What is OpenRAG?

OpenRAG is an open-source package for building agentic RAG systems that integrates
with a wide range of orchestration tools, vector databases, and LLM providers.

OpenRAG connects and amplifies three popular, proven open-source projects into one
powerful platform:

e Langflow: Langflow is a versatile tool for building and deploying Al agents and MCP
servers. It supports all major LLMs, vector databases, and a growing library of Al
tools.

e OpenSearch: OpenSearch is a community-driven, Apache 2.0-licensed open source
search and analytics suite that makes it easy to ingest, search, visualize, and analyze
data.

¢ Docling: Docling simplifies document processing, parsing diverse formats —
including advanced PDF understanding — and providing seamless integrations with

the gen Al ecosystem.

OpenRAG builds on Langflow's familiar interface while adding OpenSearch for vector
storage and Docling for simplified document parsing, with opinionated flows that serve
as ready-to-use recipes for ingestion, retrieval, and generation from popular sources like
Google Drive, OneDrive, and Sharepoint.

What's more, every part of the stack is swappable. Write your own custom components
in Python, try different language models, and customize your flows to build an agentic
RAG system.

Ready to get started? Install OpenRAG and then run the Quickstart to create a powerful
RAG pipeline.

OpenRAG architecture

OpenRAG deploys and orchestrates a lightweight, container-based architecture that
combines Langflow, OpenSearch, and Docling into a cohesive RAG platform.

The OpenRAG Backend is the central orchestration service that coordinates all other

components.

https://docs.langflow.org/
https://docs.opensearch.org/latest/
https://docling-project.github.io/docling/

Langflow provides a visual workflow engine for building Al agents, and connects to
OpenSearch for vector storage and retrieval.

Docling Serve is a local document processing service managed by the OpenRAG
Backend.

Third Party Services like Google Drive connect to the OpenRAG Backend through
OAuth authentication, allowing synchronication of cloud storage with the OpenSearch
knowledge base.

The OpenRAG Frontend provides the user interface for interacting with the system.

Performance expectations

On alocal VM with 7 vCPUs and 8 GiB RAM, OpenRAG ingested approximately 5.03 GB
across 1,083 files in about 42 minutes. This equates to approximately 2.4 documents per
second.

You can generally expect equal or better performance on developer laptops and
significantly faster on servers. Throughput scales with CPU cores, memory, storage
speed, and configuration choices such as embedding model, chunk size and overlap, and
concurrency.

This test returned 12 errors (approximately 1.1%). All errors were file-specific, and they
didn't stop the pipeline.

Ingestion dataset:

* Total files: 1,083 items mounted
e Total size on disk: 5,026,474,862 bytes (approximately 5.03 GB)

Hardware specifications:

e Machine: Apple M4 Pro
e Podman VM:
o Name: podman—-machine-default
o Type: applehv
o vCPUs:7
o Memory: 8 GiB

o Disk size: 100 GiB

Test results:

2025-09-24T22:40:45.542190Z /app/src/main.py:231 Ingesting default
documents when ready disable_langflow_ingest=False
2025-09-24T22:40:45.546385Z /app/src/main.py:270 Using Langflow
ingestion pipeline for default documents file_count=1082

2025-09-24T723:19:44.866365Z /app/src/main.py:351 Langflow ingestion
completed success_count=1070 error_count=12 total_files=1082

Elapsed time: ~42 minutes 15 seconds (2,535 seconds)

Throughput: ~2.4 documents/second

Install OpenRAG with TUI

Install OpenRAG and then run the OpenRAG Terminal User Interface(TUI) to start your
OpenRAG deployment with a guided setup process.

The OpenRAG Terminal User Interface (TUI) allows you to set up, configure, and monitor
your OpenRAG deployment directly from the terminal.

OpenRAG TUI

Terminal User Interface for OpenRAG

OAuth credentials detected — Advanced Setup recommended

Advanced Setup

g Quit 1 Basic Setup 2 Advanced Setup 3 Monitor Services 4 Diagnostics “p palette

Instead of starting OpenRAG using Docker commands and manually editing values in the
.env file, the TUI walks you through the setup. It prompts for variables where required,

creates a .env file for you, and then starts OpenRAG.

Once OpenRAG is running, use the TUI to monitor your application, control your
containers, and retrieve logs.

If you prefer running Podman or Docker containers and manually editing .env files, see

Install OpenRAG Containers.

Prerequisites

e Install Python Version 3.10 to 3.13
e Install uv

¢ Install Podman (recommended) or Docker

https://www.python.org/downloads/release/python-3100/
https://docs.astral.sh/uv/getting-started/installation/
https://podman.io/docs/installation
https://docs.docker.com/get-docker/

¢ |Install Docker Compose. If using Podman, use podman-compose or alias Docker
compose commands to Podman commands.

e Create an OpenAl API key. This key is required to start OpenRAG, but you can
choose a different model provider during Application Onboarding.

e Optional: Install GPU support with an NVIDIA GPU, CUDA support, and compatible
NVIDIA drivers on the OpenRAG host machine. If you don't have GPU capabilities,
OpenRAG provides an alternate CPU-only deployment.

Install OpenRAG

@ WINDOWS USERS

To use OpenRAG on Windows, use WSL (Windows Subsystem for Linux).

To set up a project and install OpenRAG as a dependency, do the following:

1. Create a new project with a virtual environment using uv init.

uv init YOUR_PROJECT_NAME
cd YOUR_PROJECT_NAME

The (venv) prompt doesn't change, but uv commands will automatically use the
project's virtual environment. For more information on virtual environments, see the

uv documentation.

2. Add OpenRAG to your project.
uv add openrag

To add a specific version of OpenRAG:

uv add openrag==0.1.25

3. Start the OpenRAG TUI.

https://docs.docker.com/compose/install/
https://docs.podman.io/en/latest/markdown/podman-compose.1.html
https://platform.openai.com/api-keys
https://docs.nvidia.com/cuda/
https://learn.microsoft.com/en-us/windows/wsl/install
https://docs.astral.sh/uv/pip/environments

uv run openrag

Install a local wheel

If you downloaded the OpenRAG wheel to your local machine, follow these steps:

1. Add the wheel to your project's virtual environment.
uv add PATH/TO/openrag—VERSION-py3—-none—any.whl

Replace PATH/TO/ and VERSION with the path and version of your downloaded
OpenRAG .whl file.

For example, if your .wh' file is in the ~/Downloads directory:
uv add ~/Downloads/openrag-0.1.8-py3—-none-any.whl

2. Run OpenRAG.

uv run openrag

3. Continue with Set up OpenRAG with the TUI.

Set up OpenRAG with the TUI

The TUI creates a .env file in your OpenRAG directory root and starts OpenRAG. If the
TUI detects a .env file in the OpenRAG root directory, it sources any variables from the
.env file. If the TUI detects OAuth credentials, it enforces the Advanced Setup path.

