontend: http://localhost:3000

Backend API: http://localhost:8000

Langflow: http://localhost:7860

9. Continue with Application Onboarding.

To stop docling serve when you're done with your OpenRAG deployment, run:

Application onboarding

The first time you start OpenRAG, whether using the TUI or a .env file, you must

complete application onboarding.

WARNING

docker compose ps

uv run python scripts/docling_ctl.py stop

http://localhost:8000/
http://localhost:3000/
http://localhost:7860/
http://localhost:9200/
http://localhost:5601/
http://localhost:3000/
http://localhost:8000/
http://localhost:7860/

Most values from onboarding can be changed later in the OpenRAG Settings page,

but there are important restrictions.

The language model provider and embeddings model provider can only be

selected at onboarding. To change your provider selection later, you must reinstall

OpenRAG.

You can use different providers for your language model and embedding model,

such as Anthropic for the language model and OpenAI for the embeddings model.

Choose one LLM provider and complete these steps:

Anthropic

INFO

Anthropic does not provide embedding models. If you select Anthropic for your

language model, you must then select a different provider for embeddings.

1. Enable Use environment Anthropic API key to automatically use your key from the

.env file. Alternatively, paste an Anthropic API key into the field.

2. Under Advanced settings, select your Language Model.

3. Click Complete.

4. In the second onboarding panel, select a provider for embeddings and select your

Embedding Model.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a

Document. Alternatively, click Skip overview.

6. Continue with the Quickstart.

OpenAI

1. Enable Get API key from environment variable to automatically enter your key

from the TUI-generated .env file. Alternatively, paste an OpenAI API key into the

field.

2. Under Advanced settings, select your Language Model.

3. Click Complete.

4. In the second onboarding panel, select a provider for embeddings and select your

Embedding Model.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a

Document. Alternatively, click Skip overview.

6. Continue with the Quickstart.

IBM watsonx.ai

1. Complete the fields for watsonx.ai API Endpoint, IBM Project ID, and IBM API key.

These values are found in your IBM watsonx deployment.

2. Under Advanced settings, select your Language Model.

3. Click Complete.

4. In the second onboarding panel, select a provider for embeddings and select your

Embedding Model.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a

Document. Alternatively, click Skip overview.

6. Continue with the Quickstart.

Ollama

TIP

Ollama is not included with OpenRAG. To install Ollama, see the Ollama

documentation.

1. To connect to an Ollama server running on your local machine, enter your Ollama

server's base URL address. The default Ollama server address is

http://localhost:11434 . OpenRAG connects to the Ollama server and

populates the model lists with the server's available models.

2. Select the Embedding Model and Language Model your Ollama server is running.

Ollama model selection and external server configuration

Using Ollama for your OpenRAG language model provider offers greater flexibility and

configuration, but can also be overwhelming to start. These recommendations are a

reasonable starting point for users with at least one GPU and experience running LLMs

locally.

For best performance, OpenRAG recommends OpenAI's gpt-oss:20b language model.

However, this model uses 16GB of RAM, so consider using Ollama Cloud or running

Ollama on a remote machine.

https://docs.ollama.com/
https://docs.ollama.com/

For generating embeddings, OpenRAG recommends the nomic-embed-text
embedding model, which provides high-quality embeddings optimized for retrieval tasks.

To run models in Ollama Cloud, follow these steps:

1. Sign in to Ollama Cloud. In a terminal, enter ollama signin to connect your local

environment with Ollama Cloud.

2. To run the model, in Ollama, select the gpt-oss:20b-cloud model, or run ollama

run gpt-oss:20b-cloud in a terminal. Ollama Cloud models are run at the same

URL as your local Ollama server at http://localhost:11434 , and automatically

offloaded to Ollama's cloud service.

3. Connect OpenRAG to the same local Ollama server as you would for local models in

onboarding, using the default address of http://localhost:11434 .

4. In the Language model field, select the gpt-oss:20b-cloud model.

To run models on a remote Ollama server, follow these steps:

1. Ensure your remote Ollama server is accessible from your OpenRAG instance.

2. In the Ollama Base URL field, enter your remote Ollama server's base URL, such as

http://your-remote-server:11434 . OpenRAG connects to the remote Ollama

server and populates the lists with the server's available models.

