
What is OpenRAG?
OpenRAG is an open-source package for building agentic RAG systems. It supports

integration with a wide range of orchestration tools, vector databases, and LLM

providers.

OpenRAG connects and amplifies three popular, proven open-source projects into one

powerful platform:

Langflow - Langflow is a powerful tool to build and deploy AI agents and MCP

servers. It supports all major LLMs, vector databases and a growing library of AI

tools.

OpenSearch - OpenSearch is a community-driven, Apache 2.0-licensed open source

search and analytics suite that makes it easy to ingest, search, visualize, and analyze

data.

Docling - Docling simplifies document processing, parsing diverse formats —

including advanced PDF understanding — and providing seamless integrations with

the gen AI ecosystem.

OpenRAG builds on Langflow's familiar interface while adding OpenSearch for vector

storage and Docling for simplified document parsing, with opinionated flows that serve

as ready-to-use recipes for ingestion, retrieval, and generation from popular sources like

OneDrive, Google Drive, and AWS.

What's more, every part of the stack is swappable. Write your own custom components

in Python, try different language models, and customize your flows to build an agentic

RAG system.

Ready to get started? Install OpenRAG and then run the Quickstart to create a powerful

RAG pipeline.

https://docs.langflow.org/
https://docs.opensearch.org/latest/
https://docling-project.github.io/docling/

Install OpenRAG
Install the OpenRAG Python wheel, and then run the OpenRAG Terminal User

Interface(TUI) to start your OpenRAG deployment with a guided setup process.

If you prefer running Docker commands and manually editing .env files, see Deploy with

Docker.

Prerequisites

Python Version 3.10 to 3.13

uv

Podman (recommended) or Docker installed

Docker Compose installed. If using Podman, use podman-compose or alias Docker

compose commands to Podman commands.

Create an OpenAI API key. This key is required to start OpenRAG, but you can

choose a different model provider during Application Onboarding.

Optional: GPU support requires an NVIDIA GPU with CUDA support and compatible

NVIDIA drivers installed on the OpenRAG host machine. If you don't have GPU

capabilities, OpenRAG provides an alternate CPU-only deployment.

Install the OpenRAG Python wheel

IMPORTANT

The .whl file is currently available as an internal download during public preview,

and will be published to PyPI in a future release.

The OpenRAG wheel installs the Terminal User Interface (TUI) for configuring and

running OpenRAG.

1. Create a new project with a virtual environment using uv init .

The (venv) prompt doesn't change, but uv commands will automatically use the

project's virtual environment. For more information on virtual environments, see the

uv init YOUR_PROJECT_NAME
cd YOUR_PROJECT_NAME

https://www.python.org/downloads/release/python-3100/
https://docs.astral.sh/uv/getting-started/installation/
https://podman.io/docs/installation
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/
https://docs.podman.io/en/latest/markdown/podman-compose.1.html
https://platform.openai.com/api-keys
https://docs.nvidia.com/cuda/

uv documentation.

2. Add the local OpenRAG wheel to your project's virtual environment.

Replace PATH/TO/ and VERSION with the path and version of your downloaded

OpenRAG .whl file.

For example, if your .whl file is in the ~/Downloads directory, the command is uv

add ~/Downloads/openrag-0.1.8-py3-none-any.whl .

3. Ensure all dependencies are installed and updated in your virtual environment.

4. Start the OpenRAG TUI.

5. Continue with Setup OpenRAG with the TUI.

Set up OpenRAG with the TUI

The TUI creates a .env file in your OpenRAG directory root and starts OpenRAG. If the

TUI detects a .env file in the OpenRAG root directory, it sources any variables from the

.env file. If the TUI detects OAuth credentials, it enforces the Advanced Setup path.

Basic Setup generates all of the required values for OpenRAG except the OpenAI API

key. Basic Setup does not set up OAuth connections for ingestion from cloud providers.

For OAuth setup, use Advanced Setup.

Basic Setup and Advanced Setup enforce the same authentication settings for the

Langflow server, but manage document access differently. For more information, see

Authentication and document access.

uv add PATH/TO/openrag-VERSION-py3-none-any.whl

uv sync

uv run openrag

https://docs.astral.sh/uv/pip/environments

Basic setup Advanced setup

1. To install OpenRAG with Basic Setup, click Basic Setup or press 1 .

2. Click Generate Passwords to generate passwords for OpenSearch and

Langflow.

3. Paste your OpenAI API key in the OpenAI API key field.

4. Click Save Configuration.

5. To start OpenRAG, click Start Container Services. Startup pulls container

images and runs them, so it can take some time. When startup is complete, the

TUI displays the following:

6. To open the OpenRAG application, click Open App.

7. Continue with Application Onboarding.

Application onboarding

The first time you start OpenRAG, whether using the TUI or a .env file, you must

complete application onboarding.

Most values from onboarding can be changed later in the OpenRAG Settings page, but

there are important restrictions.

The language model provider and embeddings model provider can only be selected

at onboarding, and you must use the same provider for your language model and

embedding model. To change your provider selection later, you must completely reinstall

OpenRAG.

The language model can be changed later in Settings, but the embeddings model

cannot be changed later.

OpenAI IBM watsonx.ai Ollama

Services started successfully
Command completed successfully

1. Enable Get API key from environment variable to automatically enter your key

from the TUI-generated .env file.

2. Under Advanced settings, select your Embedding Model and Language

Model.

3. To load 2 sample PDFs, enable Sample dataset. This is recommended, but not

required.

