What is OpenRAG?

OpenRAG is an open-source package for building agentic RAG systems. It supports
integration with a wide range of orchestration tools, vector databases, and LLM

providers.

OpenRAG connects and amplifies three popular, proven open-source projects into one

powerful platform:

e Langflow - Langflow is a powerful tool to build and deploy Al agents and MCP
servers. It supports all major LLMs, vector databases and a growing library of Al

tools.

e OpenSearch - OpenSearch is a community-driven, Apache 2.0-licensed open source
search and analytics suite that makes it easy to ingest, search, visualize, and analyze
data.

e Docling - Docling simplifies document processing, parsing diverse formats —
including advanced PDF understanding — and providing seamless integrations with
the gen Al ecosystem.

OpenRAG builds on Langflow's familiar interface while adding OpenSearch for vector
storage and Docling for simplified document parsing, with opinionated flows that serve
as ready-to-use recipes for ingestion, retrieval, and generation from popular sources like
OneDrive, Google Drive, and AWS.

What's more, every part of the stack is swappable. Write your own custom components
in Python, try different language models, and customize your flows to build an agentic

RAG system.

Ready to get started? Install OpenRAG and then run the Quickstart to create a powerful

RAG pipeline.

https://docs.langflow.org/
https://docs.opensearch.org/latest/
https://docling-project.github.io/docling/

Install OpenRAG

Install the OpenRAG Python wheel, and then run the OpenRAG Terminal User
Interface(TUI) to start your OpenRAG deployment with a guided setup process.

If you prefer running Docker commands and manually editing .env files, see Deploy with

Docker.

Prerequisites

e Python Version 3.10 to 3.13

* uv

e Podman (recommended) or Docker installed

e Docker Compose installed. If using Podman, use podman-compose or alias Docker
compose commands to Podman commands.

e Create an OpenAl API key. This key is required to start OpenRAG, but you can
choose a different model provider during Application Onboarding.

e Optional: GPU support requires an NVIDIA GPU with CUDA support and compatible
NVIDIA drivers installed on the OpenRAG host machine. If you don't have GPU
capabilities, OpenRAG provides an alternate CPU-only deployment.

Install the OpenRAG Python wheel

@ IMPORTANT

The .wh'l file is currently available as an internal download during public preview,

and will be published to PyPI in a future release.

The OpenRAG wheel installs the Terminal User Interface (TUI) for configuring and

running OpenRAG.

1. Create a new project with a virtual environment using uv init.

uv init YOUR_PROJECT_NAME
cd YOUR_PROJECT_NAME

The (venv) prompt doesn't change, but uv commands will automatically use the

project's virtual environment. For more information on virtual environments, see the

https://www.python.org/downloads/release/python-3100/
https://docs.astral.sh/uv/getting-started/installation/
https://podman.io/docs/installation
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/
https://docs.podman.io/en/latest/markdown/podman-compose.1.html
https://platform.openai.com/api-keys
https://docs.nvidia.com/cuda/

uv documentation.
2. Add the local OpenRAG wheel to your project's virtual environment.

uv add PATH/TO/openrag-VERSION-py3—-none-any.whl

Replace PATH/TO/ and VERSION with the path and version of your downloaded
OpenRAG .whl file.

For example, if your .whl file is in the ~/Downloads directory, the command is uv

add ~/Downloads/openrag-0.1.8-py3—-none-any.whl.

3. Ensure all dependencies are installed and updated in your virtual environment.
uv sync

4. Start the OpenRAG TUL.
uv run openrag

5. Continue with Setup OpenRAG with the TUL.

Set up OpenRAG with the TUI

The TUI creates a .env file in your OpenRAG directory root and starts OpenRAG. If the
TUI detects a .env file in the OpenRAG root directory, it sources any variables from the
.env file. If the TUI detects OAuth credentials, it enforces the Advanced Setup path.

Basic Setup generates all of the required values for OpenRAG except the OpenAl API
key. Basic Setup does not set up OAuth connections for ingestion from cloud providers.
For OAuth setup, use Advanced Setup.

Basic Setup and Advanced Setup enforce the same authentication settings for the
Langflow server, but manage document access differently. For more information, see

Authentication and document access.

https://docs.astral.sh/uv/pip/environments

Basic setup Advanced setup

1. To install OpenRAG with Basic Setup, click Basic Setup or press 1 .

2. Click Generate Passwords to generate passwords for OpenSearch and
Langflow.

3. Paste your OpenAl API key in the OpenAl API key field.

4. Click Save Configuration.

5. To start OpenRAG, click Start Container Services. Startup pulls container
images and runs them, so it can take some time. When startup is complete, the
TUI displays the following:

Services started successfully
Command completed successfully

6. To open the OpenRAG application, click Open App.
7. Continue with Application Onboarding.

Application onboarding

The first time you start OpenRAG, whether using the TUl or a .env file, you must

complete application onboarding.

Most values from onboarding can be changed later in the OpenRAG Settings page, but
there are important restrictions.

The language model provider and embeddings model provider can only be selected
at onboarding, and you must use the same provider for your language model and
embedding model. To change your provider selection later, you must completely reinstall
OpenRAG.

The language model can be changed later in Settings, but the embeddings model

cannot be changed later.

OpenAl IBM watsonx.ai Ollama

. Enable Get API key from environment variable to automatically enter your key
from the TUI-generated .env file.

. Under Advanced settings, select your Embedding Model and Language
Model.

. To load 2 sample PDFs, enable Sample dataset. This is recommended, but not
required.