3. Select your Embedding model and Language model from the available options.

3. Click Complete.

4. To complete the onboarding tasks, click What is OpenRAG, and then click Add a

Document.

5. Continue with the Quickstart.

Container management commands

Manage your OpenRAG containers with the following commands. These commands are

also available in the TUI's Status menu.

Upgrade containers

Upgrade your containers to the latest version while preserving your data.

https://ollama.com/library/nomic-embed-text
https://docs.ollama.com/cloud

Rebuild containers (destructive)

Reset state by rebuilding all of your containers. Your OpenSearch and Langflow

databases will be lost. Documents stored in the ./documents directory will persist,

since the directory is mounted as a volume in the OpenRAG backend container.

Remove all containers and data (destructive)

Completely remove your OpenRAG installation and delete all data. This deletes all of your

data, including OpenSearch data, uploaded documents, and authentication.

docker compose pull
docker compose up -d --force-recreate

docker compose up --build --force-recreate --remove-orphans

docker compose down --volumes --remove-orphans --rmi local
docker system prune -f

Langflow in OpenRAG
OpenRAG leverages Langflow's Agent component to power the OpenRAG OpenSearch

Agent flow.

Flows in Langflow are functional representations of application workflows, with multiple

component nodes connected as single steps in a workflow.

In the OpenRAG OpenSearch Agent flow, components like the Langflow Agent

component and OpenSearch component are connected to intelligently chat with your

knowledge by embedding your query, comparing it the vector database embeddings, and

generating a response with the LLM.

The Agent component shines here in its ability to make decisions on not only what query

should be sent, but when a query is necessary to solve the problem at hand.

How do agents work?

Agents extend Large Language Models (LLMs) by integrating tools, which are functions

that provide additional context and enable autonomous task execution. These

integrations make agents more specialized and powerful than standalone LLMs.

Whereas an LLM might generate acceptable, inert responses to general queries and

tasks, an agent can leverage the integrated context and tools to provide more relevant

https://docs.langflow.org/concepts-overview
https://docs.langflow.org/concepts-components
https://docs.langflow.org/agents
https://docs.langflow.org/agents
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch

responses and even take action. For example, you might create an agent that can access

your company's documentation, repositories, and other resources to help your team with

tasks that require knowledge of your specific products, customers, and code.

Agents use LLMs as a reasoning engine to process input, determine which actions to

take to address the query, and then generate a response. The response could be a

typical text-based LLM response, or it could involve an action, like editing a file, running a

script, or calling an external API.

In an agentic context, tools are functions that the agent can run to perform tasks or

access external resources. A function is wrapped as a Tool object with a common

interface that the agent understands. Agents become aware of tools through tool

registration, which is when the agent is provided a list of available tools typically at agent

initialization. The Tool object's description tells the agent what the tool can do so that it

can decide whether the tool is appropriate for a given request.

Use the OpenRAG OpenSearch Agent flow

If you've chatted with your knowledge in OpenRAG, you've already experienced the

OpenRAG OpenSearch Agent chat flow. To switch OpenRAG over to the Langflow visual

editor and view the OpenRAG OpenSearch Agentflow, click Settings, and then click

Edit in Langflow. This flow contains eight components connected together to chat with

your data:

The Agent component orchestrates the entire flow by deciding when to search the

knowledge base, how to formulate search queries, and how to combine retrieved

information with the user's question to generate a comprehensive response. The

Agent behaves according to the prompt in the Agent Instructions field.

The Chat Input component is connected to the Agent component's Input port. This

allows to flow to be triggered by an incoming prompt from a user or application.

The OpenSearch component is connected to the Agent component's Tools port.

The agent may not use this database for every request; the agent only uses this

connection if it decides the knowledge can help respond to the prompt.

The Language Model component is connected to the Agent component's Language

Model port. The agent uses the connected LLM to reason through the request sent

through Chat Input.

https://docs.langflow.org/concepts-overview
https://docs.langflow.org/concepts-overview
https://docs.langflow.org/agents
https://docs.langflow.org/agents
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/components-models
https://docs.langflow.org/components-models

The Embedding Model component is connected to the OpenSearch component's

Embedding port. This component converts text queries into vector representations

that are compared with document embeddings stored in OpenSearch for semantic

similarity matching. This gives your Agent's queries context.