Basic setup

Basic Setup generates all of the required values for OpenRAG except the OpenAl API
key. Basic Setup does not set up OAuth connections for ingestion from cloud providers.
For OAuth setup, use Advanced Setup. For information about the difference between

basic (no auth) and OAuth in OpenRAG, see Authentication and document access.

1. To install OpenRAG with Basic Setup, click Basic Setup or press 1 .
2. Click Generate Passwords to generate passwords for OpenSearch and Langflow.

The OpenSearch password is required. The Langflow admin password is optional. If
no Langflow admin password is generated, Langflow runs in autologin mode with no

password required.
3. Paste your OpenAl API key in the OpenAl API key field.

4. Click Save Configuration. Your passwords are saved in the .env file used to start
OpenRAG.

5. To start OpenRAG, click Start All Services. Startup pulls container images and runs
them, so it can take some time. When startup is complete, the TUI displays the

following:

Services started successfully
Command completed successfully

6. To open the OpenRAG application, click Open App.
7. Continue with Application Onboarding.

Advanced setup

1. To install OpenRAG with Advanced Setup, click Advanced Setup or press 2 .
2. Click Generate Passwords to generate passwords for OpenSearch and Langflow.

The OpenSearch password is required. The Langflow admin password is optional. If
no Langflow admin password is generated, Langflow runs in autologin mode with no

password required.
3. Paste your OpenAl API key in the OpenAl API key field.

4. Add your client and secret values for Google or Microsoft OAuth. These values can
be found with your OAuth provider. For more information, see the Google OAuth
client or Microsoft Graph OAuth client documentation.

https://docs.langflow.org/api-keys-and-authentication#langflow-auto-login
https://docs.langflow.org/api-keys-and-authentication#langflow-auto-login
https://developers.google.com/identity/protocols/oauth2
https://developers.google.com/identity/protocols/oauth2
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/graph-oauth

5. The OpenRAG TUI presents redirect URIs for your OAuth app. These are the URLs
your OAuth provider will redirect back to after user sign-in. Register these redirect

values with your OAuth provider as they are presented in the TUI.
6. Click Save Configuration.

7. To start OpenRAG, click Start All Services. Startup pulls container images and runs
them, so it can take some time. When startup is complete, the TUI displays the
following:

Services started successfully
Command completed successfully

8. To open the OpenRAG application, click Open App. You are presented with your
provider's OAuth sign-in screen. After sign-in, you are redirected to the redirect URI.

Two additional variables are available for Advanced Setup:

The LANGFLOW_PUBLIC_URL controls where the Langflow web interface can be

accessed. This is where users interact with their flows in a browser.

The WEBHOOK_BASE_URL controls where the endpoint for
/connectors/CONNECTOR_TYPE/webhook will be available. This connection
enables real-time document synchronization with external services. Supported

webhook endpoints:

o Google Drive: /connectors/google_drive/webhook
o OneDrive: /connectors/onedrive/webhook
o SharePoint: /connectors/sharepoint/webhook

9. Continue with Application Onboarding.

Application onboarding

The first time you start OpenRAG, whether using the TUl or a .env file, it's

recommended that you complete application onboarding.

To skip onboarding, click Skip onboarding.

Values from onboarding can be changed later in the OpenRAG Settings page.
Choose one LLM provider and complete only those steps:

OpenAl

1. Enable Get API key from environment variable to automatically enter your key
from the TUI-generated .env file. Alternatively, paste an OpenAl API key into the
field.

2. Under Advanced settings, select your Embedding Model and Language Model.

3. To load 2 sample PDFs, enable Sample dataset. This is recommended, but not
required.

4. Click Complete.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a
Document.

6. Continue with the Quickstart.

IBM watsonx.ai

1. Complete the fields for watsonx.ai APl Endpoint, IBM Project ID, and IBM API key.
These values are found in your IBM watsonx deployment.

2. Under Advanced settings, select your Embedding Model and Language Model.

3. To load 2 sample PDFs, enable Sample dataset. This is recommended, but not
required.

4. Click Complete.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a
Document.

6. Continue with the Quickstart.

Ollama

Q TP

Ollama is not included with OpenRAG. To install Ollama, see the Ollama

documentation.

1. Enter your Ollama server's base URL address. The default Ollama server address is
http://localhost:11434. OpenRAG automatically transforms localhost to

https://docs.ollama.com/
https://docs.ollama.com/

access services outside of the container, and sends a test connection to your Ollama
server to confirm connectivity.

2. Select the Embedding Model and Language Model your Ollama server is running.
OpenRAG retrieves the available models from your Ollama server.

3. To load 2 sample PDFs, enable Sample dataset. This is recommended, but not
required.

4. Click Complete.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a
Document.

6. Continue with the Quickstart.

Close the OpenRAG TUI

To close the OpenRAG TUI, press q . The OpenRAG containers will continue to be served
until the containers are stopped. For more information, see Manage OpenRAG containers
with the TUI .

To start the TUI again, run uv run openrag.

Manage OpenRAG containers with the TUI

After installation, the TUI can deploy, manage, and upgrade your OpenRAG containers.

Start all services

Click Start All Services to start the OpenRAG containers. The TUI automatically detects
your container runtime, and then checks if your machine has compatible GPU support by
checking for CUDA, NVIDIA_SMI, and Docker/Podman runtime support. This check
determines which Docker Compose file OpenRAG uses. The TUI then pulls the images
and deploys the containers with the following command.

docker compose up -d

If images are missing, the TUl runs docker compose pull, thenruns docker compose

up —d.

Status

The Status menu displays information on your container deployment. Here you can
check container health, find your service ports, view logs, and upgrade your containers.

To view streaming logs, select the container you want to view, and press 1. To copy
your logs, click Copy to Clipboard.

To upgrade your containers, click Upgrade. Upgrade runs docker compose pull and
then docker compose up -d ——force-recreate. The first command pulls the latest
images of OpenRAG. The second command recreates the containers with your data

persisted.

To reset your containers, click Reset. Reset gives you a completely fresh start. Reset
deletes all of your data, including OpenSearch data, uploaded documents, and
authentication. Reset runs two commands. It first stops and removes all containers,
volumes, and local images.

docker compose down —-volumes —--remove-orphans ——rmi local

When the first command is complete, OpenRAG removes any additional Docker objects
with prune.

docker system prune -f

Native services status

A native service in OpenRAG refers to a service run locally on your machine, and not
within a container. The docling serve process is a native service in OpenRAG,
because it's a document processing service that is run on your local machine, and
controlled separately from the containers.

To start or stop docling serve or any other native services, in the TUI Status menu,
click Stop or Restart.

To view the status, port, or PID of a native service, in the TUI main menu, click Status.

Diagnostics

The Diagnostics menu provides health monitoring for your container runtimes and
monitoring of your OpenSearch security.