4. Click Complete.

5. Continue with the Quickstart.

Deploy with Docker
There are two different Docker Compose files. They deploy the same applications and

containers, but to different environments.

docker-compose.yml is an OpenRAG deployment with GPU support for

accelerated AI processing.

docker-compose-cpu.yml is a CPU-only version of OpenRAG for systems without

GPU support. Use this Docker compose file for environments where GPU drivers

aren't available.

Both Docker deployments depend on docling serve to be running on port 5001 on

the host machine. This enables Mac MLX support for document processing. Installing

OpenRAG with the TUI starts docling serve automatically, but for a Docker

deployment you must manually start the docling serve process.

Prerequisites

Python Version 3.10 to 3.13

uv

Podman (recommended) or Docker installed

Docker Compose installed. If you're using Podman, use podman-compose or alias

Docker compose commands to Podman commands.

Create an OpenAI API key. This key is required to start OpenRAG, but you can

choose a different model provider during Application Onboarding.

Optional: GPU support requires an NVIDIA GPU with CUDA support and compatible

NVIDIA drivers installed on the OpenRAG host machine. If you don't have GPU

capabilities, OpenRAG provides an alternate CPU-only deployment.

Deploy OpenRAG with Docker Compose

To install OpenRAG with Docker Compose, do the following:

1. Clone the OpenRAG repository.

git clone https://github.com/langflow-ai/openrag.git
cd openrag

https://github.com/langflow-ai/openrag/blob/main/docker-compose.yml
https://github.com/langflow-ai/openrag/blob/main/docker-compose-cpu.yml
https://opensource.apple.com/projects/mlx/
https://www.python.org/downloads/release/python-3100/
https://docs.astral.sh/uv/getting-started/installation/
https://podman.io/docs/installation
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/
https://docs.podman.io/en/latest/markdown/podman-compose.1.html
https://platform.openai.com/api-keys

2. Install dependencies.

3. Copy the example .env file included in the repository root. The example file

includes all environment variables with comments to guide you in finding and setting

their values.

Alternatively, create a new .env file in the repository root.

4. Set environment variables. The Docker Compose files will be populated with values

from your .env . The following values are required to be set:

For more information on configuring OpenRAG with environment variables, see

Environment variables.

5. Start docling serve on the host machine. Both Docker deployments depend on

docling serve to be running on port 5001 on the host machine. This enables Mac

MLX support for document processing.

6. Confirm docling serve is running.

uv sync

cp .env.example .env

touch .env

OPENSEARCH_PASSWORD=your_secure_password
OPENAI_API_KEY=your_openai_api_key
LANGFLOW_SUPERUSER=admin
LANGFLOW_SUPERUSER_PASSWORD=your_langflow_password
LANGFLOW_SECRET_KEY=your_secret_key

uv run python scripts/docling_ctl.py start --port 5001

https://opensource.apple.com/projects/mlx/
https://opensource.apple.com/projects/mlx/

Successful result:

7. Deploy OpenRAG with Docker Compose based on your deployment type.

For GPU-enabled systems, run the following commands:

For environments without GPU support, run:

The OpenRAG Docker Compose file starts five containers:

Container Name Default Address Purpose

OpenRAG Backend http://localhost:8000 FastAPI server and core
functionality.

OpenRAG Frontend http://localhost:3000 React web interface for users.

Langflow http://localhost:7860 AI workflow engine and flow
management.

OpenSearch http://localhost:9200 Vector database for document
storage.

OpenSearch
Dashboards http://localhost:5601 Database administration

interface.

8. Verify installation by confirming all services are running.

uv run python scripts/docling_ctl.py status

Status: running
Endpoint: http://127.0.0.1:5001
Docs: http://127.0.0.1:5001/docs
PID: 27746

docker compose build
docker compose up -d

docker compose -f docker-compose-cpu.yml up -d

http://localhost:8000/
http://localhost:3000/
http://localhost:7860/
http://localhost:9200/
http://localhost:5601/

You can now access the application at:

Frontend: http://localhost:3000

Backend API: http://localhost:8000

Langflow: http://localhost:7860

9. Continue with Application Onboarding.

To stop docling serve when you're done with your OpenRAG deployment, run:

Application onboarding

The first time you start OpenRAG, whether using the TUI or a .env file, you must

complete application onboarding.

Most values from onboarding can be changed later in the OpenRAG Settings page, but

there are important restrictions.

The language model provider and embeddings model provider can only be selected

at onboarding, and you must use the same provider for your language model and

embedding model. To change your provider selection later, you must completely reinstall

OpenRAG.

The language model can be changed later in Settings, but the embeddings model

cannot be changed later.

OpenAI IBM watsonx.ai Ollama

1. Enable Get API key from environment variable to automatically enter your key

from the TUI-generated .env file.

2. Under Advanced settings, select your Embedding Model and Language

Model.

docker compose ps

uv run python scripts/docling_ctl.py stop

http://localhost:3000/
http://localhost:8000/
http://localhost:7860/

3. To load 2 sample PDFs, enable Sample dataset. This is recommended, but not

required.

4. Click Complete.

5. Continue with the Quickstart.

Container management commands

Manage your OpenRAG containers with the following commands. These commands are

also available in the TUI's Status menu.

Upgrade containers

Upgrade your containers to the latest version while preserving your data.

Rebuild containers (destructive)

Reset state by rebuilding all of your containers. Your OpenSearch and Langflow

databases will be lost. Documents stored in the ./documents directory will persist,

since the directory is mounted as a volume in the OpenRAG backend container.