4. Click Complete.

. Continue with the Quickstart.

Deploy with Docker

There are two different Docker Compose files. They deploy the same applications and
containers, but to different environments.

e docker—compose.yml is an OpenRAG deployment with GPU support for
accelerated Al processing.

e docker-compose—cpu.yml is a CPU-only version of OpenRAG for systems without

GPU support. Use this Docker compose file for environments where GPU drivers
aren't available.

Both Docker deployments depend on docling serve to be running on port 5001 on
the host machine. This enables Mac MLX support for document processing. Installing
OpenRAG with the TUI starts docling serve automatically, but for a Docker

deployment you must manually start the docling serve process.

Prerequisites

e Python Version 3.10 to 3.13

° uv

e Podman (recommended) or Docker installed

e Docker Compose installed. If you're using Podman, use podman-compose or alias
Docker compose commands to Podman commands.

e Create an OpenAl API key. This key is required to start OpenRAG, but you can
choose a different model provider during Application Onboarding.

¢ Optional: GPU support requires an NVIDIA GPU with CUDA support and compatible
NVIDIA drivers installed on the OpenRAG host machine. If you don't have GPU
capabilities, OpenRAG provides an alternate CPU-only deployment.

Deploy OpenRAG with Docker Compose

To install OpenRAG with Docker Compose, do the following:

1. Clone the OpenRAG repository.

git clone https://github.com/langflow-ai/openrag.git
cd openrag

https://github.com/langflow-ai/openrag/blob/main/docker-compose.yml
https://github.com/langflow-ai/openrag/blob/main/docker-compose-cpu.yml
https://opensource.apple.com/projects/mlx/
https://www.python.org/downloads/release/python-3100/
https://docs.astral.sh/uv/getting-started/installation/
https://podman.io/docs/installation
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/
https://docs.podman.io/en/latest/markdown/podman-compose.1.html
https://platform.openai.com/api-keys

2. Install dependencies.

uv sync

3. Copy the example .env file included in the repository root. The example file

includes all environment variables with comments to guide you in finding and setting
their values.

cp .env.example .env

Alternatively, create a new .env file in the repository root.

touch .env

4. Set environment variables. The Docker Compose files will be populated with values
from your .env. The following values are required to be set:

OPENSEARCH_PASSWORD=your_secure_password
OPENAI_API_KEY=your_openai_api_key
LANGFLOW_SUPERUSER=admin
LANGFLOW_SUPERUSER_PASSWORD=your_langflow_password
LANGFLOW_SECRET_KEY=your_secret_key

For more information on configuring OpenRAG with environment variables, see

Environment variables.

5. Start docling serve on the host machine. Both Docker deployments depend on
docling serve to be running on port 5001 on the host machine. This enables Mac

MLX support for document processing.

uv run python scripts/docling_ctl.py start ——port 5001

6. Confirm docling serve is running.

https://opensource.apple.com/projects/mlx/
https://opensource.apple.com/projects/mlx/

uv run python scripts/docling_ctl.py status

Successful result:

Status: running

Endpoint: http://127.0.0.1:5001
Docs: http://127.0.0.1:5001/docs

PID: 27746

7. Deploy OpenRAG with Docker Compose based on your deployment type.

For GPU-enabled systems, run the following commands:

docker compose build
docker compose up -d

For environments without GPU support, run:

docker compose —-f docker—-compose-cpu.yml up —-d

The OpenRAG Docker Compose file starts five containers:

Container Name

OpenRAG Backend

OpenRAG Frontend

Langflow

OpenSearch

OpenSearch
Dashboards

Default Address

http://localhost:8000

http://localhost:3000

http://localhost:7860

http://localhost:9200

http://localhost:5601

Purpose

FastAPI server and core
functionality.

React web interface for users.

Al workflow engine and flow
management.

Vector database for document
storage.

Database administration
interface.

8. Verify installation by confirming all services are running.

http://localhost:8000/
http://localhost:3000/
http://localhost:7860/
http://localhost:9200/
http://localhost:5601/

docker compose ps

You can now access the application at:

o Frontend: http://localhost:3000
o Backend API: http://localhost:8000
o Langflow: http://localhost:7860

9. Continue with Application Onboarding.

To stop docling serve when you're done with your OpenRAG deployment, run:

uv run python scripts/docling_ctl.py stop

Application onboarding

The first time you start OpenRAG, whether using the TUl or a .env file, you must

complete application onboarding.

Most values from onboarding can be changed later in the OpenRAG Settings page, but

there are important restrictions.

The language model provider and embeddings model provider can only be selected
at onboarding, and you must use the same provider for your language model and
embedding model. To change your provider selection later, you must completely reinstall
OpenRAG.

The language model can be changed later in Settings, but the embeddings model
cannot be changed later.

OpenAl IBM watsonx.ai Ollama

1. Enable Get API key from environment variable to automatically enter your key
from the TUI-generated .env file.

2. Under Advanced settings, select your Embedding Model and Language
Model.

http://localhost:3000/
http://localhost:8000/
http://localhost:7860/

3. To load 2 sample PDFs, enable Sample dataset. This is recommended, but not
required.

4. Click Complete.

5. Continue with the Quickstart.

Container management commands

Manage your OpenRAG containers with the following commands. These commands are
also available in the TUI's Status menu.