Install OpenRAG containers

OpenRAG has two Docker Compose files. Both files deploy the same applications and
containers locally, but they are for different environments.

e docker—compose.yml is an OpenRAG deployment with GPU support for
accelerated Al processing. This Docker Compose file requires an NVIDIA GPU with
CUDA support.

e docker-compose—cpu.yml is a CPU-only version of OpenRAG for systems without
NVIDIA GPU support. Use this Docker Compose file for environments where GPU

drivers aren't available.

Prerequisites

e Install Python Version 3.10 to 3.13

e Install uv

¢ Install Podman (recommended) or Docker

¢ Install Docker Compose. If using Podman, use podman-compose or alias Docker
compose commands to Podman commands.

e Create an OpenAl API key. This key is required to start OpenRAG, but you can
choose a different model provider during Application Onboarding.

e Optional: Install GPU support with an NVIDIA GPU, CUDA support, and compatible
NVIDIA drivers on the OpenRAG host machine. If you don't have GPU capabilities,
OpenRAG provides an alternate CPU-only deployment.

Install OpenRAG with Docker Compose

To install OpenRAG with Docker Compose, do the following:

1. Clone the OpenRAG repository.

git clone https://github.com/langflow-ai/openrag.git
cd openrag

2. Install dependencies.

https://github.com/langflow-ai/openrag/blob/main/docker-compose.yml
https://docs.nvidia.com/cuda/
https://github.com/langflow-ai/openrag/blob/main/docker-compose-cpu.yml
https://www.python.org/downloads/release/python-3100/
https://docs.astral.sh/uv/getting-started/installation/
https://podman.io/docs/installation
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/
https://docs.podman.io/en/latest/markdown/podman-compose.1.html
https://platform.openai.com/api-keys
https://docs.nvidia.com/cuda/

uv sync

3. Copy the example .env file included in the repository root. The example file
includes all environment variables with comments to guide you in finding and setting

their values.
cp .env.example .env

Alternatively, create a new .env file in the repository root.

touch .env

4. The Docker Compose files are populated with the values from your .env file. The

following values must be set:

OPENSEARCH_PASSWORD=your_secure_password
OPENAI_API_KEY=your_openai_api_key
LANGFLOW_SECRET_KEY=your_secret_key

OPENSEARCH_PASSWORD can be automatically generated when using the TUI, but for
a Docker Compose installation, you can set it manually instead. To generate an

OpenSearch admin password, see the OpenSearch documentation.
The OPENAI_API_KEY is found in your OpenAl account.

LANGFLOW_SECRET_KEY is automatically generated when using the TUI, and
Langflow will also auto-generate it if not set. For more information, see the Langflow

documentation.

The following Langflow configuration values are optional but important to consider:

LANGFLOW_SUPERUSER=admin
LANGFLOW_SUPERUSER_PASSWORD=your_langf low_password

https://docs.opensearch.org/latest/security/configuration/demo-configuration/#setting-up-a-custom-admin-password
https://docs.langflow.org/api-keys-and-authentication#langflow-secret-key
https://docs.langflow.org/api-keys-and-authentication#langflow-secret-key

LANGFLOW_SUPERUSER defaults to admin. You can omit it or set it to a different
username. LANGFLOW_SUPERUSER_PASSWORD is optional. If omitted, Langflow runs
in autologin mode with no password required. If set, Langflow requires password
authentication.

For more information on configuring OpenRAG with environment variables, see
Environment variables.
5. Start docling serve on the host machine. OpenRAG Docker installations require

that docling serve is running on port 5001 on the host machine. This enables

Mac MLX support for document processing.

uv run python scripts/docling_ctl.py start ——port 5001

6. Confirm docling serve is running.

uv run python scripts/docling_ctl.py status

Make sure the response shows that docling serve is running, for example:

Status: running

Endpoint: http://127.0.0.1:5001
Docs: http://127.0.0.1:5001/docs
PID: 27746

7. Deploy OpenRAG locally with Docker Compose based on your deployment type.

For GPU support (docker-compose.yml):

docker compose build
docker compose up -d

For CPU-only (docker-compose-cpu.yml):

docker compose —-f docker—compose-cpu.yml up -d

https://docs.langflow.org/api-keys-and-authentication#langflow-auto-login
https://opensource.apple.com/projects/mlx/

The OpenRAG Docker Compose file starts five containers:

Container Name

OpenRAG Backend

OpenRAG Frontend

Langflow

OpenSearch

OpenSearch
Dashboards

Default Address

http://localhost:8000

http://localhost:3000

http://localhost:7860

http://localhost:9200

http://localhost:5601

Purpose

FastAPI server and core
functionality.

React web interface for users.

Al workflow engine and flow
management.

Vector database for document
storage.

Database administration
interface.

8. Verify installation by confirming all services are running.

docker compose ps

You can now access OpenRAG at the following endpoints:

o Frontend: http://localhost:3000
o Backend API: http://localhost:8000
o Langflow: http://localhost:7860

9. Continue with Application Onboarding.

To stop docling serve when you're done with your OpenRAG deployment, run:

uv run python scripts/docling_ctl.py stop

Application onboarding

The first time you start OpenRAG, whether using the TUl or a .env file, it's

recommended that you complete application onboarding.

To skip onboarding, click Skip onboarding.

http://localhost:8000/
http://localhost:3000/
http://localhost:7860/
http://localhost:9200/
http://localhost:5601/
http://localhost:3000/
http://localhost:8000/
http://localhost:7860/

Values from onboarding can be changed later in the OpenRAG Settings page.
Choose one LLM provider and complete only those steps:

OpenAl

1. Enable Get API key from environment variable to automatically enter your key
from the TUI-generated .env file. Alternatively, paste an OpenAl API key into the
field.

2. Under Advanced settings, select your Embedding Model and Language Model.

3. To load 2 sample PDFs, enable Sample dataset. This is recommended, but not
required.

4. Click Complete.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a
Document.

6. Continue with the Quickstart.

IBM watsonx.ai

1. Complete the fields for watsonx.ai APl Endpoint, IBM Project ID, and IBM API key.
These values are found in your IBM watsonx deployment.

2. Under Advanced settings, select your Embedding Model and Language Model.

3. To load 2 sample PDFs, enable Sample dataset. This is recommended, but not
required.

4. Click Complete.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a
Document.

6. Continue with the Quickstart.

Ollama

Q TP

Ollama is not included with OpenRAG. To install Ollama, see the Ollama

documentation.

1. Enter your Ollama server's base URL address. The default Ollama server address is
http://localhost:11434. OpenRAG automatically transforms localhost to

https://docs.ollama.com/
https://docs.ollama.com/

access services outside of the container, and sends a test connection to your Ollama
server to confirm connectivity.

2. Select the Embedding Model and Language Model your Ollama server is running.
OpenRAG retrieves the available models from your Ollama server.

3. To load 2 sample PDFs, enable Sample dataset. This is recommended, but not
required.

4. Click Complete.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a
Document.

6. Continue with the Quickstart.

Container management commands

Manage your OpenRAG containers with the following commands. These commands are
also available in the TUI's Status menu.