Remove all containers and data (destructive)

Completely remove your OpenRAG installation and delete all data. This deletes all of your

data, including OpenSearch data, uploaded documents, and authentication.

docker compose pull
docker compose up -d --force-recreate

docker compose up --build --force-recreate --remove-orphans

docker compose down --volumes --remove-orphans --rmi local
docker system prune -f

Quickstart
Get started with OpenRAG by loading your knowledge, swapping out your language

model, and then chatting with the OpenRAG API.

Prerequisites

Install and start OpenRAG

Find your way around

1. In OpenRAG, click Chat. The chat is powered by the OpenRAG OpenSearch

Agent. For more information, see Langflow Agents.

2. Ask What documents are available to you? The agent responds with a

message summarizing the documents that OpenRAG loads by default, which are

PDFs about evaluating data quality when using LLMs in health care. Knowledge is

stored in OpenSearch. For more information, see Knowledge.

3. To confirm the agent is correct, click Knowledge. The Knowledge page lists the

documents OpenRAG has ingested into the OpenSearch vector database. Click on a

document to display the chunks derived from splitting the default documents into

the vector database.

Add your own knowledge

1. To add documents to your knowledge base, click Add Knowledge.

Select Add File to add a single file from your local machine (mapped with the

Docker volume mount).

Select Process Folder to process an entire folder of documents from your local

machine (mapped with the Docker volume mount).

Select your cloud storage provider to add knowledge from an OAuth-connected

storage provider. For more information, see OAuth ingestion.

2. Return to the Chat window and ask a question about your loaded data. For example,

with a manual about a PC tablet loaded, ask How do I connect this device to

WiFI? The agent responds with a message indicating it now has your knowledge as

context for answering questions.

3. Click the Function Call: search_documents (tool_call) that is printed in the

Playground. These events log the agent's request to the tool and the tool's

response, so you have direct visibility into your agent's functionality. If you aren't

getting the results you need, you can further tune the knowledge ingestion and

agent behavior in the next section.

Swap out the language model to modify agent behavior

To modify the knowledge ingestion or Agent behavior, click Settings.

In this example, you'll try a different LLM to demonstrate how the Agent's response

changes. You can only change the Language model, and not the Model provider that

you started with in OpenRAG. If you're using Ollama, you can use any installed model.

1. To edit the Agent's behavior, click Edit in Langflow. You can more quickly access

the Language Model and Agent Instructions fields in this page, but for illustration

purposes, navigate to the Langflow visual builder.

2. OpenRAG warns you that you're entering Langflow. Click Proceed.

3. The OpenRAG OpenSearch Agent flow appears.

4. In the Language Model component, under Model, select a different OpenAI model.

5. Save your flow with Command+S .

6. In OpenRAG, start a new conversation by clicking the in the Conversations tab.

7. Ask the same question as before to demonstrate how a different language model

changes the results.

Integrate OpenRAG into your application

To integrate OpenRAG into your application, use the Langflow API. Make requests with

Python, TypeScript, or any HTTP client to run one of OpenRAG's default flows and get a

response, and then modify the flow further to improve results. Langflow provides code

snippets to help you get started.

1. Create a Langflow API key.

2. To navigate to the OpenRAG OpenSearch Agent flow, click Settings, and then

click Edit in Langflow in the OpenRAG OpenSearch Agent flow.

3. Click Share, and then click API access.

The default code in the API access pane constructs a request with the Langflow

server url , headers , and a payload of request data. The code snippets

automatically include the LANGFLOW_SERVER_ADDRESS and FLOW_ID values for the

flow. Replace these values if you're using the code for a different server or flow. The

default Langflow server address is http://localhost:7860.

Python TypeScript curl

Create a Langflow API key

import requests
import os
import uuid
api_key = 'LANGFLOW_API_KEY'
url = "http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID"
The complete API endpoint URL for this flow
Request payload configuration
payload = {
 "output_type": "chat",
 "input_type": "chat",

https://docs.langflow.org/api-reference-api-examples
https://docs.langflow.org/api-keys-and-authentication
http://localhost:7860/

4. Copy the snippet, paste it in a script file, and then run the script to send the request.

If you are using the curl snippet, you can run the command directly in your terminal.

If the request is successful, the response includes many details about the flow run,

including the session ID, inputs, outputs, components, durations, and more. The

following is an example of a response from running the Simple Agent template flow:

To further explore the API, see:

The Langflow Quickstart extends this example with extracting fields from the

response.

Get started with the Langflow API

 "input_value": "hello world!"
}
payload["session_id"] = str(uuid.uuid4())
headers = {"x-api-key": api_key}
try:
 # Send API request
 response = requests.request("POST", url, json=payload,
headers=headers)
 response.raise_for_status() # Raise exception for bad
status codes
 # Print response
 print(response.text)
except requests.exceptions.RequestException as e:
 print(f"Error making API request: {e}")
except ValueError as e:
 print(f"Error parsing response: {e}")

Result

https://docs.langflow.org/quickstart#extract-data-from-the-response
https://docs.langflow.org/api-reference-api-examples

Terminal User Interface (TUI) commands
The OpenRAG Terminal User Interface (TUI) allows you to set up, configure, and monitor

your OpenRAG deployment directly from the terminal, on any operating system.