Upgrade containers

Upgrade your containers to the latest version while preserving your data.

docker compose pull
docker compose up -d ——force-recreate

Rebuild containers (destructive)

Reset state by rebuilding all of your containers. Your OpenSearch and Langflow
databases will be lost. Documents stored in the . /documents directory will persist,

since the directory is mounted as a volume in the OpenRAG backend container.

docker compose up ——build —-force-recreate —-remove-orphans

Remove all containers and data (destructive)

Completely remove your OpenRAG installation and delete all data. This deletes all of your
data, including OpenSearch data, uploaded documents, and authentication.

docker compose down ——volumes ——remove-orphans ——rmi local
docker system prune -f

Quickstart

Get started with OpenRAG by loading your knowledge, swapping out your language
model, and then chatting with the OpenRAG API.

Prerequisites

¢ |nstall and start OpenRAG
Find your way around

1. In OpenRAG, click D Chat. The chat is powered by the OpenRAG OpenSearch
Agent. For more information, see Langflow Agents.

2. Ask What documents are available to you? The agent responds with a
message summarizing the documents that OpenRAG loads by default, which are
PDFs about evaluating data quality when using LLMs in health care. Knowledge is
stored in OpenSearch. For more information, see Knowledge.

3. To confirm the agent is correct, click)\ Knowledge. The Knowledge page lists the
documents OpenRAG has ingested into the OpenSearch vector database. Click on a
document to display the chunks derived from splitting the default documents into

the vector database.

Add your own knowledge

1. To add documents to your knowledge base, click + Add Knowledge.

o Select Add File to add a single file from your local machine (mapped with the
Docker volume mount).

o Select Process Folder to process an entire folder of documents from your local
machine (mapped with the Docker volume mount).

o Select your cloud storage provider to add knowledge from an OAuth-connected
storage provider. For more information, see OAuth ingestion.

2. Return to the Chat window and ask a question about your loaded data. For example,
with a manual about a PC tablet loaded, ask How do I connect this device to
WiFI? The agent responds with a message indicating it now has your knowledge as
context for answering questions.

3. Click the Function Call: search_documents (tool_call) that is printed in the
Playground. These events log the agent's request to the tool and the tool's

response, so you have direct visibility into your agent's functionality. If you aren't
getting the results you need, you can further tune the knowledge ingestion and

agent behavior in the next section.
Swap out the language model to modify agent behavior
To modify the knowledge ingestion or Agent behavior, click % Settings.

In this example, you'll try a different LLM to demonstrate how the Agent's response
changes. You can only change the Language model, and not the Model provider that
you started with in OpenRAG. If you're using Ollama, you can use any installed model.

1. To edit the Agent's behavior, click Edit in Langflow. You can more quickly access
the Language Model and Agent Instructions fields in this page, but for illustration

purposes, navigate to the Langflow visual builder.
2. OpenRAG warns you that you're entering Langflow. Click Proceed.

3. The OpenRAG OpenSearch Agent flow appears.

% st

aaaaaaaa

<<<<<<<<<
AAAAA
vvvvv

O Baidu
aaaaaaaaaa

cccccccccc

wwwwwwwwww

zzzzzzz

eeeeeeeeeeeeeeeeee

4. In the Language Model component, under Model, select a different OpenAl model.

5. Save your flow with Command+S .

6. In OpenRAG, start a new conversation by clicking the + in the Conversations tab.

7. Ask the same question as before to demonstrate how a different language model

changes the results.

Integrate OpenRAG into your application

To integrate OpenRAG into your application, use the Langflow API. Make requests with
Python, TypeScript, or any HTTP client to run one of OpenRAG's default flows and get a
response, and then modify the flow further to improve results. Langflow provides code

snippets to help you get started.

1. Create a Langflow API key.

» Create a Langflow API key

o—
2. To navigate to the OpenRAG OpenSearch Agent flow, click =@ Settings, and then
click Edit in Langflow in the OpenRAG OpenSearch Agent flow.

3. Click Share, and then click APl access.

The default code in the API access pane constructs a request with the Langflow
server url, headers, and a payload of request data. The code snippets
automatically include the LANGFLOW_SERVER_ADDRESS and FLOW_ID values for the
flow. Replace these values if you're using the code for a different server or flow. The

default Langflow server address is http://localhost:7860.

Python TypeScript curl

import requests
import os
import uuid
api_key = 'LANGFLOW_API_KEY'
url = "http://LANGFLOW_SERVER_ADDRESS/api/v1l/run/FLOW_ID"
The complete API endpoint URL for this flow
Request payload configuration
payload = {
"output_type": "chat",
"input_type": "chat",

https://docs.langflow.org/api-reference-api-examples
https://docs.langflow.org/api-keys-and-authentication
http://localhost:7860/

"input_value": "hello world!"
Iy
payload["session_id"] = str(uuid.uuid4())
headers = {"x-api-key": api_key}
try:
Send API request
response = requests.request("POST", url, json=payload,
headers=headers)
response.raise_for_status() # Raise exception for bad
status codes
Print response
print(response.text)
except requests.exceptions.RequestException as e:
print(f"Error making API request: {e}")
except ValueError as e:
print(f"Error parsing response: {e}")

4. Copy the snippet, paste it in a script file, and then run the script to send the request.
If you are using the curl snippet, you can run the command directly in your terminal.

If the request is successful, the response includes many details about the flow run,
including the session ID, inputs, outputs, components, durations, and more. The
following is an example of a response from running the Simple Agent template flow:

» Result

To further explore the API, see:

e The Langflow Quickstart extends this example with extracting fields from the

response.
* Get started with the Langflow API

https://docs.langflow.org/quickstart#extract-data-from-the-response
https://docs.langflow.org/api-reference-api-examples

Terminal User Interface (TUI) commands

The OpenRAG Terminal User Interface (TUI) allows you to set up, configure, and monitor
your OpenRAG deployment directly from the terminal, on any operating system.