Upgrade containers

Upgrade your containers to the latest version while preserving your data.

docker compose pull
docker compose up -d ——force-recreate

Rebuild containers (destructive)

Reset state by rebuilding all of your containers. Your OpenSearch and Langflow
databases will be lost. Documents stored in the ./documents directory will persist,

since the directory is mounted as a volume in the OpenRAG backend container.

docker compose up ——build ——force-recreate ——remove-orphans

Remove all containers and data (destructive)

Completely remove your OpenRAG installation and delete all data. This deletes all of your

data, including OpenSearch data, uploaded documents, and authentication.

docker compose down —-volumes —--remove-orphans ——rmi local

docker system prune -f

Quickstart

Get started with OpenRAG by loading your knowledge, swapping out your language
model, and then chatting with the Langflow API.

Prerequisites

¢ Install and start OpenRAG with the TUI or Docker
Load and chat with your own documents

1. In OpenRAG, click D Chat. The chat is powered by the OpenRAG OpenSearch
Agent. For more information, see Langflow in OpenRAG.

2. Ask What documents are available to you? The agent responds with a
message summarizing the documents that OpenRAG loads by default. Knowledge is

stored in OpenSearch. For more information, see OpenSearch in OpenRAG.

3. To confirm the agent is correct about the default knowledge, click i Knowledge.
The Knowledge page lists the documents OpenRAG has ingested into the
OpenSearch vector database. Click on a document to display the chunks derived
from splitting the default documents into the OpenSearch vector database.

4. To add documents to your knowledge base, click Add Knowledge.

o Select D File to add a single file from your local machine.

o Select D Folder to process an entire folder of documents from your local
machine. The default directory is /documents in your OpenRAG directory.

o Select your cloud storage provider to add knowledge from an OAuth-connected
storage provider. For more information, see OAuth ingestion.

5. Return to the Chat window and ask a question about your loaded data. For example,
with a manual about a PC tablet loaded, ask How do I connect this device to
WiFi? The agent responds with a message indicating it now has your knowledge as
context for answering questions.

6. Click Function Call: search_documents (tool_call). This log describes how the
agent uses tools. This is helpful for troubleshooting when the agent isn't responding
as expected.

Swap out the language model to modify agent behavior

o—
To modify the knowledge ingestion or Agent behavior, click —© Settings.

In this example, you'll try a different LLM to demonstrate how the Agent's response
changes.

1. To edit the Agent's behavior, click Edit in Langflow. You can more quickly access
the Language Model and Agent Instructions fields in this page, but for illustration
purposes, navigate to the Langflow visual builder. To revert the flow to its initial
state, click Restore flow.

2. OpenRAG warns you that you're entering Langflow. Click Proceed.

If Langflow requests login information, enter the LANGFLOW_SUPERUSER and
LANGFLOW_SUPERUSER_PASSWORD from the .env file in your OpenRAG directory.

The OpenRAG OpenSearch Agent flow appears in a new browser window.

3 starter Project / (@) OpenRAG Opensearch Agent Ouk m2x o ¢

(& Language Mode!

aaaaaaaaaa

uuuuuuuuu

oooooooooooooooooo

3. Find the Language Model component, and then change the Model Name field to a
different OpenAl model.

4. Save your flow with Command+S (Mac) or Ctr1+S (Windows).

5. Return to the OpenRAG browser window, and start a new conversation by clicking

+ in the Conversations tab.

6. Ask the same question you asked before to see how the response differs between
models.

Integrate OpenRAG into your application

Langflow in OpenRAG includes pre-built flows that you can integrate into your
applications using the Langflow API.

The Langflow API accepts Python, TypeScript, or curl requests to run flows and get
responses. You can use these flows as-is or modify them to better suit your needs.

In this section, you'll run the OpenRAG OpenSearch Agent flow and get a response using
the API.

o—
1. To navigate to the OpenRAG OpenSearch Agent flow in Langflow, click =0 Settings,
and then click Edit in Langflow in the OpenRAG OpenSearch Agent flow.

2. Create a Langflow API key.

A Langflow API key is a user-specific token you can use with Langflow. It is only
used for sending requests to the Langflow server. It does not access OpenRAG.

To create a Langflow API key, do the following:

i. Open Langflow, click your user icon, and then select Settings.

ii. Click Langflow API Keys, and then click + Add New.
iii. Name your key, and then click Create API Key.
iv. Copy the API key and store it securely.
3. Langflow includes code snippets for the request to the Langflow API. To retrieve the
code snippet, click Share, and then click APl access.

The default code in the API access pane constructs a request with the Langflow
server url, headers, and a payload of request data. The code snippets
automatically include the LANGFLOW_SERVER_ADDRESS and FLOW_ID values for the

flow.

Python:

import requests

import os

import uuid

api_key = 'LANGFLOW_API_KEY'

https://docs.langflow.org/api-reference-api-examples
https://docs.langflow.org/api-keys-and-authentication

url = "http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID" #
The complete API endpoint URL for this flow
Request payload configuration
payload = {
"output_type": "chat",
"input_type": '"chat",
"input_value": "hello world!'"
¥
payload["session_id"] = str(uuid.uuid4())
headers = {"x-api-key": api_key}
try:
Send API request
response = requests.request("POST", url, json=payload,
headers=headers)
response.raise_for_status() # Raise exception for bad
status codes
Print response
print(response.text)
except requests.exceptions.RequestException as e:
print(f"Error making API request: {e}")
except ValueError as e:
print(f"Error parsing response: {e}")

TypeScript:

const crypto = require('crypto');
const apiKey = 'LANGFLOW_API_KEY';
const payload = {
"output_type": "chat",
"input_type": "chat",
"input_value": "hello world!'"
b
payload.session_id = crypto.randomUUID();
const options = {
method: 'POST',
headers: {
'Content-Type': 'application/json',
"x—api-key'": apiKey
¥y
body: JSON.stringify(payload)
b
fetch('http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID',

options)
.then(response => response.json())
.then(response => console.warn(response))
.catch(err => console.error(err));

curl:

curl ——request POST \
——url 'http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID?
stream=false' \
—header 'Content-Type: application/json' \
——header '"x-api-key: LANGFLOW_API_KEY" \
——data '{
"output_type": "chat",
"input_type": "chat",
"input_value": "hello world!"

} 1

4. Copy the snippet, paste it in a script file, and then run the script to send the request.
If you are using the curl snippet, you can run the command directly in your terminal.

If the request is successful, the response includes many details about the flow run,
including the session ID, inputs, outputs, components, durations, and more.

To further explore the API, see:

e The Langflow Quickstart extends this example with extracting fields from the
response.
e Get started with the Langflow API

https://docs.langflow.org/quickstart#extract-data-from-the-response
https://docs.langflow.org/api-reference-api-examples

Langflow in OpenRAG

OpenRAG leverages Langflow's Agent component to power the OpenRAG OpenSearch
Agent flow.