The Text Input component is populated with the global variable OPENRAG-QUERY-

FILTER . This filter is the Knowledge filter, and filters which knowledge sources to

search through.

The Agent component's Output port is connected to the Chat Output component,

which returns the final response to the user or application.

An MCP Tools component is connected to the Agent's Tools port. This component

calls the OpenSearch URL Ingestion flow, which Langflow uses as an MCP server to

fetch content from URLs and store in OpenSearch.

All flows included with OpenRAG are designed to be modular, performant, and provider-

agnostic. To modify a flow, click Settings, and click Edit in Langflow. OpenRAG's

visual editor is based on the Langflow visual editor, so you can edit your flows to match

your specific use case.

For an example of changing out the agent's language model in OpenRAG, see the

Quickstart.

To restore the flow to its initial state, in OpenRAG, click Settings, and then click

Restore Flow. OpenRAG warns you that this discards all custom settings. Click Restore

to restore the flow.

Additional Langflow functionality

Langflow includes features beyond Agents to help you integrate OpenRAG into your

application, and all Langflow features are included in OpenRAG.

Langflow can serve your flows as an MCP server, or consume other MCP servers as

an MCP client. Get started with the MCP tutorial.

If you don't see the component you need, extend Langflow's functionality by

creating custom Python components.

Langflow offers component bundles to integrate with many popular vector stores,

AI/ML providers, and search APIs.

https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-client
https://docs.langflow.org/concepts-overview
https://docs.langflow.org/mcp-server
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-tutorial
https://docs.langflow.org/components-custom-components
https://docs.langflow.org/components-bundle-components

OpenSearch in OpenRAG
OpenRAG uses OpenSearch for its vector-backed knowledge store. This is a specialized

database for storing and retrieving embeddings, which helps your Agent efficiently find

relevant information. OpenSearch provides powerful hybrid search capabilities with

enterprise-grade security and multi-tenancy support.

Authentication and document access

OpenRAG supports two authentication modes based on how you install OpenRAG, and

which mode you choose affects document access.

No-auth mode (Basic Setup): This mode uses a single anonymous JWT token for

OpenSearch authentication, so documents uploaded to the documents index by one

user are visible to all other users on the OpenRAG server.

OAuth mode (Advanced Setup): Each OpenRAG user is granted a JWT token, and each

document is tagged with user ownership. Documents are filtered by user ownership,

ensuring users only see documents they uploaded or have access to.

Ingest knowledge

OpenRAG supports knowledge ingestion through direct file uploads and OAuth

connectors. To configure the knowledge ingestion pipeline parameters, see Docling

Ingestion.

Direct file ingestion

The Knowledge Ingest flow uses Langflow's File component to split and embed files

loaded from your local machine into the OpenSearch database.

The default path to your local folder is mounted from the ./documents folder in your

OpenRAG project directory to the /app/documents/ directory inside the Docker

container. Files added to the host or the container will be visible in both locations. To

configure this location, modify the Documents Paths variable in either the TUI's

Advanced Setup menu or in the .env used by Docker Compose.

To load and process a single file from the mapped location, click Add Knowledge, and

then click File. The file is loaded into your OpenSearch database, and appears in the

https://docs.opensearch.org/latest/
https://docs.langflow.org/components-data#file
https://docs.langflow.org/components-data#file

Knowledge page.

To load and process a directory from the mapped location, click Add Knowledge, and

then click Folder. The files are loaded into your OpenSearch database, and appear in

the Knowledge page.

To add files directly to a chat session, click in the chat input and select the files you

want to include. Files added this way are processed and made available to the agent for

the current conversation, and are not permanently added to the knowledge base.

Ingest files through OAuth connectors

OpenRAG supports Google Drive, OneDrive, and Sharepoint as OAuth connectors for

seamless document synchronization.

OAuth integration allows individual users to connect their personal cloud storage

accounts to OpenRAG. Each user must separately authorize OpenRAG to access their

own cloud storage files. When a user connects a cloud service, they are redirected to

authenticate with that service provider and grant OpenRAG permission to sync

documents from their personal cloud storage.

Before users can connect their cloud storage accounts, you must configure OAuth

credentials in OpenRAG. This requires registering OpenRAG as an OAuth application with

a cloud provider and obtaining client ID and secret keys for each service you want to

support.