OpenRAG TUI

Terminal User Interface for OpenRAG

OAuth credentials detected — Advanced Setup recommended

Advanced Setup

g Quit 1 Basic Setup 2 Advanced Setup 3 Monitor Services 4 Diagnostics “p palette

Instead of starting OpenRAG using Docker commands and manually editing values in the
.env file, the TUI walks you through the setup. It prompts for variables where required,

creates a .env file for you, and then starts OpenRAG.

Once OpenRAG is running, use the TUI to monitor your application, control your
containers, and retrieve logs.

Start the TUI

To start the TUI, run the following commands from the directory where you installed
OpenRAG.

uv sync
uv run openrag

The TUI Welcome Screen offers basic and advanced setup options. For more information

on setup values during installation, see Install OpenRAG.

Navigation

The TUI accepts mouse input or keyboard commands.

* Arrow keys : move between options

e Tab / Shift+Tab : switch fields and buttons

* Enter : select/confirm

e Escape : back

e Q:quit

* Number keys (1-4) :quick access to main screens

Container management

The TUI can deploy, manage, and upgrade your OpenRAG containers.

Start container services

Click Start Container Services to start the OpenRAG containers. The TUI automatically
detects your container runtime, and then checks if your machine has compatible GPU
support by checking for CUDA, NVIDIA_SMI, and Docker/Podman runtime support. This
check determines which Docker Compose file OpenRAG uses. The TUI then pulls the
images and deploys the containers with the following command.

docker compose up -d

If images are missing, the TUl runs docker compose pull, thenruns docker compose
up —d.

Start native services

A "native" service in OpenRAG refers to a service run natively on your machine, and not
within a container. The docling serve process is a native service in OpenRAG,
because it's a document processing service that is run on your local machine, and

controlled separately from the containers.

To start or stop docling serve or any other native services, in the TUI main menu, click
Start Native Services or Stop Native Services.

To view the status, port, or PID of a native service, in the TUI main menu, click Status.

Status

The Status menu displays information on your container deployment. Here you can
check container health, find your service ports, view logs, and upgrade your containers.

To view streaming logs, select the container you want to view, and press 1. To copy
your logs, click Copy to Clipboard.

To upgrade your containers, click Upgrade. Upgrade runs docker compose pull and
then docker compose up -d ——force-recreate. The first command pulls the latest
images of OpenRAG. The second command recreates the containers with your data

persisted.

To reset your containers, click Reset. Reset gives you a completely fresh start. Reset
deletes all of your data, including OpenSearch data, uploaded documents, and
authentication. Reset runs two commands. It first stops and removes all containers,
volumes, and local images.

docker compose down —-volumes —--remove-orphans ——rmi local

When the first command is complete, OpenRAG removes any additional Docker objects
with prune.

docker system prune -f

Diagnostics

The Diagnostics menu provides health monitoring for your container runtimes and

monitoring of your OpenSearch security.

Langflow Agents

OpenRAG leverages Langflow's Agent component to power the OpenRAG OpenSearch
Agent flow.

Flows in Langflow are functional representations of application workflows, with multiple
component nodes connected as single steps in a workflow.

In the OpenRAG OpenSearch Agent flow, components like the Langflow Agent
component and OpenSearch component are connected to intelligently chat with your
knowledge by embedding your query, comparing it the vector database embeddings, and

generating a response with the LLM.

N
a8
°
>
°
o
P
kel
8
>
o]

‘‘‘‘‘
nnnnnnnnn

AAAAA

cccccccccc

\\\\\\\

tom Component

The Agent component shines here in its ability to make decisions on not only what query

should be sent, but when a query is necessary to solve the problem at hand.

» How do agents work?

Use the OpenRAG OpenSearch Agent flow

If you've chatted with your knowledge in OpenRAG, you've already experienced the
OpenRAG OpenSearch Agent chat flow. To switch OpenRAG over to the Langflow visual

https://docs.langflow.org/concepts-overview
https://docs.langflow.org/concepts-components
https://docs.langflow.org/agents
https://docs.langflow.org/agents
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/concepts-overview

o—
editor and view the OpenRAG OpenSearch Agentflow, click =@ Settings, and then click
Edit in Langflow. This flow contains eight components connected together to chat with

your data:

¢ The Agent component orchestrates the entire flow by deciding when to search the
knowledge base, how to formulate search queries, and how to combine retrieved
information with the user's question to generate a comprehensive response. The
Agent behaves according to the prompt in the Agent Instructions field.

e The Chat Input component is connected to the Agent component's Input port. This
allows to flow to be triggered by an incoming prompt from a user or application.

¢ The OpenSearch component is connected to the Agent component's Tools port.
The agent may not use this database for every request; the agent only uses this
connection if it decides the knowledge can help respond to the prompt.

¢ The Language Model component is connected to the Agent component's Language
Model port. The agent uses the connected LLM to reason through the request sent
through Chat Input.

¢ The Embedding Model component is connected to the OpenSearch component's
Embedding port. This component converts text queries into vector representations
that are compared with document embeddings stored in OpenSearch for semantic
similarity matching. This gives your Agent's queries context.

e The Text Input component is populated with the global variable OPENRAG-QUERY-
FILTER. This filter is the Knowledge filter, and filters which knowledge sources to
search through.