Flows in Langflow are functional representations of application workflows, with multiple
component nodes connected as single steps in a workflow.

In the OpenRAG OpenSearch Agent flow, components like the Langflow Agent
component and OpenSearch component are connected to intelligently chat with your
knowledge by embedding your query, comparing it the vector database embeddings, and
generating a response with the LLM.

N

starter Project / () OpenRAG Opensearch Agent Oua @ o0 @

D> Playground Share v

nnnnnnnnnn

+ New Custom Component >- Logs

The Agent component shines here in its ability to make decisions on not only what query
should be sent, but when a query is necessary to solve the problem at hand.

How do agents work?

Agents extend Large Language Models (LLMs) by integrating tools, which are functions
that provide additional context and enable autonomous task execution. These

integrations make agents more specialized and powerful than standalone LLMs.

Whereas an LLM might generate acceptable, inert responses to general queries and
tasks, an agent can leverage the integrated context and tools to provide more relevant

https://docs.langflow.org/concepts-overview
https://docs.langflow.org/concepts-components
https://docs.langflow.org/agents
https://docs.langflow.org/agents
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch

responses and even take action. For example, you might create an agent that can access
your company's documentation, repositories, and other resources to help your team with

tasks that require knowledge of your specific products, customers, and code.

Agents use LLMs as a reasoning engine to process input, determine which actions to
take to address the query, and then generate a response. The response could be a
typical text-based LLM response, or it could involve an action, like editing a file, running a
script, or calling an external API.

In an agentic context, tools are functions that the agent can run to perform tasks or
access external resources. A function is wrapped as a Tool object with a common
interface that the agent understands. Agents become aware of tools through tool
registration, which is when the agent is provided a list of available tools typically at agent
initialization. The Tool object's description tells the agent what the tool can do so that it

can decide whether the tool is appropriate for a given request.

Use the OpenRAG OpenSearch Agent flow

If you've chatted with your knowledge in OpenRAG, you've already experienced the
OpenRAG OpenSearch Agent chat flow. To switch OpenRAG over to the Langflow visual

o—
editor and view the OpenRAG OpenSearch Agentflow, click =@ Settings, and then click
Edit in Langflow. This flow contains eight components connected together to chat with

your data:

¢ The Agent component orchestrates the entire flow by deciding when to search the
knowledge base, how to formulate search queries, and how to combine retrieved
information with the user's question to generate a comprehensive response. The
Agent behaves according to the prompt in the Agent Instructions field.

e The Chat Input component is connected to the Agent component's Input port. This
allows to flow to be triggered by an incoming prompt from a user or application.

e The OpenSearch component is connected to the Agent component's Tools port.
The agent may not use this database for every request; the agent only uses this
connection if it decides the knowledge can help respond to the prompt.

e The Language Model component is connected to the Agent component's Language
Model port. The agent uses the connected LLM to reason through the request sent
through Chat Input.

https://docs.langflow.org/concepts-overview
https://docs.langflow.org/concepts-overview
https://docs.langflow.org/agents
https://docs.langflow.org/agents
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/components-models
https://docs.langflow.org/components-models

e The Embedding Model component is connected to the OpenSearch component's
Embedding port. This component converts text queries into vector representations
that are compared with document embeddings stored in OpenSearch for semantic
similarity matching. This gives your Agent's queries context.

e The Text Input component is populated with the global variable OPENRAG—-QUERY-
FILTER. This filter is the Knowledge filter, and filters which knowledge sources to
search through.

e The Agent component's Output port is connected to the Chat Output component,
which returns the final response to the user or application.

e An MCP Tools component is connected to the Agent's Tools port. This component
calls the OpenSearch URL Ingestion flow, which Langflow uses as an MCP server to
fetch content from URLs and store in OpenSearch.

All flows included with OpenRAG are designed to be modular, performant, and provider-
o—

agnostic. To modify a flow, click —© Settings, and click Edit in Langflow. OpenRAG's

visual editor is based on the Langflow visual editor, so you can edit your flows to match

your specific use case.

For an example of changing out the agent's language model in OpenRAG, see the
Quickstart.

o—
To restore the flow to its initial state, in OpenRAG, click =© Settings, and then click
Restore Flow. OpenRAG warns you that this discards all custom settings. Click Restore
to restore the flow.

Additional Langflow functionality

Langflow includes features beyond Agents to help you integrate OpenRAG into your
application, and all Langflow features are included in OpenRAG.

e Langflow can serve your flows as an MCP server, or consume other MCP servers as
an MCP client. Get started with the MCP tutorial.

* If you don't see the component you need, extend Langflow's functionality by
creating custom Python components.

* Langflow offers component bundles to integrate with many popular vector stores,

Al/ML providers, and search APIs.

https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-client
https://docs.langflow.org/concepts-overview
https://docs.langflow.org/mcp-server
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-tutorial
https://docs.langflow.org/components-custom-components
https://docs.langflow.org/components-bundle-components

OpenSearch in OpenRAG

OpenRAG uses OpenSearch for its vector-backed knowledge store. This is a specialized
database for storing and retrieving embeddings, which helps your Agent efficiently find
relevant information. OpenSearch provides powerful hybrid search capabilities with
enterprise-grade security and multi-tenancy support.

Authentication and document access

OpenRAG supports two authentication modes based on how you install OpenRAG, and
which mode you choose affects document access.

No-auth mode (Basic Setup): This mode uses a single anonymous JWT token for
OpenSearch authentication, so documents uploaded to the documents index by one

user are visible to all other users on the OpenRAG server.

OAuth mode (Advanced Setup): Each OpenRAG user is granted a JWT token, and each
document is tagged with user ownership. Documents are filtered by user ownership,
ensuring users only see documents they uploaded or have access to.

Ingest knowledge

OpenRAG supports knowledge ingestion through direct file uploads and OAuth
connectors. To configure the knowledge ingestion pipeline parameters, see Docling
Ingestion.

Direct file ingestion

The Knowledge Ingest flow uses Langflow's File component to split and embed files
loaded from your local machine into the OpenSearch database.

The default path to your local folder is mounted from the ./documents folder in your
OpenRAG project directory to the /app/documents/ directory inside the Docker
container. Files added to the host or the container will be visible in both locations. To
configure this location, modify the Documents Paths variable in either the TUI's
Advanced Setup menu or in the .env used by Docker Compose.

To load and process a single file from the mapped location, click Add Knowledge, and

then click D File. The file is loaded into your OpenSearch database, and appears in the

https://docs.opensearch.org/latest/
https://docs.langflow.org/components-data#file
https://docs.langflow.org/components-data#file

Knowledge page.

To load and process a directory from the mapped location, click Add Knowledge, and

then click D Folder. The files are loaded into your OpenSearch database, and appear in
the Knowledge page.

To add files directly to a chat session, click + in the chat input and select the files you
want to include. Files added this way are processed and made available to the agent for
the current conversation, and are not permanently added to the knowledge base.

