# Ingestion Configuration # Set to true to disable Langflow ingestion and use traditional OpenRAG processor # If unset or false, Langflow pipeline will be used (default: upload -> ingest -> delete) DISABLE_INGEST_WITH_LANGFLOW=false # Langflow HTTP timeout configuration (in seconds) # For large documents (300+ pages), ingestion can take 30+ minutes # Increase these values if you experience timeouts with very large PDFs # Default: 2400 seconds (40 minutes) total timeout, 30 seconds connection timeout # LANGFLOW_TIMEOUT=2400 # LANGFLOW_CONNECT_TIMEOUT=30 # make one like so https://docs.langflow.org/api-keys-and-authentication#langflow-secret-key LANGFLOW_SECRET_KEY= # flow ids for chat and ingestion flows LANGFLOW_CHAT_FLOW_ID=1098eea1-6649-4e1d-aed1-b77249fb8dd0 LANGFLOW_INGEST_FLOW_ID=5488df7c-b93f-4f87-a446-b67028bc0813 LANGFLOW_URL_INGEST_FLOW_ID=72c3d17c-2dac-4a73-b48a-6518473d7830 # Ingest flow using docling # LANGFLOW_INGEST_FLOW_ID=1402618b-e6d1-4ff2-9a11-d6ce71186915 NUDGES_FLOW_ID=ebc01d31-1976-46ce-a385-b0240327226c # Set a strong admin password for OpenSearch; a bcrypt hash is generated at # container startup from this value. Do not commit real secrets. # must match the hashed password in secureconfig, must change for secure deployment!!! # NOTE: if you set this by hand, it must be a complex password: # The password must contain at least 8 characters, and must contain at least one uppercase letter, one lowercase letter, one digit, and one special character. OPENSEARCH_PASSWORD= # Path to persist OpenSearch data (indices, documents, cluster state) # Default: ./opensearch-data OPENSEARCH_DATA_PATH=./opensearch-data # make here https://console.cloud.google.com/apis/credentials GOOGLE_OAUTH_CLIENT_ID= GOOGLE_OAUTH_CLIENT_SECRET= # Azure app registration credentials for SharePoint/OneDrive MICROSOFT_GRAPH_OAUTH_CLIENT_ID= MICROSOFT_GRAPH_OAUTH_CLIENT_SECRET= # AWS Access Key ID and Secret Access Key with access to your S3 instance AWS_ACCESS_KEY_ID= AWS_SECRET_ACCESS_KEY= # OPTIONAL: dns routable from google (etc.) to handle continous ingest (something like ngrok works). This enables continous ingestion WEBHOOK_BASE_URL= # Model Provider API Keys OPENAI_API_KEY= ANTHROPIC_API_KEY= OLLAMA_ENDPOINT= WATSONX_API_KEY= WATSONX_ENDPOINT= WATSONX_PROJECT_ID= # LLM Provider configuration. Providers can be "anthropic", "watsonx", "ibm" or "ollama". LLM_PROVIDER= LLM_MODEL= # Embedding provider configuration. Providers can be "watsonx", "ibm" or "ollama". EMBEDDING_PROVIDER= EMBEDDING_MODEL= # OPTIONAL url for openrag link to langflow in the UI LANGFLOW_PUBLIC_URL= # OPTIONAL: Override the full docling-serve URL (e.g., for remote instances) # If not set, auto-detects host and uses port 5001 # DOCLING_SERVE_URL=http://my-docling-server:5001 # OPTIONAL: Override host for docling service (for special networking setups) # HOST_DOCKER_INTERNAL=host.containers.internal # Langflow auth LANGFLOW_AUTO_LOGIN=False LANGFLOW_SUPERUSER= LANGFLOW_SUPERUSER_PASSWORD= LANGFLOW_NEW_USER_IS_ACTIVE=False LANGFLOW_ENABLE_SUPERUSER_CLI=False # Langfuse tracing (optional) # Get keys from https://cloud.langfuse.com or your self-hosted instance LANGFUSE_SECRET_KEY= LANGFUSE_PUBLIC_KEY= # Leave empty for Langfuse Cloud, or set for self-hosted (e.g., http://localhost:3002) LANGFUSE_HOST=