
What is OpenRAG?
OpenRAG is an open-source package for building agentic RAG systems that integrates

with a wide range of orchestration tools, vector databases, and LLM providers.

OpenRAG connects and amplifies three popular, proven open-source projects into one

powerful platform:

Langflow: Langflow is a versatile tool for building and deploying AI agents and MCP

servers. It supports all major LLMs, vector databases, and a growing library of AI

tools.

OpenRAG uses several built-in flows, and it provides full access to all Langflow

features through the embedded Langflow visual editor.

By customizing the built-in flows or creating your own flows, every part of the

OpenRAG stack interchangeable. You can modify any aspect of the flows from basic

settings, like changing the language model, to replacing entire components. You can

also write your own custom Langflow components, integrate MCP servers, call APIs,

and leverage any other functionality provided by Langflow.

OpenSearch: OpenSearch is a community-driven, Apache 2.0-licensed open source

search and analytics suite that makes it easy to ingest, search, visualize, and analyze

data. It provides powerful hybrid search capabilities with enterprise-grade security

and multi-tenancy support.

OpenRAG uses OpenSearch as the underlying vector database for storing and

retrieving your documents and associated vector data (embeddings). You can ingest

documents from a variety of sources, including your local filesystem and OAuth

authenticated connectors to popular cloud storage services.

Docling: Docling simplifies document processing, supports many file formats and

advanced PDF parsing, and provides seamless integrations with the generative AI

ecosystem.

OpenRAG uses Docling to parse and chunk documents that are stored in your

OpenSearch knowledge base.

https://docs.langflow.org/
https://docs.opensearch.org/latest/
https://docling-project.github.io/docling/

TIP

Ready to get started? Try the quickstart to install OpenRAG and start exploring in

minutes.

OpenRAG architecture

OpenRAG deploys and orchestrates a lightweight, container-based architecture that

combines Langflow, OpenSearch, and Docling into a cohesive RAG platform.

OpenRAG backend: The central orchestration service that coordinates all other

components.

Langflow: This container runs a Langflow instance. It provides the embedded

Langflow visual editor for editing and creating flow, and it connects to the

OpenSearch container for vector storage and retrieval.

Docling Serve: This is a local document processing service managed by the

OpenRAG backend.

External connectors: Integrate third-party cloud storage services with OAuth

authenticated connectors to the OpenRAG backend, allowing you to load

documents from external storage to your OpenSearch knowledge base.

OpenRAG frontend: Provides the user interface for interacting with the OpenRAG

platform.

Quickstart
Use this quickstart to install OpenRAG, and then try some of OpenRAG's core features.

Prerequisites

For Microsoft Windows, you must use the Windows Subsystem for Linux (WSL). See

Install OpenRAG on Windows before proceeding.

Get an OpenAI API key. This quickstart uses OpenAI for simplicity. For other

providers, see the other installation methods.

Install Python version 3.13 or later.

Install OpenRAG

For this quickstart, install OpenRAG with the automatic installer script and basic setup.

The script installs OpenRAG dependencies, including Docker or Podman, and then it

installs and runs OpenRAG with uvx .

1. Create a directory for your OpenRAG installation, and then change to that directory:

2. Download the OpenRAG install script, move it to your OpenRAG directory, and then

run it:

Wait while the installer script prepares your environment and installs OpenRAG. You

might be prompted to install certain dependencies if they aren't already present in

your environment.

The entire process can take a few minutes. Once the environment is ready, the

OpenRAG Terminal User Interface (TUI) starts.

mkdir openrag-workspace
cd openrag-workspace

bash run_openrag_with_prereqs.sh

https://platform.openai.com/api-keys
https://www.python.org/downloads/release/python-3100/
https://docs.astral.sh/uv/guides/tools/#running-tools
https://docs.openr.ag/files/run_openrag_with_prereqs.sh