Ingest files through OAuth connectors

OpenRAG supports Google Drive, OneDrive, and Sharepoint as OAuth connectors for
seamless document synchronization.

OAuth integration allows individual users to connect their personal cloud storage
accounts to OpenRAG. Each user must separately authorize OpenRAG to access their
own cloud storage files. When a user connects a cloud service, they are redirected to
authenticate with that service provider and grant OpenRAG permission to sync
documents from their personal cloud storage.

Before users can connect their cloud storage accounts, you must configure OAuth
credentials in OpenRAG. This requires registering OpenRAG as an OAuth application with
a cloud provider and obtaining client ID and secret keys for each service you want to
support.

To add an OAuth connector to OpenRAG, do the following. This example uses Google
OAuth. If you wish to use another provider, add the secrets to another provider.

TUI installation

1. If OpenRAG is running, stop it with Status > Stop Services.

2. Click Advanced Setup.

3. Add the OAuth provider's client and secret key in the Advanced Setup menu.

4. Click Save Configuration. The TUI generates a new .env file with your OAuth
values.

5. Click Start Container Services.

.env file installation

1. Stop the Docker deployment.
2. Add the OAuth provider's client and secret key in the .env file for Docker Compose.

GOOGLE_OAUTH_CLIENT_ID="'YOUR_OAUTH_CLIENT_ID'
GOOGLE_OAUTH_CLIENT_SECRET="'YOUR_OAUTH_CLIENT_SECRET"

3. Save your .env file.

4. Start the Docker deployment.

The OpenRAG frontend at http://localhost:3000 now redirects to an OAuth callback

login page for your OAuth provider. A successful authentication opens OpenRAG with the
required scopes for your connected storage.

To add knowledge from an OAuth-connected storage provider, do the following:

1. Click Add Knowledge, and then select the storage provider, for example, Google
Drive. The Add Cloud Knowledge page opens.

2. To add files or folders from the connected storage, click Add Files. Select the files
or folders you want and click Select. You can select multiple files.

3. When your files are selected, click Ingest Files. The ingestion process may take
some time, depending on the size of your documents.

4. When ingestion is complete, your documents are available in the Knowledge screen.

Explore knowledge

The Knowledge page lists the documents OpenRAG has ingested into the OpenSearch
vector database's documents index.

To explore your current knowledge, click)\ Knowledge. Click on a document to display

the chunks derived from splitting the default documents into the vector database.

Documents are processed with the default Knowledge Ingest flow, so if you want to split
your documents differently, edit the Knowledge Ingest flow.

All flows included with OpenRAG are designed to be modular, performant, and provider-

o—

agnostic. To modify a flow, click =@ Settings, and click Edit in Langflow. OpenRAG's
visual editor is based on the Langflow visual editor, so you can edit your flows to match
your specific use case.

https://docs.langflow.org/concepts-overview

Create knowledge filters

OpenRAG includes a knowledge filter system for organizing and managing document

collections. Knowledge filters are saved search configurations that allow you to create

custom views of your document collection. They store search queries, filter criteria, and

display settings that can be reused across different parts of OpenRAG.

Knowledge filters help agents work more efficiently with large document collections by

focusing their context within relevant documents sets.

To create a knowledge filter, do the following:

1. Click Knowledge, and then click + Knowledge Filters. The Knowledge Filter

pane appears.

2. Enter a Name and Description, and then click Create Filter. A new filter is created

with default settings that match all documents.

3. To modify the filter, click)\ Knowledge, and then click your new filter to edit it in

the Knowledge Filter pane.

The following filter options are configurable.

(o]

e}

Search Query: Enter text for semantic search, such as "financial reports from
Q4"

Data Sources: Select specific data sources or folders to include.

Document Types: Filter by file type.

Owners: Filter by who uploaded the documents.

Connectors: Filter by connector types, such as local upload or Google Drive.
Response Limit: Set maximum number of results. The default is 10.

Score Threshold: Set minimum relevance score. The default score is 0.

4. When you're done editing the filter, click Update Filter.

5. To apply the filter to OpenRAG globally, click)\ Knowledge, and then select the

filter to apply. One filter can be enabled at a time.

To apply the filter to a single chat session, in the D Chat window, click V, and

then select the filter to apply.

To delete the filter, in the Knowledge Filter pane, click Delete Filter.

OpenRAG default configuration

OpenRAG automatically detects and configures the correct vector dimensions for

embedding models, ensuring optimal search performance and compatibility.

The complete list of supported models is available at models_service.py inthe

OpenRAG repository.
You can use custom embedding models by specifying them in your configuration.

If you use an unknown embedding model, OpenRAG will automatically fall back to 1536
dimensions and log a warning. The system will continue to work, but search quality may
be affected if the actual model dimensions differ from 1536.

The default embedding dimension is 1536 and the default model is text-embedding-
3-small.

For models with known vector dimensions, see settings.py inthe OpenRAG

repository.

https://github.com/langflow-ai/openrag/blob/main/src/services/models_service.py
https://github.com/langflow-ai/openrag/blob/main/src/services/models_service.py
https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py
https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py

Docling in OpenRAG

OpenRAG uses Docling for document ingestion. More specifically, OpenRAG uses
Docling Serve, which starts a docling serve process on your local machine and runs

Docling ingestion through an API service.

Docling ingests documents from your local machine or OAuth connectors, splits them
into chunks, and stores them as separate, structured documents in the OpenSearch

documents index.

OpenRAG chose Docling for its support for a wide variety of file formats, high

performance, and advanced understanding of tables and images.

To modify OpenRAG's ingestion settings, including the Docling settings and ingestion
flows, click 2" aria-hidden="true"/> Settings.

Knowledge ingestion settings

These settings configure the Docling ingestion parameters.

OpenRAG will warn you if docling serve is not running. To start or stop docling
serve or any other native services, in the TUI main menu, click Start Native Services or

Stop Native Services.

Embedding model determines which Al model is used to create vector embeddings. The
default is the OpenAl text-embedding-3-small model.

Chunk size determines how large each text chunk is in number of characters. Larger
chunks yield more context per chunk, but may include irrelevant information. Smaller
chunks yield more precise semantic search, but may lack context. The default value of
1000 characters provides a good starting point that balances these considerations.

Chunk overlap controls the number of characters that overlap over chunk boundaries.
Use larger overlap values for documents where context is most important, and use
smaller overlap values for simpler documents, or when optimization is most important.
The default value of 200 characters of overlap with a chunk size of 1000 (20% overlap) is
suitable for general use cases. Decrease the overlap to 10% for a more efficient pipeling,
or increase to 40% for more complex documents.

https://docling-project.github.io/docling/
https://github.com/docling-project/docling-serve

Table Structure enables Docling's DocumentConverter tool for parsing tables. Instead
of treating tables as plain text, tables are output as structured table data with preserved
relationships and metadata. Table Structure is enabled by default.