To add an OAuth connector to OpenRAG, do the following. This example uses Google

OAuth. If you wish to use another provider, add the secrets to another provider.

TUI

1. If OpenRAG is running, stop it with Status > Stop Services.

2. Click Advanced Setup.

3. Add the OAuth provider's client and secret key in the Advanced Setup menu.

4. Click Save Configuration. The TUI generates a new .env file with your OAuth

values.

5. Click Start Container Services.

.env

1. Stop the Docker deployment.

2. Add the OAuth provider's client and secret key in the .env file for Docker Compose.

3. Save your .env file.

4. Start the Docker deployment.

The OpenRAG frontend at http://localhost:3000 now redirects to an OAuth callback

login page for your OAuth provider. A successful authentication opens OpenRAG with the

required scopes for your connected storage.

To add knowledge from an OAuth-connected storage provider, do the following:

1. Click Add Knowledge, and then select the storage provider, for example, Google

Drive. The Add Cloud Knowledge page opens.

2. To add files or folders from the connected storage, click Add Files. Select the files

or folders you want and click Select. You can select multiple files.

3. When your files are selected, click Ingest Files. The ingestion process may take

some time, depending on the size of your documents.

4. When ingestion is complete, your documents are available in the Knowledge screen.

If ingestion fails, click Status to view the logged error.

Monitor ingestion tasks

When you upload files, process folders, or sync documents, OpenRAG processes them

as background tasks. A badge appears on the Tasks icon when there are active tasks

running. To open the Tasks menu, click Tasks.

Active Tasks shows tasks that are currently processing. A Pending task is queued and

waiting to start, a Running task is actively processing files, and a Processing task is

performing ingestion operations. For each active task, you can find the task ID, start

time, duration, the number of files processed so far, and the total files.

You can cancel active tasks by clicking Cancel. Canceling a task stops processing

immediately and marks the task as failed.

GOOGLE_OAUTH_CLIENT_ID='YOUR_OAUTH_CLIENT_ID'
GOOGLE_OAUTH_CLIENT_SECRET='YOUR_OAUTH_CLIENT_SECRET'

Explore knowledge

The Knowledge page lists the documents OpenRAG has ingested into the OpenSearch

vector database's documents index.

To explore your current knowledge, click Knowledge. Click on a document to display

the chunks derived from splitting the default documents into the vector database.

Documents are processed with the default Knowledge Ingest flow, so if you want to split

your documents differently, edit the Knowledge Ingest flow.

All flows included with OpenRAG are designed to be modular, performant, and provider-

agnostic. To modify a flow, click Settings, and click Edit in Langflow. OpenRAG's

visual editor is based on the Langflow visual editor, so you can edit your flows to match

your specific use case.

Create knowledge filters

OpenRAG includes a knowledge filter system for organizing and managing document

collections. Knowledge filters are saved search configurations that allow you to create

custom views of your document collection. They store search queries, filter criteria, and

display settings that can be reused across different parts of OpenRAG.

Knowledge filters help agents work more efficiently with large document collections by

focusing their context within relevant documents sets.

To create a knowledge filter, do the following:

1. Click Knowledge, and then click Knowledge Filters. The Knowledge Filter

pane appears.

2. Enter a Name and Description, and then click Create Filter. A new filter is created

with default settings that match all documents.

3. To modify the filter, click Knowledge, and then click your new filter to edit it in

the Knowledge Filter pane.

The following filter options are configurable.

https://docs.langflow.org/concepts-overview

Search Query: Enter text for semantic search, such as "financial reports from

Q4".

Data Sources: Select specific data sources or folders to include.

Document Types: Filter by file type.

Owners: Filter by who uploaded the documents.

Connectors: Filter by connector types, such as local upload or Google Drive.

Response Limit: Set maximum number of results. The default is 10 .

Score Threshold: Set minimum relevance score. The default score is 0 .

4. When you're done editing the filter, click Update Filter.

5. To apply the filter to OpenRAG globally, click Knowledge, and then select the

filter to apply. One filter can be enabled at a time.

To apply the filter to a single chat session, in the Chat window, click , and

then select the filter to apply.

To delete the filter, in the Knowledge Filter pane, click Delete Filter.

OpenRAG default configuration

OpenRAG automatically detects and configures the correct vector dimensions for

embedding models, ensuring optimal search performance and compatibility.