OpenRAG TUI

██████╗ ██████╗ ███████╗███╗ ██╗██████╗ █████╗ ██████╗
██╔═══██╗██╔══██╗██╔════╝████╗ ██║██╔══██╗██╔══██╗██╔════╝
██║ ██║██████╔╝█████╗ ██╔██╗ ██║██████╔╝███████║██║ ███╗
██║ ██║██╔═══╝ ██╔══╝ ██║╚██╗██║██╔══██╗██╔══██║██║ ██║
╚██████╔╝██║ ███████╗██║ ╚████║██║ ██║██║ ██║╚██████╔╝
╚═════╝ ╚═╝ ╚══════╝╚═╝ ╚═══╝╚═╝ ╚═╝╚═╝ ╚═╝╚═════╝

Terminal User Interface for OpenRAG

OAuth credentials detected — Advanced Setup recommended

▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔ ▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔
 Advanced Setup Monitor Services

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

 q Quit 1 Basic Setup 2 Advanced Setup 3 Monitor Services 4 Diagnostics ▏^p palette

3. In the TUI, click Basic Setup.

4. Click Generate Passwords to create administrator passwords for your OpenRAG

OpenSearch and Langflow services.

5. Leave the OpenAI API key field empty.

Your passwords are saved in the .env file that is used to start OpenRAG. You can

find this file in your OpenRAG installation directory.

6. Click Save Configuration, and then click Start All Services.

This process can take some time while OpenRAG pulls and runs the container

images. If all services start successfully, the TUI prints a confirmation message:

Your OpenRAG configuration is stored in a .env file that is created automatically in

the directory where you ran the installer script. Container definitions are stored in

the docker-compose files in the same directory.

7. Under Native Services, click Start to start the Docling service.

Services started successfully
Command completed successfully

8. From the TUI main menu, click Open App to launch the OpenRAG application and

start the application onboarding process.

9. For this quickstart, select the OpenAI model provider, enter your OpenAI API key,

and then click Complete. Use the default settings for all other model options.

10. Click through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. You can complete this quickstart without going through the

overview. The overview demonstrates some basic functionality that is covered in the

next section and in other parts of the OpenRAG documentation.

Load and chat with documents

Use the OpenRAG Chat to explore the documents in your OpenRAG database using

natural language queries. Some documents are included by default to get you started,

and you can load your own documents.

1. In OpenRAG, click Chat.

2. For this quickstart, ask the agent what documents are available. For example: What
documents are available to you?

The agent responds with a summary of OpenRAG's default documents.

3. To verify the agent's response, click Knowledge to view the documents stored

in the OpenRAG OpenSearch vector database. You can click a document to view the

chunks of the document as they are stored in the database.

4. Click Add Knowledge to add your own documents to your OpenRAG knowledge

base.

For this quickstart, use either the File or Folder upload options to load

documents from your local machine. Folder uploads an entire directory. The default

directory is the /openrag-documents subdirectory in your OpenRAG installation

directory.

For information about the cloud storage provider options, see Ingest files with OAuth

connectors.

5. Return to the Chat window, and then ask a question related to the documents that

you just uploaded.

If the agent's response doesn't seem to reference your documents correctly, try the

following:

Click Function Call: search_documents (tool_call) to view the log of tool calls

made by the agent. This is helpful for troubleshooting because it shows you how

the agent used particular tools.

Click Knowledge to confirm that the documents are present in the

OpenRAG OpenSearch vector database, and then click each document to see

how the document was chunked. If a document was chunked improperly, you

might need to tweak the ingestion or modify and reupload the document.

Click Settings to modify the knowledge ingestion settings.

For more information, see Configure knowledge and Ingest knowledge.

Change the language model and chat settings

1. To change the knowledge ingestion settings, agent behavior, or language model,

click Settings.

The Settings page provides quick access to commonly used parameters like the

Language model and Agent Instructions.

2. For greater insight into the underlying Langflow flow that drives the OpenRAG chat,

click Edit in Langflow and then click Proceed to launch the Langflow visual editor in

a new browser window.

If Langflow requests login information, enter the LANGFLOW_SUPERUSER and

LANGFLOW_SUPERUSER_PASSWORD from the .env file in your OpenRAG installation

directory.

The OpenRAG OpenSearch Agent flow opens in a new browser window.

3. For this quickstart, try changing the model. Click the Language Model component,

and then change the Model Name to a different OpenAI model.

After you edit a built-in flow, you can click Restore flow on the Settings page to

revert the flow to its original state when you first installed OpenRAG.