OpenRAG TUI

██████╗ ██████╗ ███████╗███╗ ██╗██████╗ █████╗ ██████╗
██╔═══██╗██╔══██╗██╔════╝████╗ ██║██╔══██╗██╔══██╗██╔════╝
██║ ██║██████╔╝█████╗ ██╔██╗ ██║██████╔╝███████║██║ ███╗
██║ ██║██╔═══╝ ██╔══╝ ██║╚██╗██║██╔══██╗██╔══██║██║ ██║
╚██████╔╝██║ ███████╗██║ ╚████║██║ ██║██║ ██║╚██████╔╝
╚═════╝ ╚═╝ ╚══════╝╚═╝ ╚═══╝╚═╝ ╚═╝╚═╝ ╚═╝╚═════╝

Terminal User Interface for OpenRAG

OAuth credentials detected — Advanced Setup recommended

▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔ ▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔
 Advanced Setup Monitor Services

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

 q Quit 1 Basic Setup 2 Advanced Setup 3 Monitor Services 4 Diagnostics ▏^p palette

Instead of starting OpenRAG using Docker commands and manually editing values in the

.env file, the TUI walks you through the setup. It prompts for variables where required,

creates a .env file for you, and then starts OpenRAG.

Once OpenRAG is running, use the TUI to monitor your application, control your

containers, and retrieve logs.

Start the TUI

To start the TUI, run the following commands from the directory where you installed

OpenRAG.

The TUI Welcome Screen offers basic and advanced setup options. For more information

on setup values during installation, see Install OpenRAG.

uv sync
uv run openrag

Navigation

The TUI accepts mouse input or keyboard commands.

Arrow keys : move between options

Tab / Shift+Tab : switch fields and buttons

Enter : select/confirm

Escape : back

Q : quit

Number keys (1-4) : quick access to main screens

Container management

The TUI can deploy, manage, and upgrade your OpenRAG containers.

Start container services

Click Start Container Services to start the OpenRAG containers. The TUI automatically

detects your container runtime, and then checks if your machine has compatible GPU

support by checking for CUDA , NVIDIA_SMI , and Docker/Podman runtime support. This

check determines which Docker Compose file OpenRAG uses. The TUI then pulls the

images and deploys the containers with the following command.

If images are missing, the TUI runs docker compose pull , then runs docker compose

up -d .

Start native services

A "native" service in OpenRAG refers to a service run natively on your machine, and not

within a container. The docling serve process is a native service in OpenRAG,

because it's a document processing service that is run on your local machine, and

controlled separately from the containers.

To start or stop docling serve or any other native services, in the TUI main menu, click

Start Native Services or Stop Native Services.

To view the status, port, or PID of a native service, in the TUI main menu, click Status.

docker compose up -d

Status

The Status menu displays information on your container deployment. Here you can

check container health, find your service ports, view logs, and upgrade your containers.

To view streaming logs, select the container you want to view, and press l . To copy

your logs, click Copy to Clipboard.

To upgrade your containers, click Upgrade. Upgrade runs docker compose pull and

then docker compose up -d --force-recreate . The first command pulls the latest

images of OpenRAG. The second command recreates the containers with your data

persisted.

To reset your containers, click Reset. Reset gives you a completely fresh start. Reset

deletes all of your data, including OpenSearch data, uploaded documents, and

authentication. Reset runs two commands. It first stops and removes all containers,

volumes, and local images.

When the first command is complete, OpenRAG removes any additional Docker objects

with prune .

Diagnostics

The Diagnostics menu provides health monitoring for your container runtimes and

monitoring of your OpenSearch security.

docker compose down --volumes --remove-orphans --rmi local

docker system prune -f

Langflow Agents
OpenRAG leverages Langflow's Agent component to power the OpenRAG OpenSearch

Agent flow.

Flows in Langflow are functional representations of application workflows, with multiple

component nodes connected as single steps in a workflow.

In the OpenRAG OpenSearch Agent flow, components like the Langflow Agent

component and OpenSearch component are connected to intelligently chat with your

knowledge by embedding your query, comparing it the vector database embeddings, and

generating a response with the LLM.

The Agent component shines here in its ability to make decisions on not only what query

should be sent, but when a query is necessary to solve the problem at hand.

Use the OpenRAG OpenSearch Agent flow

If you've chatted with your knowledge in OpenRAG, you've already experienced the

OpenRAG OpenSearch Agent chat flow. To switch OpenRAG over to the Langflow visual

How do agents work?

https://docs.langflow.org/concepts-overview
https://docs.langflow.org/concepts-components
https://docs.langflow.org/agents
https://docs.langflow.org/agents
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/concepts-overview

editor and view the OpenRAG OpenSearch Agentflow, click Settings, and then click

Edit in Langflow. This flow contains eight components connected together to chat with

your data:

The Agent component orchestrates the entire flow by deciding when to search the

knowledge base, how to formulate search queries, and how to combine retrieved

information with the user's question to generate a comprehensive response. The

Agent behaves according to the prompt in the Agent Instructions field.

The Chat Input component is connected to the Agent component's Input port. This

allows to flow to be triggered by an incoming prompt from a user or application.

The OpenSearch component is connected to the Agent component's Tools port.

The agent may not use this database for every request; the agent only uses this

connection if it decides the knowledge can help respond to the prompt.

The Language Model component is connected to the Agent component's Language

Model port. The agent uses the connected LLM to reason through the request sent

through Chat Input.

The Embedding Model component is connected to the OpenSearch component's

Embedding port. This component converts text queries into vector representations

that are compared with document embeddings stored in OpenSearch for semantic

similarity matching. This gives your Agent's queries context.

The Text Input component is populated with the global variable OPENRAG-QUERY-

FILTER . This filter is the Knowledge filter, and filters which knowledge sources to

search through.