The complete list of supported models is available at models_service.py in the

OpenRAG repository.

You can use custom embedding models by specifying them in your configuration.

If you use an unknown embedding model, OpenRAG will automatically fall back to 1536

dimensions and log a warning. The system will continue to work, but search quality may

be affected if the actual model dimensions differ from 1536 .

The default embedding dimension is 1536 and the default model is text-embedding-

3-small .

For models with known vector dimensions, see settings.py in the OpenRAG

repository.

https://github.com/langflow-ai/openrag/blob/main/src/services/models_service.py
https://github.com/langflow-ai/openrag/blob/main/src/services/models_service.py
https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py
https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py

Docling in OpenRAG
OpenRAG uses Docling for document ingestion. More specifically, OpenRAG uses

Docling Serve, which starts a docling serve process on your local machine and runs

Docling ingestion through an API service.

Docling ingests documents from your local machine or OAuth connectors, splits them

into chunks, and stores them as separate, structured documents in the OpenSearch

documents index.

OpenRAG chose Docling for its support for a wide variety of file formats, high

performance, and advanced understanding of tables and images.

To modify OpenRAG's ingestion settings, including the Docling settings and ingestion

flows, click 2" aria-hidden="true"/> Settings.

Knowledge ingestion settings

These settings configure the Docling ingestion parameters.

OpenRAG will warn you if docling serve is not running. To start or stop docling

serve or any other native services, in the TUI main menu, click Start Native Services or

Stop Native Services.

Embedding model determines which AI model is used to create vector embeddings. The

default is the OpenAI text-embedding-3-small model.

Chunk size determines how large each text chunk is in number of characters. Larger

chunks yield more context per chunk, but may include irrelevant information. Smaller

chunks yield more precise semantic search, but may lack context. The default value of

1000 characters provides a good starting point that balances these considerations.

Chunk overlap controls the number of characters that overlap over chunk boundaries.

Use larger overlap values for documents where context is most important, and use

smaller overlap values for simpler documents, or when optimization is most important.

The default value of 200 characters of overlap with a chunk size of 1000 (20% overlap) is

suitable for general use cases. Decrease the overlap to 10% for a more efficient pipeline,

or increase to 40% for more complex documents.

https://docling-project.github.io/docling/
https://github.com/docling-project/docling-serve

Table Structure enables Docling's DocumentConverter tool for parsing tables. Instead

of treating tables as plain text, tables are output as structured table data with preserved

relationships and metadata. Table Structure is enabled by default.

OCR enables or disabled OCR processing when extracting text from images and scanned

documents. OCR is disabled by default. This setting is best suited for processing text-

based documents as quickly as possible with Docling's DocumentConverter . Images

are ignored and not processed.

Enable OCR when you are processing documents containing images with text that

requires extraction, or for scanned documents. Enabling OCR can slow ingestion

performance.

If OpenRAG detects that the local machine is running on macOS, OpenRAG uses the

ocrmac OCR engine. Other platforms use easyocr.

Picture descriptions adds image descriptions generated by the SmolVLM-256M-

Instruct model to OCR processing. Enabling picture descriptions can slow ingestion

performance.

Knowledge ingestion flows

Flows in Langflow are functional representations of application workflows, with multiple

component nodes connected as single steps in a workflow.

The OpenSearch Ingestion flow is the default knowledge ingestion flow in OpenRAG:

when you Add Knowledge in OpenRAG, you run the OpenSearch Ingestion flow in the

background. The flow ingests documents using Docling Serve to import and process

documents.

This flow contains ten components connected together to process and store documents

in your knowledge base.

The Docling Serve component processes input documents by connecting to your

instance of Docling Serve.

The Export DoclingDocument component exports the processed DoclingDocument

to markdown format with image export mode set to placeholder. This conversion

makes the structured document data into a standardized format for further

processing.

https://docling-project.github.io/docling/reference/document_converter/
https://docling-project.github.io/docling/reference/document_converter/
https://www.piwheels.org/project/ocrmac/
https://www.jaided.ai/easyocr/
https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct
https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct
https://docs.langflow.org/concepts-overview
https://docs.langflow.org/concepts-components
https://docs.langflow.org/bundles-docling
https://docs.langflow.org/bundles-docling
https://docs.langflow.org/components-docling
https://docs.langflow.org/components-docling

Three DataFrame Operations components sequentially add metadata columns to

the document data of filename , file_size , and mimetype .