¢ The Agent component's Output port is connected to the Chat Output component,
which returns the final response to the user or application.

e An MCP Tools component is connected to the Agent's Tools port. This component
calls the OpenSearch URL Ingestion flow, which Langflow uses as an MCP server to
fetch content from URLs and store in OpenSearch.

All flows included with OpenRAG are designed to be modular, performant, and provider-

o—
agnostic. To modify a flow, click =0 Settings, and click Edit in Langflow. OpenRAG's
visual editor is based on the Langflow visual editor, so you can edit your flows to match

your specific use case.

For an example of changing out the agent's language model in OpenRAG, see the
Quickstart.

https://docs.langflow.org/concepts-overview
https://docs.langflow.org/agents
https://docs.langflow.org/agents
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/components-models
https://docs.langflow.org/components-models
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-client
https://docs.langflow.org/concepts-overview

To restore the flow to its initial state, in OpenRAG, click €§3 Settings, and then click
Restore Flow. OpenRAG warns you that this discards all custom settings. Click Restore

to restore the flow.

Additional Langflow functionality

Langflow includes features beyond Agents to help you integrate OpenRAG into your

application, and all Langflow features are included in OpenRAG.

¢ Langflow can serve your flows as an MCP server, or consume other MCP servers as
an MCP client. Get started with the MCP tutorial.

e If you don't see the component you need, extend Langflow's functionality by
creating custom Python components.

¢ Langflow offers component bundles to integrate with many popular vector stores,
Al/ML providers, and search APIs.

https://docs.langflow.org/mcp-server
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-tutorial
https://docs.langflow.org/components-custom-components
https://docs.langflow.org/components-bundle-components

OpenSearch Knowledge

OpenRAG uses OpenSearch for its vector-backed knowledge store. This is a specialized
database for storing and retrieving embeddings, which helps your Agent efficiently find
relevant information. OpenSearch provides powerful hybrid search capabilities with
enterprise-grade security and multi-tenancy support.

Authentication and document access

OpenRAG supports two authentication modes based on how you install OpenRAG, and
which mode you choose affects document access.

No-auth mode (Basic Setup): This mode uses a single anonymous JWT token for
OpenSearch authentication, so documents uploaded to the documents index by one

user are visible to all other users on the OpenRAG server.

OAuth mode (Advanced Setup): Each OpenRAG user is granted a JWT token, and each
document is tagged with user ownership. Documents are filtered by user ownership,
ensuring users only see documents they uploaded or have access to.

Ingest knowledge

OpenRAG supports knowledge ingestion through direct file uploads and OAuth
connectors. To configure the knowledge ingestion pipeline parameters, see Docling
Ingestion.

Direct file ingestion

The Knowledge Ingest flow uses Langflow's File component to split and embed files
loaded from your local machine into the OpenSearch database.

The default path to your local folder is mounted from the ./documents folder in your
OpenRAG project directory to the /app/documents/ directory inside the Docker
container. Files added to the host or the container will be visible in both locations. To
configure this location, modify the Documents Paths variable in either the TUI's
Advanced Setup menu or in the .env used by Docker Compose.

To load and process a single file from the mapped location, click + Add Knowledge,
and then click Add File. The file is loaded into your OpenSearch database, and appears

https://docs.opensearch.org/latest/
https://docs.langflow.org/components-data#file
https://docs.langflow.org/components-data#file

in the Knowledge page.

To load and process a directory from the mapped location, click + Add Knowledge,
and then click Process Folder. The files are loaded into your OpenSearch database, and
appear in the Knowledge page.

Ingest files through OAuth connectors

OpenRAG supports Google Drive, OneDrive, and AWS S3 as OAuth connectors for
seamless document synchronization.

OAuth integration allows individual users to connect their personal cloud storage
accounts to OpenRAG. Each user must separately authorize OpenRAG to access their
own cloud storage files. When a user connects a cloud service, they are redirected to
authenticate with that service provider and grant OpenRAG permission to sync
documents from their personal cloud storage.

Before users can connect their cloud storage accounts, you must configure OAuth
credentials in OpenRAG. This requires registering OpenRAG as an OAuth application with
a cloud provider and obtaining client ID and secret keys for each service you want to
support.

To add an OAuth connector to OpenRAG, do the following. This example uses Google
OAuth. If you wish to use another provider, add the secrets to another provider.

TUI .env

1. If OpenRAG is running, stop it with Status > Stop Services.

2. Click Advanced Setup.

3. Add the OAuth provider's client and secret key in the Advanced Setup menu.

4. Click Save Configuration. The TUI generates a new ., env file with your OAuth
values.

5. Click Start Container Services.

The OpenRAG frontend at http://localhost:3000 now redirects to an OAuth callback

login page for your OAuth provider. A successful authentication opens OpenRAG with the
required scopes for your connected storage.

To add knowledge from an OAuth-connected storage provider, do the following:

1. Click + Add Knowledge, and then select the storage provider, for example,
Google Drive. The Add Cloud Knowledge page opens.

2. To add files or folders from the connected storage, click + Add Files. Select the
files or folders you want and click Select. You can select multiples.

3. When your files are selected, click Ingest Files. The ingestion process may take
some time, depending on the size of your documents.

4. When ingestion is complete, your documents are available in the Knowledge screen.

Explore knowledge

The Knowledge page lists the documents OpenRAG has ingested into the OpenSearch
vector database's documents index.

To explore your current knowledge, click i Knowledge. Click on a document to display
the chunks derived from splitting the default documents into the vector database.

Documents are processed with the default Knowledge Ingest flow, so if you want to split
your documents differently, edit the Knowledge Ingest flow.