The Agent component's Output port is connected to the Chat Output component,

which returns the final response to the user or application.

An MCP Tools component is connected to the Agent's Tools port. This component

calls the OpenSearch URL Ingestion flow, which Langflow uses as an MCP server to

fetch content from URLs and store in OpenSearch.

All flows included with OpenRAG are designed to be modular, performant, and provider-

agnostic. To modify a flow, click Settings, and click Edit in Langflow. OpenRAG's

visual editor is based on the Langflow visual editor, so you can edit your flows to match

your specific use case.

For an example of changing out the agent's language model in OpenRAG, see the

Quickstart.

https://docs.langflow.org/concepts-overview
https://docs.langflow.org/agents
https://docs.langflow.org/agents
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/components-models
https://docs.langflow.org/components-models
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-client
https://docs.langflow.org/concepts-overview

To restore the flow to its initial state, in OpenRAG, click Settings, and then click

Restore Flow. OpenRAG warns you that this discards all custom settings. Click Restore

to restore the flow.

Additional Langflow functionality

Langflow includes features beyond Agents to help you integrate OpenRAG into your

application, and all Langflow features are included in OpenRAG.

Langflow can serve your flows as an MCP server, or consume other MCP servers as

an MCP client. Get started with the MCP tutorial.

If you don't see the component you need, extend Langflow's functionality by

creating custom Python components.

Langflow offers component bundles to integrate with many popular vector stores,

AI/ML providers, and search APIs.

https://docs.langflow.org/mcp-server
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-tutorial
https://docs.langflow.org/components-custom-components
https://docs.langflow.org/components-bundle-components

OpenSearch Knowledge
OpenRAG uses OpenSearch for its vector-backed knowledge store. This is a specialized

database for storing and retrieving embeddings, which helps your Agent efficiently find

relevant information. OpenSearch provides powerful hybrid search capabilities with

enterprise-grade security and multi-tenancy support.

Authentication and document access

OpenRAG supports two authentication modes based on how you install OpenRAG, and

which mode you choose affects document access.

No-auth mode (Basic Setup): This mode uses a single anonymous JWT token for

OpenSearch authentication, so documents uploaded to the documents index by one

user are visible to all other users on the OpenRAG server.

OAuth mode (Advanced Setup): Each OpenRAG user is granted a JWT token, and each

document is tagged with user ownership. Documents are filtered by user ownership,

ensuring users only see documents they uploaded or have access to.

Ingest knowledge

OpenRAG supports knowledge ingestion through direct file uploads and OAuth

connectors. To configure the knowledge ingestion pipeline parameters, see Docling

Ingestion.

Direct file ingestion

The Knowledge Ingest flow uses Langflow's File component to split and embed files

loaded from your local machine into the OpenSearch database.

The default path to your local folder is mounted from the ./documents folder in your

OpenRAG project directory to the /app/documents/ directory inside the Docker

container. Files added to the host or the container will be visible in both locations. To

configure this location, modify the Documents Paths variable in either the TUI's

Advanced Setup menu or in the .env used by Docker Compose.

To load and process a single file from the mapped location, click Add Knowledge,

and then click Add File. The file is loaded into your OpenSearch database, and appears

https://docs.opensearch.org/latest/
https://docs.langflow.org/components-data#file
https://docs.langflow.org/components-data#file

in the Knowledge page.

To load and process a directory from the mapped location, click Add Knowledge,

and then click Process Folder. The files are loaded into your OpenSearch database, and

appear in the Knowledge page.

Ingest files through OAuth connectors

OpenRAG supports Google Drive, OneDrive, and AWS S3 as OAuth connectors for

seamless document synchronization.

OAuth integration allows individual users to connect their personal cloud storage

accounts to OpenRAG. Each user must separately authorize OpenRAG to access their

own cloud storage files. When a user connects a cloud service, they are redirected to

authenticate with that service provider and grant OpenRAG permission to sync

documents from their personal cloud storage.

Before users can connect their cloud storage accounts, you must configure OAuth

credentials in OpenRAG. This requires registering OpenRAG as an OAuth application with

a cloud provider and obtaining client ID and secret keys for each service you want to

support.

To add an OAuth connector to OpenRAG, do the following. This example uses Google

OAuth. If you wish to use another provider, add the secrets to another provider.

TUI .env

1. If OpenRAG is running, stop it with Status > Stop Services.

2. Click Advanced Setup.

3. Add the OAuth provider's client and secret key in the Advanced Setup menu.

4. Click Save Configuration. The TUI generates a new .env file with your OAuth

values.

5. Click Start Container Services.

The OpenRAG frontend at http://localhost:3000 now redirects to an OAuth callback

login page for your OAuth provider. A successful authentication opens OpenRAG with the

required scopes for your connected storage.

To add knowledge from an OAuth-connected storage provider, do the following:

1. Click Add Knowledge, and then select the storage provider, for example,

Google Drive. The Add Cloud Knowledge page opens.

2. To add files or folders from the connected storage, click Add Files. Select the

files or folders you want and click Select. You can select multiples.

3. When your files are selected, click Ingest Files. The ingestion process may take

some time, depending on the size of your documents.

4. When ingestion is complete, your documents are available in the Knowledge screen.

Explore knowledge

The Knowledge page lists the documents OpenRAG has ingested into the OpenSearch

vector database's documents index.

To explore your current knowledge, click Knowledge. Click on a document to display

the chunks derived from splitting the default documents into the vector database.