OCR enables or disabled OCR processing when extracting text from images and scanned
documents. OCR is disabled by default. This setting is best suited for processing text-
based documents as quickly as possible with Docling's DocumentConverter. Images

are ignored and not processed.

Enable OCR when you are processing documents containing images with text that
requires extraction, or for scanned documents. Enabling OCR can slow ingestion
performance.

If OpenRAG detects that the local machine is running on macOS, OpenRAG uses the
ocrmac OCR engine. Other platforms use easyocr.

Picture descriptions adds image descriptions generated by the SmolVLM-256M-
Instruct model to OCR processing. Enabling picture descriptions can slow ingestion
performance.

Knowledge ingestion flows

Flows in Langflow are functional representations of application workflows, with multiple
component nodes connected as single steps in a workflow.

The OpenSearch Ingestion flow is the default knowledge ingestion flow in OpenRAG:
when you Add Knowledge in OpenRAG, you run the OpenSearch Ingestion flow in the
background. The flow ingests documents using Docling Serve to import and process
documents.

This flow contains ten components connected together to process and store documents
in your knowledge base.

e The Docling Serve component processes input documents by connecting to your
instance of Docling Serve.

e The Export DoclingDocument component exports the processed DoclingDocument
to markdown format with image export mode set to placeholder. This conversion
makes the structured document data into a standardized format for further

processing.

https://docling-project.github.io/docling/reference/document_converter/
https://docling-project.github.io/docling/reference/document_converter/
https://www.piwheels.org/project/ocrmac/
https://www.jaided.ai/easyocr/
https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct
https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct
https://docs.langflow.org/concepts-overview
https://docs.langflow.org/concepts-components
https://docs.langflow.org/bundles-docling
https://docs.langflow.org/bundles-docling
https://docs.langflow.org/components-docling
https://docs.langflow.org/components-docling

e Three DataFrame Operations components sequentially add metadata columns to
the document data of filename, file_size, and mimetype.

¢ The Split Text component splits the processed text into chunks with a chunk size of
1000 characters and an overlap of 200 characters.

e Four Secret Input components provide secure access to configuration variables:
CONNECTOR_TYPE, OWNER, OWNER_EMAIL, and OWNER_NAME . These are runtime
variables populated from OAuth login.

e The Create Data component combines the secret inputs into a structured data
object that will be associated with the document embeddings.

e The Embedding Model component generates vector embeddings using OpenAl's
text-embedding-3-small model. The embedding model is selected at
[Application onboarding] and cannot be changed.

e The OpenSearch component stores the processed documents and their
embeddings in the documents index at https://opensearch:9200. By default,
the component is authenticated with a JWT token, but you can also select basic

auth mode, and enter your OpenSearch admin username and password.

All flows included with OpenRAG are designed to be modular, performant, and provider-

o—

agnostic. To modify a flow, click =0 Settings, and click Edit in Langflow. OpenRAG's
visual editor is based on the Langflow visual editor, so you can edit your flows to match
your specific use case.

OpenSearch URL Ingestion flow

An additional knowledge ingestion flow is included in OpenRAG, where it is used as an
MCP tool by the Open Search Agent flow. The agent calls this component to fetch web
content, and the results are ingested into OpenSearch.

For more on using MCP clients in Langflow, see MCP clients.
To connect additional MCP servers to the MCP client, see Connect to MCP servers from
your application.

Use OpenRAG default ingestion instead of Docling
serve

If you want to use OpenRAG's built-in pipeline instead of Docling serve, set
DISABLE_INGEST WITH_LANGFLOW=true in Environment variables.

https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/concepts-overview
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-tutorial
https://docs.langflow.org/mcp-tutorial

The built-in pipeline still uses the Docling processor, but uses it directly without the
Docling Serve API.

For more information, see processors.py in the OpenRAG repository.

https://github.com/langflow-ai/openrag/blob/main/src/models/processors.py#L58

Environment variables

OpenRAG recognizes environment variables from the following sources:

e Environment variables - Values set in the .env file.

e Langflow runtime overrides - Langflow components may tweak environment
variables at runtime.

e Default or fallback values - These values are default or fallback values if OpenRAG

doesn't find a value.

Configure environment variables

Environment variables are setina .env file in the root of your OpenRAG project

directory.
For an example .env file, see .env.example in the OpenRAG repository.

The Docker Compose files are populated with values from your .env, so you don't need

to edit the Docker Compose files manually.
Environment variables always take precedence over other variables.

Set environment variables

To set environment variables, do the following.

1. Stop OpenRAG.
2. Set the values in the .env file:

LOG_LEVEL=DEBUG
LOG_FORMAT=json
SERVICE_NAME=openrag-dev

3. Start OpenRAG.

Updating provider API keys or provider endpoints in the .env file will not take effect

after Application onboarding. To change these values, you must:

1. Stop OpenRAG.
2. Remove the containers:

https://github.com/langflow-ai/openrag/blob/main/.env.example

docker—-compose down

3. Update the values in your .env file.

4. Start OpenRAG containers.

docker—-compose up

-d

5. Complete Application onboarding again.

Supported environment variables

All OpenRAG configuration can be controlled through environment variables.

Al provider settings

Configure which Al models and providers OpenRAG uses for language processing and

embeddings. For more information, see Application onboarding.

Variable

EMBEDDING_MODEL

LLM_MODEL

MODEL_PROVIDER

OPENAI_API_KEY

PROVIDER_API_KEY

PROVIDER_ENDPOINT

PROVIDER_PROJECT_ID

Document processing

Default

text-
embedding-3-
small

gpt—-40-mini

openai

Description

Embedding model for vector
search.

Language model for the chat
agent.

Model provider, such as OpenAl or
IBM watsonx.ai.

Your OpenAl API key. Required.
API key for the model provider.

Custom provider endpoint. Only
used for IBM or Ollama providers.

Project ID for providers. Only
required for the IBM watsonx.ai
provider.

Control how OpenRAG processes and ingests documents into your knowledge base. For

more information, see Ingestion.

Variable

CHUNK_OVERLAP

CHUNK_SIZE

DISABLE_INGEST_WITH_LANGFLOW

DOCLING_OCR_ENGINE

OCR_ENABLED

OPENRAG_DOCUMENTS_PATHS
PICTURE_DESCRIPTIONS_ENABLED

Langflow settings

Configure Langflow authentication.