All flows included with OpenRAG are designed to be modular, performant, and provider-

o—
agnostic. To modify a flow, click —© Settings, and click Edit in Langflow. OpenRAG's
visual editor is based on the Langflow visual editor, so you can edit your flows to match

your specific use case.

Create knowledge filters

OpenRAG includes a knowledge filter system for organizing and managing document
collections. Knowledge filters are saved search configurations that allow you to create
custom views of your document collection. They store search queries, filter criteria, and
display settings that can be reused across different parts of OpenRAG.

Knowledge filters help agents work more efficiently with large document collections by
focusing their context within relevant documents sets.

To create a knowledge filter, do the following:

https://docs.langflow.org/concepts-overview

1. Click V All Knowledge, and then click + Create New Filter. The Create New
Knowledge Filter pane appears.

2. Enter a Name and Description, and then click Create Filter. A new filter is
created with default settings that match everything.

3. To modify the default filter, click V All Knowledge, and then click your new filter to
edit it in the Knowledge Filter pane.

The following filter options are configurable.

o Search Query: Enter text for semantic search, such as "financial reports from
Q4"

o Data Sources: Select specific data sources or folders to include.

o Document Types: Filter by file type.

o Owners: Filter by who uploaded the documents.

o Sources: Filter by connector types, such as local upload or Google Drive.

o Result Limit: Set maximum number of results. The defaultis 10.

o Score Threshold: Set minimum relevance score. The default scoreis 0.

4. When you're done editing the filter, click Save Configuration.

5. To apply the filter to OpenRAG globally, click V All Knowledge, and then select the
filter to apply.

To apply the filter to a single chat session, in the D Chat window, click @, and then
select the filter to apply.

OpenRAG default configuration

OpenRAG automatically detects and configures the correct vector dimensions for
embedding models, ensuring optimal search performance and compatibility.

The complete list of supported models is available at models_service.py inthe

OpenRAG repository.

You can use custom embedding models by specifying them in your configuration.

https://github.com/langflow-ai/openrag/blob/main/src/services/models_service.py
https://github.com/langflow-ai/openrag/blob/main/src/services/models_service.py

If you use an unknown embedding model, OpenRAG will automatically fall back to 1536
dimensions and log a warning. The system will continue to work, but search quality may

be affected if the actual model dimensions differ from 1536.

The default embedding dimension is 1536 and the default model is text-embedding-
3-small.

For models with known vector dimensions, see settings.py in the OpenRAG

repository.

https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py
https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py

Docling Ingestion

OpenRAG uses Docling for its document ingestion pipeline. More specifically, OpenRAG
uses Docling Serve, which starts a docling serve process on your local machine and

runs Docling ingestion through an API service.

Docling ingests documents from your local machine or OAuth connectors, splits them
into chunks, and stores them as separate, structured documents in the OpenSearch

documents index.

OpenRAG chose Docling for its support for a wide variety of file formats, high

performance, and advanced understanding of tables and images.

Docling ingestion settings

These settings configure the Docling ingestion parameters.

OpenRAG will warn you if docling serve is not running. To start or stop docling
serve or any other native services, in the TUl main menu, click Start Native Services or

Stop Native Services.

Embedding model determines which Al model is used to create vector embeddings. The
default is text-embedding-3-small.

Chunk size determines how large each text chunk is in number of characters. Larger
chunks yield more context per chunk, but may include irrelevant information. Smaller
chunks yield more precise semantic search, but may lack context. The default value of
1000 characters provides a good starting point that balances these considerations.

Chunk overlap controls the number of characters that overlap over chunk boundaries.
Use larger overlap values for documents where context is most important, and use
smaller overlap values for simpler documents, or when optimization is most important.
The default value of 200 characters of overlap with a chunk size of 1000 (20% overlap) is
suitable for general use cases. Decrease the overlap to 10% for a more efficient pipeling,

or increase to 40% for more complex documents.

OCR enables or disabled OCR processing when extracting text from images and scanned
documents. OCR is disabled by default. This setting is best suited for processing text-

https://docling-project.github.io/docling/
https://github.com/docling-project/docling-serve

based documents as quickly as possible with Docling's DocumentConverter. Images

are ignored and not processed.

Enable OCR when you are processing documents containing images with text that
requires extraction, or for scanned documents. Enabling OCR can slow ingestion
performance.

If OpenRAG detects that the local machine is running on macOS, OpenRAG uses the
ocrmac OCR engine. Other platforms use easyocr.

Picture descriptions adds image descriptions generated by the SmolVLM-256M-
Instruct model to OCR processing. Enabling picture descriptions can slow ingestion
performance.

Use OpenRAG default ingestion instead of Docling

serve

If you want to use OpenRAG's built-in pipeline instead of Docling serve, set
DISABLE_INGEST_WITH_LANGFLOW=true in Environment variables.

The built-in pipeline still uses the Docling processor, but uses it directly without the
Docling Serve API.

For more information, see processors.py in the OpenRAG repository.

Knowledge ingestion flows

Flows in Langflow are functional representations of application workflows, with multiple
component nodes connected as single steps in a workflow.

The OpenSearch Ingestion flow is the default knowledge ingestion flow in OpenRAG:
when you Add Knowledge in OpenRAG, you run the OpenSearch Ingestion flow in the
background. The flow ingests documents using Docling Serve to import and process

documents.