Documents are processed with the default Knowledge Ingest flow, so if you want to split

your documents differently, edit the Knowledge Ingest flow.

All flows included with OpenRAG are designed to be modular, performant, and provider-

agnostic. To modify a flow, click Settings, and click Edit in Langflow. OpenRAG's

visual editor is based on the Langflow visual editor, so you can edit your flows to match

your specific use case.

Create knowledge filters

OpenRAG includes a knowledge filter system for organizing and managing document

collections. Knowledge filters are saved search configurations that allow you to create

custom views of your document collection. They store search queries, filter criteria, and

display settings that can be reused across different parts of OpenRAG.

Knowledge filters help agents work more efficiently with large document collections by

focusing their context within relevant documents sets.

To create a knowledge filter, do the following:

https://docs.langflow.org/concepts-overview

1. Click All Knowledge, and then click Create New Filter. The Create New

Knowledge Filter pane appears.

2. Enter a Name and Description, and then click Create Filter. A new filter is

created with default settings that match everything.

3. To modify the default filter, click All Knowledge, and then click your new filter to

edit it in the Knowledge Filter pane.

The following filter options are configurable.

Search Query: Enter text for semantic search, such as "financial reports from

Q4".

Data Sources: Select specific data sources or folders to include.

Document Types: Filter by file type.

Owners: Filter by who uploaded the documents.

Sources: Filter by connector types, such as local upload or Google Drive.

Result Limit: Set maximum number of results. The default is 10 .

Score Threshold: Set minimum relevance score. The default score is 0 .

4. When you're done editing the filter, click Save Configuration.

5. To apply the filter to OpenRAG globally, click All Knowledge, and then select the

filter to apply.

To apply the filter to a single chat session, in the Chat window, click @, and then

select the filter to apply.

OpenRAG default configuration

OpenRAG automatically detects and configures the correct vector dimensions for

embedding models, ensuring optimal search performance and compatibility.

The complete list of supported models is available at models_service.py in the

OpenRAG repository.

You can use custom embedding models by specifying them in your configuration.

https://github.com/langflow-ai/openrag/blob/main/src/services/models_service.py
https://github.com/langflow-ai/openrag/blob/main/src/services/models_service.py

If you use an unknown embedding model, OpenRAG will automatically fall back to 1536
dimensions and log a warning. The system will continue to work, but search quality may

be affected if the actual model dimensions differ from 1536 .

The default embedding dimension is 1536 and the default model is text-embedding-

3-small .

For models with known vector dimensions, see settings.py in the OpenRAG

repository.

https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py
https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py

Docling Ingestion
OpenRAG uses Docling for its document ingestion pipeline. More specifically, OpenRAG

uses Docling Serve, which starts a docling serve process on your local machine and

runs Docling ingestion through an API service.

Docling ingests documents from your local machine or OAuth connectors, splits them

into chunks, and stores them as separate, structured documents in the OpenSearch

documents index.

OpenRAG chose Docling for its support for a wide variety of file formats, high

performance, and advanced understanding of tables and images.

Docling ingestion settings

These settings configure the Docling ingestion parameters.

OpenRAG will warn you if docling serve is not running. To start or stop docling

serve or any other native services, in the TUI main menu, click Start Native Services or

Stop Native Services.

Embedding model determines which AI model is used to create vector embeddings. The

default is text-embedding-3-small .

Chunk size determines how large each text chunk is in number of characters. Larger

chunks yield more context per chunk, but may include irrelevant information. Smaller

chunks yield more precise semantic search, but may lack context. The default value of

1000 characters provides a good starting point that balances these considerations.

Chunk overlap controls the number of characters that overlap over chunk boundaries.

Use larger overlap values for documents where context is most important, and use

smaller overlap values for simpler documents, or when optimization is most important.

The default value of 200 characters of overlap with a chunk size of 1000 (20% overlap) is

suitable for general use cases. Decrease the overlap to 10% for a more efficient pipeline,

or increase to 40% for more complex documents.

OCR enables or disabled OCR processing when extracting text from images and scanned

documents. OCR is disabled by default. This setting is best suited for processing text-

https://docling-project.github.io/docling/
https://github.com/docling-project/docling-serve

based documents as quickly as possible with Docling's DocumentConverter . Images

are ignored and not processed.

Enable OCR when you are processing documents containing images with text that

requires extraction, or for scanned documents. Enabling OCR can slow ingestion

performance.

If OpenRAG detects that the local machine is running on macOS, OpenRAG uses the

ocrmac OCR engine. Other platforms use easyocr.

Picture descriptions adds image descriptions generated by the SmolVLM-256M-

Instruct model to OCR processing. Enabling picture descriptions can slow ingestion

performance.

Use OpenRAG default ingestion instead of Docling
serve

If you want to use OpenRAG's built-in pipeline instead of Docling serve, set

DISABLE_INGEST_WITH_LANGFLOW=true in Environment variables.

The built-in pipeline still uses the Docling processor, but uses it directly without the

Docling Serve API.

For more information, see processors.py in the OpenRAG repository.

Knowledge ingestion flows

Flows in Langflow are functional representations of application workflows, with multiple

component nodes connected as single steps in a workflow.

The OpenSearch Ingestion flow is the default knowledge ingestion flow in OpenRAG:

when you Add Knowledge in OpenRAG, you run the OpenSearch Ingestion flow in the

background. The flow ingests documents using Docling Serve to import and process

documents.