4. Press Command + S (Ctrl + S) to save your changes.

You can close the Langflow browser window, or leave it open if you want to continue

experimenting with the flow editor.

5. Switch to your OpenRAG browser window, and then click in the Conversations

tab to start a new conversation. This ensures that the chat doesn't persist any

context from the previous conversation with the original model.

6. Ask the same question you asked in Load and chat with documents to see how the

response differs from the original model.

Integrate OpenRAG into an application

Langflow in OpenRAG includes pre-built flows that you can integrate into your

applications using the Langflow API. You can use these flows as-is or modify them to

better suit your needs, as demonstrated in Change the language model and chat

settings.

https://docs.langflow.org/api-reference-api-examples

You can send and receive requests with the Langflow API using Python, TypeScript, or

curl.

1. Open the OpenRAG OpenSearch Agent flow in the Langflow visual editor: From the

Chat window, click Settings, click Edit in Langflow, and then click Proceed.

2. Optional: If you don't want to use the Langflow API key that is generated

automatically when you install OpenRAG, you can create a Langflow API key. This

key doesn't grant access to OpenRAG; it is only for authenticating with the Langflow

API.

i. In the Langflow visual editor, click your user icon in the header, and then select

Settings.

ii. Click Langflow API Keys, and then click Add New.

iii. Name your key, and then click Create API Key.

iv. Copy the API key and store it securely.

v. Exit the Langflow Settings page to return to the visual editor.

3. Click Share, and then select API access to get pregenerated code snippets that call

the Langflow API and run the flow.

These code snippets construct API requests with your Langflow server URL

(LANGFLOW_SERVER_ADDRESS), the flow to run (FLOW_ID), required headers

(LANGFLOW_API_KEY , Content-Type), and a payload containing the required

inputs to run the flow, including a default chat input message.

In production, you would modify the inputs to suit your application logic. For

example, you could replace the default chat input message with dynamic user input.

Python

import requests
import os
import uuid
api_key = 'LANGFLOW_API_KEY'
url = "http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID" #
The complete API endpoint URL for this flow
Request payload configuration
payload = {

https://docs.langflow.org/api-keys-and-authentication

TypeScript

 "output_type": "chat",
 "input_type": "chat",
 "input_value": "hello world!"
}
payload["session_id"] = str(uuid.uuid4())
headers = {"x-api-key": api_key}
try:
 # Send API request
 response = requests.request("POST", url, json=payload,
headers=headers)
 response.raise_for_status() # Raise exception for bad
status codes
 # Print response
 print(response.text)
except requests.exceptions.RequestException as e:
 print(f"Error making API request: {e}")
except ValueError as e:
 print(f"Error parsing response: {e}")

const crypto = require('crypto');
const apiKey = 'LANGFLOW_API_KEY';
const payload = {
 "output_type": "chat",
 "input_type": "chat",
 "input_value": "hello world!"
};
payload.session_id = crypto.randomUUID();
const options = {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 "x-api-key": apiKey
 },
 body: JSON.stringify(payload)
};
fetch('http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID',
options)
 .then(response => response.json())

curl

4. Copy your preferred snippet, and then run it:

Python: Paste the snippet into a .py file, save it, and then run it with python

filename.py .

TypeScript: Paste the snippet into a .ts file, save it, and then run it with ts-

node filename.ts .

curl: Paste and run snippet directly in your terminal.

If the request is successful, the response includes many details about the flow run,

including the session ID, inputs, outputs, components, durations, and more.

In production, you won't pass the raw response to the user in its entirety. Instead, you

extract and reformat relevant fields for different use cases, as demonstrated in the

Langflow quickstart. For example, you could pass the chat output text to a front-end

user-facing application, and store specific fields in logs and backend data stores for

monitoring, chat history, or analytics. You could also pass the output from one flow as

input to another flow.

Next steps

Reinstall OpenRAG with your preferred settings: This quickstart used uvx and a

minimal setup to demonstrate OpenRAG's core functionality. It is recommended that

you reinstall OpenRAG with your preferred configuration and installation method.