Variable

LANGFLOW_AUTO_LOGIN

LANGFLOW_CHAT_FLOW_ID

LANGFLOW_ENABLE_SUPERUSER_CLI

Default Description
200 Overlap between chunks.
1000 Text chunk size for.
document processing.
PR D.isat.)Ie Langflow ingestion
pipeline.
OCR engine for document
processing.
PR Enable QCR for image
processing.
./documents Document paths for
Ingestion.
false Enable picture descriptions.
Default Description
Enable auto-
False login for
Langflow.
This value is
pre-filled.
. The default
pre-filled)
value is
found in
.env.example.
Enable
False superuser

CLI.

https://github.com/langflow-ai/openrag/blob/main/.env.example

Variable

LANGFLOW_INGEST_FLOW_ID

LANGFLOW_KEY

LANGFLOW_NEW_USER_IS_ACTIVE

LANGFLOW_PUBLIC_URL

LANGFLOW_SECRET_KEY

LANGFLOW_SUPERUSER

LANGFLOW_SUPERUSER_PASSWORD

LANGFLOW_URL

NUDGES_FLOW_ID

Default

pre-filled

auto-generated

False

http://localhost:7860

http://localhost:7860

pre-filled

Description

This value is
pre-filled.
The default
value is
found in
.env.example.

Explicit
Langflow API
key.

New users
are active by
default.

Public URL
for Langflow.

Secret key
for Langflow
internal
operations.

Langflow
admin
username.
Required.

Langflow
admin
password.
Required.

Langflow
URL.

This value is
pre-filled.
The default
value is
found in
.env.example.

https://github.com/langflow-ai/openrag/blob/main/.env.example
https://github.com/langflow-ai/openrag/blob/main/.env.example

Variable

SYSTEM_PROMPT

OAuth provider settings

Default Description

"You are a helpful Al

Configure OAuth providers and external service integrations.

Variable

AWS_ACCESS_KEY_ID / AWS_SECRET_ACCESS_KEY

GOOGLE OAUTH CLIENT 1ID /
GOOGLE_OAUTH_CLIENT_SECRET

MICROSOFT GRAPH OAUTH CLIENT ID /

. . System
assistant with access to a
prompt for
knowledge base. Answer
. the Langflow
questions based on the agent
provided context." gent.
Default Description

AWS integrations.

Google OAuth
authentication.

- Microsoft OAuth.

MICROSOFT_GRAPH_OAUTH_CLIENT_SECRET

WEBHOOK_BASE_URL

OpenSearch settings

Base URL for
- webhook
endpoints.

Configure OpenSearch database authentication.

Variable

OPENSEARCH_HOST
OPENSEARCH_PASSWORD

OPENSEARCH_PORT

OPENSEARCH_USERNAME

System settings

Default

localhost

9200

admin

Description
OpenSearch host.

Password for OpenSearch admin user.
Required.

OpenSearch port.

OpenSearch username.

Configure general system components, session management, and logging.

Variable Default Description

LANGFLOW_KEY RETRIES 15 Number of retries for Langflow key

generation.
LANGFLOW_KEY_RETRY_DELAY 2.0 Delay between retries in seconds.
LANGFLOW_VERSION latest Langflow Docker image version.
LOG_FORMAT _ Log format (set to "json" for JSON
output).
LOG_LEVEL INFO Logging level (DEBUG, INFO,

WARNING, ERROR).

Maximum number of workers for

MAX_WORKERS - .
document processing.

OPENRAG_VERSION latest OpenRAG Docker image version.
SERVICE_NAME openrag Service name for logging.
auto-

SESSION_SECRET Session management.

generated

Langflow runtime overrides

Langflow runtime overrides allow you to modify component settings at runtime without

changing the base configuration.

Runtime overrides are implemented through tweaks - parameter modifications that are

passed to specific Langflow components during flow execution.
For more information on tweaks, see Input schema (tweaks).

Default values and fallbacks

When no environment variables or configuration file values are provided, OpenRAG uses

default values. These values can be found in the code base at the following locations.

OpenRAG configuration defaults

https://docs.langflow.org/concepts-publish#input-schema

These values are defined in config_manager.py in the OpenRAG repository.

System configuration defaults

These fallback values are defined in settings.py inthe OpenRAG repository.

https://github.com/langflow-ai/openrag/blob/main/src/config/config_manager.py
https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py

Troubleshooting

This page provides troubleshooting advice for issues you might encounter when using
OpenRAG or contributing to OpenRAG.

OpenSearch fails to start

Check that OPENSEARCH_PASSWORD set in Environment variables meets requirements.
The password must contain at least 8 characters, and must contain at least one
uppercase letter, one lowercase letter, one digit, and one special character that is strong.

Langflow connection issues

Verify the LANGFLOW_SUPERUSER credentials set in Environment variables are correct.

Memory errors
Container out of memory errors

Increase Docker memory allocation or use docker-compose-cpu.yml to deploy
OpenRAG.

Podman on macOS memory issues

If you're using Podman on macQOS, you may need to increase VM memory on your
Podman machine. This example increases the machine size to 8 GB of RAM, which
should be sufficient to run OpenRAG.

podman machine stop

podman machine rm

podman machine init —-—-memory 8192 # 8 GB example
podman machine start

Port conflicts

Ensure ports 3000, 7860, 8000, 9200, 5601 are available.

OCR ingestion fails (easyocr not installed)

https://github.com/langflow-ai/openrag/blob/main/docker-compose-cpu.yml

If Docling ingestion fails with an OCR-related error and mentions easyocr is missing,

this is likely due to a stale uv cache.

easyocr is already included as a dependency in OpenRAG's pyproject.toml. Project-
managed installations using uv sync and uv run always sync dependencies directly

from your pyproject.toml, so they should have easyocr installed.

If you're running OpenRAG with uvx openrag, uvx creates a cached, ephemeral

environment that doesn't modify your project. This cache may become stale.

On macOS, this cache directory is typically a user cache directory such as
/Users/USER_NAME/.cache/uv.

1. To clear the uv cache, run:

uv cache clean

2. Start OpenRAG:

uvx openrag

If you do not need OCR, you can disable OCR-based processing in your ingestion

settings to avoid requiring easyocr.

Langflow container already exists

If you are running other versions of Langflow containers on your machine, you may
encounter an issue where Docker or Podman thinks Langflow is already up.

Remove just the problem container, or clean up all containers and start fresh.
To reset your local containers and pull new images, do the following:
1. Stop your containers and completely remove them.

For Podman:

Stop all running containers
podman stop ——all

Remove all containers (including stopped ones)
podman rm ——all ——force

Remove all images

podman rmi ——all —-force

Remove all volumes

podman volume prune ——force

Remove all networks (except default)

podman network prune —--force

Clean up any leftover data

podman system prune ——all —-force —-volumes

For Docker:

Stop all running containers

docker stop $(docker ps -q)

Remove all containers (including stopped ones)
docker rm ——force $(docker ps -aq)

Remove all images

docker rmi ——force $(docker images -q)

Remove all volumes

docker volume prune ——force

Remove all networks (except default)
docker network prune ——-force

Clean up any leftover data

docker system prune ——all —-force —-volumes

2. Restart OpenRAG and upgrade to get the latest images for your containers.

uv sync
uv run openrag

3. In the OpenRAG TUI, click Status, and then click Upgrade. When the Close button
is active, the upgrade is complete. Close the window and open the OpenRAG
appplication.