This flow contains ten components connected together to process and store documents

in your knowledge base.

https://docling-project.github.io/docling/reference/document_converter/
https://www.piwheels.org/project/ocrmac/
https://www.jaided.ai/easyocr/
https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct
https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct
https://github.com/langflow-ai/openrag/blob/main/src/models/processors.py#L58
https://docs.langflow.org/concepts-overview
https://docs.langflow.org/concepts-components

The Docling Serve component processes input documents by connecting to your

instance of Docling Serve.

The Export DoclingDocument component exports the processed DoclingDocument

to markdown format with image export mode set to placeholder. This conversion

makes the structured document data into a standardized format for further

processing.

Three DataFrame Operations components sequentially add metadata columns to

the document data of filename , file_size , and mimetype .

The Split Text component splits the processed text into chunks with a chunk size of

1000 characters and an overlap of 200 characters.

Four Secret Input components provide secure access to configuration variables:

CONNECTOR_TYPE , OWNER , OWNER_EMAIL , and OWNER_NAME . These are runtime

variables populated from OAuth login.

The Create Data component combines the secret inputs into a structured data

object that will be associated with the document embeddings.

The Embedding Model component generates vector embeddings using OpenAI's

text-embedding-3-small model. The embedding model is selected at

[Application onboarding] and cannot be changed.

The OpenSearch component stores the processed documents and their

embeddings in the documents index at https://opensearch:9200 . By default,

the component is authenticated with a JWT token, but you can also select basic

auth mode, and enter your OpenSearch admin username and password.

All flows included with OpenRAG are designed to be modular, performant, and provider-

agnostic. To modify a flow, click Settings, and click Edit in Langflow. OpenRAG's

visual editor is based on the Langflow visual editor, so you can edit your flows to match

your specific use case.

OpenSearch URL Ingestion flow

An additional knowledge ingestion flow is included in OpenRAG, where it is used as an

MCP tool by the Open Search Agent flow. The agent calls this component to fetch web

content, and the results are ingested into OpenSearch.

For more on using MCP clients in Langflow, see MCP clients.

To connect additional MCP servers to the MCP client, see Connect to MCP servers from

your application.

https://docs.langflow.org/bundles-docling
https://docs.langflow.org/bundles-docling
https://docs.langflow.org/components-docling
https://docs.langflow.org/components-docling
https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/concepts-overview
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-tutorial
https://docs.langflow.org/mcp-tutorial

Environment variables
OpenRAG recognizes supported environment variables from the following sources:

Environment variables - Values set in the .env file.

Langflow runtime overrides - Langflow components may tweak environment

variables at runtime.

Default or fallback values - These values are default or fallback values if OpenRAG

doesn't find a value.

Configure environment variables

Environment variables are set in a .env file in the root of your OpenRAG project

directory.

For an example .env file, see .env.example in the OpenRAG repository.

The Docker Compose files are populated with values from your .env , so you don't need

to edit the Docker Compose files manually.

Environment variables always take precedence over other variables.

Set environment variables

To set environment variables, do the following.

1. Stop OpenRAG.

2. Set the values in the .env file:

3. Start OpenRAG.

Updating provider API keys or provider endpoints in the .env file will not take effect

after Application onboarding. To change these values, you must:

1. Stop OpenRAG.

2. Remove the containers:

LOG_LEVEL=DEBUG
LOG_FORMAT=json
SERVICE_NAME=openrag-dev

https://github.com/langflow-ai/openrag/blob/main/.env.example

3. Update the values in your .env file.

4. Start OpenRAG containers.

5. Complete Application onboarding again.

Supported environment variables

All OpenRAG configuration can be controlled through environment variables.

AI provider settings

Configure which AI models and providers OpenRAG uses for language processing and

embeddings. For more information, see Application onboarding.

Variable Default Description

EMBEDDING_MODEL
text-
embedding-3-
small

Embedding model for vector
search.

LLM_MODEL gpt-4o-mini Language model for the chat
agent.

MODEL_PROVIDER openai Model provider, such as OpenAI or
IBM watsonx.ai.

OPENAI_API_KEY - Your OpenAI API key. Required.

PROVIDER_API_KEY - API key for the model provider.

PROVIDER_ENDPOINT - Custom provider endpoint. Only
used for IBM or Ollama providers.

PROVIDER_PROJECT_ID -
Project ID for providers. Only
required for the IBM watsonx.ai
provider.

Document processing

docker-compose down

docker-compose up -d

Control how OpenRAG processes and ingests documents into your knowledge base. For

more information, see Ingestion.

Variable Default Description

CHUNK_OVERLAP 200 Overlap between chunks.

CHUNK_SIZE 1000 Text chunk size for
document processing.

DISABLE_INGEST_WITH_LANGFLOW false Disable Langflow ingestion
pipeline.

DOCLING_OCR_ENGINE - OCR engine for document
processing.

OCR_ENABLED false Enable OCR for image
processing.

OPENRAG_DOCUMENTS_PATHS ./documents Document paths for
ingestion.

PICTURE_DESCRIPTIONS_ENABLED false Enable picture descriptions.

Langflow settings

Configure Langflow authentication.

Variable Default Description

LANGFLOW_AUTO_LOGIN False
Enable auto-
login for
Langflow.

LANGFLOW_CHAT_FLOW_ID pre-filled

This value is
pre-filled.
The default
value is
found in
.env.example.

LANGFLOW_ENABLE_SUPERUSER_CLI False
Enable
superuser
CLI.

https://github.com/langflow-ai/openrag/blob/main/.env.example

Variable Default Description

LANGFLOW_INGEST_FLOW_ID pre-filled

This value is
pre-filled.
The default
value is
found in
.env.example.