The Split Text component splits the processed text into chunks with a chunk size of

1000 characters and an overlap of 200 characters.

Four Secret Input components provide secure access to configuration variables:

CONNECTOR_TYPE , OWNER , OWNER_EMAIL , and OWNER_NAME . These are runtime

variables populated from OAuth login.

The Create Data component combines the secret inputs into a structured data

object that will be associated with the document embeddings.

The Embedding Model component generates vector embeddings using OpenAI's

text-embedding-3-small model. The embedding model is selected at

[Application onboarding] and cannot be changed.

The OpenSearch component stores the processed documents and their

embeddings in the documents index at https://opensearch:9200 . By default,

the component is authenticated with a JWT token, but you can also select basic
auth mode, and enter your OpenSearch admin username and password.

All flows included with OpenRAG are designed to be modular, performant, and provider-

agnostic. To modify a flow, click Settings, and click Edit in Langflow. OpenRAG's

visual editor is based on the Langflow visual editor, so you can edit your flows to match

your specific use case.

OpenSearch URL Ingestion flow

An additional knowledge ingestion flow is included in OpenRAG, where it is used as an

MCP tool by the Open Search Agent flow. The agent calls this component to fetch web

content, and the results are ingested into OpenSearch.

For more on using MCP clients in Langflow, see MCP clients.

To connect additional MCP servers to the MCP client, see Connect to MCP servers from

your application.

Use OpenRAG default ingestion instead of Docling
serve

If you want to use OpenRAG's built-in pipeline instead of Docling serve, set

DISABLE_INGEST_WITH_LANGFLOW=true in Environment variables.

https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/concepts-overview
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-tutorial
https://docs.langflow.org/mcp-tutorial

The built-in pipeline still uses the Docling processor, but uses it directly without the

Docling Serve API.

For more information, see processors.py in the OpenRAG repository.

https://github.com/langflow-ai/openrag/blob/main/src/models/processors.py#L58

Environment variables
OpenRAG recognizes environment variables from the following sources:

Environment variables - Values set in the .env file.

Langflow runtime overrides - Langflow components may tweak environment

variables at runtime.

Default or fallback values - These values are default or fallback values if OpenRAG

doesn't find a value.

Configure environment variables

Environment variables are set in a .env file in the root of your OpenRAG project

directory.

For an example .env file, see .env.example in the OpenRAG repository.

The Docker Compose files are populated with values from your .env , so you don't need

to edit the Docker Compose files manually.

Environment variables always take precedence over other variables.

Set environment variables

To set environment variables, do the following.

1. Stop OpenRAG.

2. Set the values in the .env file:

3. Start OpenRAG.

Updating provider API keys or provider endpoints in the .env file will not take effect

after Application onboarding. To change these values, you must:

1. Stop OpenRAG.

2. Remove the containers:

LOG_LEVEL=DEBUG
LOG_FORMAT=json
SERVICE_NAME=openrag-dev

https://github.com/langflow-ai/openrag/blob/main/.env.example

3. Update the values in your .env file.

4. Start OpenRAG containers.

5. Complete Application onboarding again.

Supported environment variables

All OpenRAG configuration can be controlled through environment variables.

AI provider settings

Configure which AI models and providers OpenRAG uses for language processing and

embeddings. For more information, see Application onboarding.

Variable Default Description

EMBEDDING_MODEL
text-
embedding-3-
small

Embedding model for vector search.

LLM_MODEL gpt-4o-mini Language model for the chat agent.

MODEL_PROVIDER openai Model provider, such as OpenAI or
IBM watsonx.ai.

OPENAI_API_KEY -

Your OpenAI API key. Optional. Can
be provided during application
onboarding when installing
OpenRAG.

PROVIDER_API_KEY - API key for the model provider.

PROVIDER_ENDPOINT - Custom provider endpoint. Only
used for IBM or Ollama providers.

PROVIDER_PROJECT_ID -
Project ID for providers. Only
required for the IBM watsonx.ai
provider.

docker-compose down

docker-compose up -d

Document processing

Control how OpenRAG processes and ingests documents into your knowledge base. For

more information, see Ingestion.