This flow contains ten components connected together to process and store documents
in your knowledge base.

https://docling-project.github.io/docling/reference/document_converter/
https://www.piwheels.org/project/ocrmac/
https://www.jaided.ai/easyocr/
https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct
https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct
https://github.com/langflow-ai/openrag/blob/main/src/models/processors.py#L58
https://docs.langflow.org/concepts-overview
https://docs.langflow.org/concepts-components

e The Docling Serve component processes input documents by connecting to your
instance of Docling Serve.

e The Export DoclingDocument component exports the processed DoclingDocument
to markdown format with image export mode set to placeholder. This conversion
makes the structured document data into a standardized format for further
processing.

e Three DataFrame Operations components sequentially add metadata columns to
the document data of filename, file_size, and mimetype.

e The Split Text component splits the processed text into chunks with a chunk size of
1000 characters and an overlap of 200 characters.

e Four Secret Input components provide secure access to configuration variables:
CONNECTOR_TYPE, OWNER, OWNER_EMAIL, and OWNER_NAME . These are runtime
variables populated from OAuth login.

* The Create Data component combines the secret inputs into a structured data
object that will be associated with the document embeddings.

e The Embedding Model component generates vector embeddings using OpenAl's
text-embedding-3-small model. The embedding model is selected at
[Application onboarding] and cannot be changed.

e The OpenSearch component stores the processed documents and their
embeddings in the documents index at https://opensearch:9200. By default,
the component is authenticated with a JWT token, but you can also select basic

auth mode, and enter your OpenSearch admin username and password.

All flows included with OpenRAG are designed to be modular, performant, and provider-

o—
agnostic. To modify a flow, click —© Settings, and click Edit in Langflow. OpenRAG's
visual editor is based on the Langflow visual editor, so you can edit your flows to match
your specific use case.

OpenSearch URL Ingestion flow

An additional knowledge ingestion flow is included in OpenRAG, where it is used as an
MCP tool by the Open Search Agent flow. The agent calls this component to fetch web
content, and the results are ingested into OpenSearch.

For more on using MCP clients in Langflow, see MCP clients.
To connect additional MCP servers to the MCP client, see Connect to MCP servers from

your application.

https://docs.langflow.org/bundles-docling
https://docs.langflow.org/bundles-docling
https://docs.langflow.org/components-docling
https://docs.langflow.org/components-docling
https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/concepts-overview
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-tutorial
https://docs.langflow.org/mcp-tutorial

Environment variables

OpenRAG recognizes supported environment variables from the following sources:

e Environment variables - Values set in the .env file.

e Langflow runtime overrides - Langflow components may tweak environment
variables at runtime.

e Default or fallback values - These values are default or fallback values if OpenRAG

doesn't find a value.

Configure environment variables

Environment variables are setina .env file in the root of your OpenRAG project

directory.
For an example .env file, see .env.example in the OpenRAG repository.

The Docker Compose files are populated with values from your .env, so you don't need

to edit the Docker Compose files manually.
Environment variables always take precedence over other variables.

Set environment variables

To set environment variables, do the following.

1. Stop OpenRAG.
2. Set the values in the .env file:

LOG_LEVEL=DEBUG
LOG_FORMAT=json
SERVICE_NAME=openrag-dev

3. Start OpenRAG.

Updating provider API keys or provider endpoints in the .env file will not take effect

after Application onboarding. To change these values, you must:

1. Stop OpenRAG.
2. Remove the containers:

https://github.com/langflow-ai/openrag/blob/main/.env.example

docker—-compose down

3. Update the values in your .env file.

4. Start OpenRAG containers.

docker—-compose up

-d

5. Complete Application onboarding again.

Supported environment variables

All OpenRAG configuration can be controlled through environment variables.

Al provider settings

Configure which Al models and providers OpenRAG uses for language processing and

embeddings. For more information, see Application onboarding.

Variable

EMBEDDING_MODEL

LLM_MODEL

MODEL_PROVIDER

OPENAI_API_KEY

PROVIDER_API_KEY

PROVIDER_ENDPOINT

PROVIDER_PROJECT_ID

Document processing

Default

text-
embedding-3-
small

gpt—-40-mini

openai

Description

Embedding model for vector
search.

Language model for the chat
agent.

Model provider, such as OpenAl or
IBM watsonx.ai.

Your OpenAl API key. Required.
API key for the model provider.

Custom provider endpoint. Only
used for IBM or Ollama providers.

Project ID for providers. Only
required for the IBM watsonx.ai
provider.

Control how OpenRAG processes and ingests documents into your knowledge base. For

more information, see Ingestion.

Variable

CHUNK_OVERLAP

CHUNK_SIZE

DISABLE_INGEST_WITH_LANGFLOW

DOCLING_OCR_ENGINE

OCR_ENABLED

OPENRAG_DOCUMENTS_PATHS
PICTURE_DESCRIPTIONS_ENABLED

Langflow settings

Configure Langflow authentication.

Variable

LANGFLOW_AUTO_LOGIN

LANGFLOW_CHAT_FLOW_ID

LANGFLOW_ENABLE_SUPERUSER_CLI

Default Description
200 Overlap between chunks.
1000 Text chunk size for.
document processing.
PR D.isat.)Ie Langflow ingestion
pipeline.
OCR engine for document
processing.
PR Enable QCR for image
processing.
./documents Document paths for
Ingestion.
false Enable picture descriptions.
Default Description
Enable auto-
False login for
Langflow.
This value is
pre-filled.
. The default
pre-filled)
value is
found in
.env.example.
Enable
False superuser

CLI.

https://github.com/langflow-ai/openrag/blob/main/.env.example

Variable

LANGFLOW_INGEST_FLOW_ID

LANGFLOW_KEY

LANGFLOW_NEW_USER_IS_ACTIVE

LANGFLOW_PUBLIC_URL

LANGFLOW_SECRET_KEY

LANGFLOW_SUPERUSER

LANGFLOW_SUPERUSER_PASSWORD

LANGFLOW_URL

NUDGES_FLOW_ID

Default

pre-filled

auto-generated

False

http://localhost:7860

http://localhost:7860

pre-filled

Description

This value is
pre-filled.
The default
value is
found in
.env.example.