LANGFLOW_KEY auto-generated
Explicit
Langflow API
key.

LANGFLOW_NEW_USER_IS_ACTIVE False
New users
are active by
default.

LANGFLOW_PUBLIC_URL http://localhost:7860 Public URL
for Langflow.

LANGFLOW_SECRET_KEY -

Secret key
for Langflow
internal
operations.

LANGFLOW_SUPERUSER -

Langflow
admin
username.
Required.

LANGFLOW_SUPERUSER_PASSWORD -

Langflow
admin
password.
Required.

LANGFLOW_URL http://localhost:7860 Langflow
URL.

NUDGES_FLOW_ID pre-filled

This value is
pre-filled.
The default
value is
found in
.env.example.

https://github.com/langflow-ai/openrag/blob/main/.env.example
https://github.com/langflow-ai/openrag/blob/main/.env.example

Variable Default Description

SYSTEM_PROMPT

"You are a helpful AI
assistant with access to a
knowledge base. Answer
questions based on the
provided context."

System
prompt for
the Langflow
agent.

OAuth provider settings

Configure OAuth providers and external service integrations.

Variable Default Description

AWS_ACCESS_KEY_ID / AWS_SECRET_ACCESS_KEY - AWS integrations.

GOOGLE_OAUTH_CLIENT_ID /
GOOGLE_OAUTH_CLIENT_SECRET - Google OAuth

authentication.

MICROSOFT_GRAPH_OAUTH_CLIENT_ID /
MICROSOFT_GRAPH_OAUTH_CLIENT_SECRET - Microsoft OAuth.

WEBHOOK_BASE_URL -
Base URL for
webhook
endpoints.

OpenSearch settings

Configure OpenSearch database authentication.

Variable Default Description

OPENSEARCH_HOST localhost OpenSearch host.

OPENSEARCH_PASSWORD - Password for OpenSearch admin user.
Required.

OPENSEARCH_PORT 9200 OpenSearch port.

OPENSEARCH_USERNAME admin OpenSearch username.

System settings

Configure general system components, session management, and logging.

Variable Default Description

LANGFLOW_KEY_RETRIES 15 Number of retries for Langflow key
generation.

LANGFLOW_KEY_RETRY_DELAY 2.0 Delay between retries in seconds.

LANGFLOW_VERSION latest Langflow Docker image version.

LOG_FORMAT - Log format (set to "json" for JSON
output).

LOG_LEVEL INFO Logging level (DEBUG, INFO,
WARNING, ERROR).

MAX_WORKERS - Maximum number of workers for
document processing.

OPENRAG_VERSION latest OpenRAG Docker image version.

SERVICE_NAME openrag Service name for logging.

SESSION_SECRET auto-
generated Session management.

Langflow runtime overrides

Langflow runtime overrides allow you to modify component settings at runtime without

changing the base configuration.

Runtime overrides are implemented through tweaks - parameter modifications that are

passed to specific Langflow components during flow execution.

For more information on tweaks, see Input schema (tweaks).

Default values and fallbacks

When no environment variables or configuration file values are provided, OpenRAG uses

default values. These values can be found in the code base at the following locations.

OpenRAG configuration defaults

https://docs.langflow.org/concepts-publish#input-schema

These values are defined in config_manager.py in the OpenRAG repository.

System configuration defaults

These fallback values are defined in settings.py in the OpenRAG repository.

https://github.com/langflow-ai/openrag/blob/main/src/config/config_manager.py
https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py

Troubleshoot
This page provides troubleshooting advice for issues you might encounter when using

OpenRAG or contributing to OpenRAG.

OpenSearch fails to start

Check that OPENSEARCH_PASSWORD set in Environment variables meets requirements.

The password must contain at least 8 characters, and must contain at least one

uppercase letter, one lowercase letter, one digit, and one special character that is strong.

Langflow connection issues

Verify the LANGFLOW_SUPERUSER credentials set in Environment variables are correct.

Memory errors

Container out of memory errors

Increase Docker memory allocation or use docker-compose-cpu.yml to deploy

OpenRAG.

Podman on macOS memory issues

If you're using Podman on macOS, you may need to increase VM memory on your

Podman machine. This example increases the machine size to 8 GB of RAM, which

should be sufficient to run OpenRAG.

Port conflicts

Ensure ports 3000, 7860, 8000, 9200, 5601 are available.

Langflow container already exists

podman machine stop
podman machine rm
podman machine init --memory 8192 # 8 GB example
podman machine start

https://github.com/langflow-ai/openrag/blob/main/docker-compose-cpu.yml

If you are running other versions of Langflow containers on your machine, you may

encounter an issue where Docker or Podman thinks Langflow is already up.

Remove just the problem container, or clean up all containers and start fresh.

To reset your local containers and pull new images, do the following:

1. Stop your containers and completely remove them.

Podman Docker

2. Restart OpenRAG and upgrade to get the latest images for your containers.

3. In the OpenRAG TUI, click Status, and then click Upgrade. When the Close button

is active, the upgrade is complete. Close the window and open the OpenRAG

appplication.

Stop all running containers
docker stop $(docker ps -q)
Remove all containers (including stopped ones)
docker rm --force $(docker ps -aq)
Remove all images
docker rmi --force $(docker images -q)
Remove all volumes
docker volume prune --force
Remove all networks (except default)
docker network prune --force
Clean up any leftover data
docker system prune --all --force --volumes

uv sync
uv run openrag