Variable Default Description

CHUNK_OVERLAP 200 Overlap between chunks.

CHUNK_SIZE 1000 Text chunk size for
document processing.

DISABLE_INGEST_WITH_LANGFLOW false Disable Langflow ingestion
pipeline.

DOCLING_OCR_ENGINE - OCR engine for document
processing.

OCR_ENABLED false Enable OCR for image
processing.

OPENRAG_DOCUMENTS_PATHS ./documents Document paths for
ingestion.

PICTURE_DESCRIPTIONS_ENABLED false Enable picture descriptions.

Langflow settings

Configure Langflow authentication.

Variable Default Description

LANGFLOW_AUTO_LOGIN False
Enable auto-
login for
Langflow.

LANGFLOW_CHAT_FLOW_ID pre-filled

This value is
pre-filled.
The default
value is
found in
.env.example.

LANGFLOW_ENABLE_SUPERUSER_CLI False Enable
superuser

https://github.com/langflow-ai/openrag/blob/main/.env.example

Variable Default Description

CLI.

LANGFLOW_INGEST_FLOW_ID pre-filled

This value is
pre-filled.
The default
value is
found in
.env.example.

LANGFLOW_KEY auto-generated
Explicit
Langflow API
key.

LANGFLOW_NEW_USER_IS_ACTIVE False
New users
are active by
default.

LANGFLOW_PUBLIC_URL http://localhost:7860 Public URL
for Langflow.

LANGFLOW_SECRET_KEY -

Secret key
for Langflow
internal
operations.

LANGFLOW_SUPERUSER -

Langflow
admin
username.
Required.

LANGFLOW_SUPERUSER_PASSWORD -

Langflow
admin
password.
Required.

LANGFLOW_URL http://localhost:7860 Langflow
URL.

NUDGES_FLOW_ID pre-filled

This value is
pre-filled.
The default
value is
found in
.env.example.

SYSTEM_PROMPT "You are a helpful AI
assistant with access to a

System
prompt for

https://github.com/langflow-ai/openrag/blob/main/.env.example
https://github.com/langflow-ai/openrag/blob/main/.env.example

Variable Default Description

knowledge base. Answer
questions based on the
provided context."

the Langflow
agent.

OAuth provider settings

Configure OAuth providers and external service integrations.

Variable Default Description

AWS_ACCESS_KEY_ID / AWS_SECRET_ACCESS_KEY - AWS integrations.

GOOGLE_OAUTH_CLIENT_ID /
GOOGLE_OAUTH_CLIENT_SECRET - Google OAuth

authentication.

MICROSOFT_GRAPH_OAUTH_CLIENT_ID /
MICROSOFT_GRAPH_OAUTH_CLIENT_SECRET - Microsoft OAuth.

WEBHOOK_BASE_URL -
Base URL for
webhook
endpoints.

OpenSearch settings

Configure OpenSearch database authentication.

Variable Default Description

OPENSEARCH_HOST localhost OpenSearch host.

OPENSEARCH_PASSWORD - Password for OpenSearch admin user.
Required.

OPENSEARCH_PORT 9200 OpenSearch port.

OPENSEARCH_USERNAME admin OpenSearch username.

System settings

Configure general system components, session management, and logging.

Variable Default Description

LANGFLOW_KEY_RETRIES 15 Number of retries for Langflow key
generation.

LANGFLOW_KEY_RETRY_DELAY 2.0 Delay between retries in seconds.

LANGFLOW_VERSION latest Langflow Docker image version.

LOG_FORMAT - Log format (set to "json" for JSON
output).

LOG_LEVEL INFO Logging level (DEBUG, INFO,
WARNING, ERROR).

MAX_WORKERS - Maximum number of workers for
document processing.

OPENRAG_VERSION latest OpenRAG Docker image version.

SERVICE_NAME openrag Service name for logging.

SESSION_SECRET auto-
generated Session management.

Langflow runtime overrides

Langflow runtime overrides allow you to modify component settings at runtime without

changing the base configuration.

Runtime overrides are implemented through tweaks - parameter modifications that are

passed to specific Langflow components during flow execution.

For more information on tweaks, see Input schema (tweaks).

Default values and fallbacks

When no environment variables or configuration file values are provided, OpenRAG uses

default values. These values can be found in the code base at the following locations.