Explicit
Langflow API
key.

New users
are active by
default.

Public URL
for Langflow.

Secret key
for Langflow
internal
operations.

Langflow
admin
username.
Required.

Langflow
admin
password.
Required.

Langflow
URL.

This value is
pre-filled.
The default
value is
found in
.env.example.

https://github.com/langflow-ai/openrag/blob/main/.env.example
https://github.com/langflow-ai/openrag/blob/main/.env.example

Variable

SYSTEM_PROMPT

OAuth provider settings

Default Description

"You are a helpful Al

Configure OAuth providers and external service integrations.

Variable

AWS_ACCESS_KEY_ID / AWS_SECRET_ACCESS_KEY

GOOGLE OAUTH CLIENT 1ID /
GOOGLE_OAUTH_CLIENT_SECRET

MICROSOFT GRAPH OAUTH CLIENT ID /

. . System
assistant with access to a
prompt for
knowledge base. Answer
. the Langflow
questions based on the agent
provided context." gent.
Default Description

AWS integrations.

Google OAuth
authentication.

- Microsoft OAuth.

MICROSOFT_GRAPH_OAUTH_CLIENT_SECRET

WEBHOOK_BASE_URL

OpenSearch settings

Base URL for
- webhook
endpoints.

Configure OpenSearch database authentication.

Variable

OPENSEARCH_HOST
OPENSEARCH_PASSWORD

OPENSEARCH_PORT

OPENSEARCH_USERNAME

System settings

Default

localhost

9200

admin

Description
OpenSearch host.

Password for OpenSearch admin user.
Required.

OpenSearch port.

OpenSearch username.

Configure general system components, session management, and logging.

Variable Default Description

LANGFLOW_KEY RETRIES 15 Number of retries for Langflow key

generation.
LANGFLOW_KEY_RETRY_DELAY 2.0 Delay between retries in seconds.
LANGFLOW_VERSION latest Langflow Docker image version.
LOG_FORMAT _ Log format (set to "json" for JSON
output).
LOG_LEVEL INFO Logging level (DEBUG, INFO,

WARNING, ERROR).

Maximum number of workers for

MAX_WORKERS - .
document processing.

OPENRAG_VERSION latest OpenRAG Docker image version.
SERVICE_NAME openrag Service name for logging.
auto-

SESSION_SECRET Session management.

generated

Langflow runtime overrides

Langflow runtime overrides allow you to modify component settings at runtime without

changing the base configuration.

Runtime overrides are implemented through tweaks - parameter modifications that are

passed to specific Langflow components during flow execution.
For more information on tweaks, see Input schema (tweaks).

Default values and fallbacks

When no environment variables or configuration file values are provided, OpenRAG uses

default values. These values can be found in the code base at the following locations.

OpenRAG configuration defaults

https://docs.langflow.org/concepts-publish#input-schema

These values are defined in config_manager.py in the OpenRAG repository.

System configuration defaults

These fallback values are defined in settings.py inthe OpenRAG repository.

https://github.com/langflow-ai/openrag/blob/main/src/config/config_manager.py
https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py

Troubleshoot

This page provides troubleshooting advice for issues you might encounter when using
OpenRAG or contributing to OpenRAG.

OpenSearch fails to start

Check that OPENSEARCH_PASSWORD set in Environment variables meets requirements.
The password must contain at least 8 characters, and must contain at least one
uppercase letter, one lowercase letter, one digit, and one special character that is strong.

Langflow connection issues

Verify the LANGFLOW_SUPERUSER credentials set in Environment variables are correct.

Memory errors

Container out of memory errors

Increase Docker memory allocation or use docker-compose-cpu.yml to deploy
OpenRAG.

Podman on macOS memory issues

If you're using Podman on macQOS, you may need to increase VM memory on your
Podman machine. This example increases the machine size to 8 GB of RAM, which
should be sufficient to run OpenRAG.

podman machine stop

podman machine rm

podman machine init —-—-memory 8192 # 8 GB example
podman machine start

Port conflicts

Ensure ports 3000, 7860, 8000, 9200, 5601 are available.

Langflow container already exists

https://github.com/langflow-ai/openrag/blob/main/docker-compose-cpu.yml

If you are running other versions of Langflow containers on your machine, you may
encounter an issue where Docker or Podman thinks Langflow is already up.

Remove just the problem container, or clean up all containers and start fresh.
To reset your local containers and pull new images, do the following:

1. Stop your containers and completely remove them.

Podman Docker

Stop all running containers

docker stop $(docker ps -q)

Remove all containers (including stopped ones)
docker rm ——force $(docker ps -aq)

Remove all images

docker rmi ——force $(docker images -q)

Remove all volumes

docker volume prune —-force

Remove all networks (except default)
docker network prune —-—force

Clean up any leftover data

docker system prune ——all —-force —-volumes

2. Restart OpenRAG and upgrade to get the latest images for your containers.

uv sync
uv run openrag

3. In the OpenRAG TUI, click Status, and then click Upgrade. When the Close button
is active, the upgrade is complete. Close the window and open the OpenRAG
appplication.