OpenRAG configuration defaults

These values are defined in config_manager.py in the OpenRAG repository.

https://docs.langflow.org/concepts-publish#input-schema
https://github.com/langflow-ai/openrag/blob/main/src/config/config_manager.py

System configuration defaults

These fallback values are defined in settings.py in the OpenRAG repository.

https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py

Troubleshooting
This page provides troubleshooting advice for issues you might encounter when using

OpenRAG or contributing to OpenRAG.

OpenSearch fails to start

Check that OPENSEARCH_PASSWORD set in Environment variables meets requirements.

The password must contain at least 8 characters, and must contain at least one

uppercase letter, one lowercase letter, one digit, and one special character that is strong.

OpenRAG fails to start from the TUI with "Operation not
supported" error

This error occurs when starting OpenRAG with the TUI in WSL (Windows Subsystem for

Linux).

The error occurs because OpenRAG is running within a WSL environment, so

webbrowser.open() can't launch a browser automatically.

To access the OpenRAG application, open a web browser and enter

http://localhost:3000 in the address bar.

Langflow connection issues

Verify the LANGFLOW_SUPERUSER credentials set in Environment variables are correct.

Memory errors

Container out of memory errors

Increase Docker memory allocation or use docker-compose-cpu.yml to deploy

OpenRAG.

Podman on macOS memory issues

If you're using Podman on macOS, you may need to increase VM memory on your

Podman machine. This example increases the machine size to 8 GB of RAM, which

should be sufficient to run OpenRAG.

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://github.com/langflow-ai/openrag/blob/main/docker-compose-cpu.yml

Port conflicts

Ensure ports 3000, 7860, 8000, 9200, 5601 are available.

OCR ingestion fails (easyocr not installed)

If Docling ingestion fails with an OCR-related error and mentions easyocr is missing,

this is likely due to a stale uv cache.

easyocr is already included as a dependency in OpenRAG's pyproject.toml . Project-

managed installations using uv sync and uv run always sync dependencies directly

from your pyproject.toml , so they should have easyocr installed.

If you're running OpenRAG with uvx openrag , uvx creates a cached, ephemeral

environment that doesn't modify your project. This cache may become stale.

On macOS, this cache directory is typically a user cache directory such as

/Users/USER_NAME/.cache/uv .

1. To clear the uv cache, run:

2. Start OpenRAG:

If you do not need OCR, you can disable OCR-based processing in your ingestion

settings to avoid requiring easyocr .

Langflow container already exists

podman machine stop
podman machine rm
podman machine init --memory 8192 # 8 GB example
podman machine start

uv cache clean

uvx openrag

If you encounter a langflow container already exists error when upgrading

OpenRAG, this typically means you upgraded OpenRAG with uv , but didn't remove or

upgrade containers from a previous installation.

1. Remove only the problematic Langflow container:

Podman

Docker

2. After removing the container, retry the upgrade in the OpenRAG TUI by clicking

Status > Upgrade.

Reinstall all containers

If reinstalling the Langflow container doesn't resolve the issue, or if you want a

completely fresh installation, remove all OpenRAG containers and data, and then retry

the upgrade.

DATA LOSS

The complete reset removes all your data, including OpenSearch data, uploaded

documents, and authentication. Your .env file is preserved, so your configuration

settings remain intact.

1. Stop your containers and completely remove them.

Podman

Stop the langflow container
podman stop langflow
Remove the langflow container
podman rm langflow --force

Stop the langflow container
docker stop langflow
Remove the langflow container
docker rm langflow --force

Docker

2. After removing the containers, retry the upgrade in the OpenRAG TUI by clicking

Status > Upgrade.

Stop all running containers
podman stop --all
Remove all containers (including stopped ones)
podman rm --all --force
Remove all images
podman rmi --all --force
Remove all volumes
podman volume prune --force
Remove all networks (except default)
podman network prune --force
Clean up any leftover data
podman system prune --all --force --volumes

Stop all running containers
docker stop $(docker ps -q)
Remove all containers (including stopped ones)
docker rm --force $(docker ps -aq)
Remove all images
docker rmi --force $(docker images -q)
Remove all volumes
docker volume prune --force
Remove all networks (except default)
docker network prune --force
Clean up any leftover data
docker system prune --all --force --volumes