 .then(response => console.warn(response))
 .catch(err => console.error(err));

curl --request POST \
--url 'http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID?
stream=false' \
--header 'Content-Type: application/json' \
--header "x-api-key: LANGFLOW_API_KEY" \
--data '{
 "output_type": "chat",
 "input_type": "chat",
 "input_value": "hello world!"
}'

https://docs.langflow.org/quickstart#extract-data-from-the-response

Learn more about OpenRAG: Explore OpenRAG and the OpenRAG documentation

to learn more about its features and functionality.

Learn more about Langflow: For a deep dive on the Langflow API and visual editor,

see the Langflow documentation.

https://docs.langflow.org/

Select an installation method
The OpenRAG architecture is lightweight and container-based with a central OpenRAG

backend that orchestrates the various services and external connectors. Depending on

your use case, OpenRAG can assist with service management, or you can manage the

services yourself.

Select the installation method that best fits your needs:

Use the Terminal User Interface (TUI) to manage services: For guided

configuration and simplified service management, install OpenRAG with TUI-

managed services.

Automatic installer script: Run one script to install the required dependencies

and OpenRAG.

uv : Install OpenRAG as a dependency of a new or existing Python project.

uvx : Install OpenRAG without creating a project or modifying your project's

dependencies.

Install OpenRAG on Microsoft Windows: On Windows machines, you must install

OpenRAG within the Windows Subsystem for Linux (WSL).

OpenRAG doesn't support nested virtualization; don't run OpenRAG on a WSL

distribution that is inside a Windows VM.

Manage your own services: You can use Docker or Podman to deploy self-

managed OpenRAG services.

The first time you start OpenRAG, you must complete application onboarding. This is

required for all installation methods because it prepares the minimum required

configuration for OpenRAG to run. For TUI-managed services, you must also complete

initial setup before you start the OpenRAG services. For more information, see the

instructions for your preferred installation method.

Your OpenRAG configuration is stored in a .env file in the OpenRAG installation

directory. When using TUI-managed services, the TUI prompts you for any missing

values during setup and onboarding, and any values detected in a preexisting .env file

are automatically populated. When using self-managed services, you must predefine

these values in a .env file, as you would for any Docker or Podman deployment. For

more information, see the instructions for your preferred installation method and

Environment variables.

Install OpenRAG with the automatic
installer script

TIP

For a fully guided installation and preview of OpenRAG's core features, try the

quickstart.

For guided configuration and simplified service management, install OpenRAG with

services managed by the Terminal User Interface (TUI).

The installer script installs uv , Docker or Podman, Docker Compose, and OpenRAG.

This installation method is best for testing OpenRAG by running it outside of a Python

project. For other installation methods, see Select an installation method.

Prerequisites

For Microsoft Windows, you must use the Windows Subsystem for Linux (WSL). See

Install OpenRAG on Windows before proceeding.

Gather the credentials and connection details for your preferred model providers.

You must have access to at least one language model and one embedding model. If

a provider offers both types, you can use the same provider for both models. If a

provider offers only one type, you must select two providers.

OpenAI: Create an OpenAI API key.

Anthropic: Create an Anthropic API key. Anthropic provides language models

only; you must select an additional provider for embeddings.

IBM watsonx.ai: Get your watsonx.ai API endpoint, IBM project ID, and IBM API

key from your watsonx deployment.

Ollama: Deploy an Ollama instance and models locally, in the cloud, or on a

remote server, and then get your Ollama server's base URL and the names of

the models that you want to use.

Optional: Install GPU support with an NVIDIA GPU, CUDA support, and compatible

NVIDIA drivers on the OpenRAG host machine. If you don't have GPU capabilities,

OpenRAG provides an alternate CPU-only deployment.

https://platform.openai.com/api-keys
https://www.anthropic.com/docs/api/reference
https://docs.ollama.com/
https://docs.nvidia.com/cuda/

Install Python version 3.13 or later.

Run the installer script

1. Create a directory to store your OpenRAG configuration files and data, and then

change to that directory:

2. Get and run the installer script:

TIP

You can also manually download the OpenRAG install script, move it to your

OpenRAG directory, and then run it:

The installer script installs OpenRAG with uvx in the directory where you run the

script.

3. Wait while the installer script prepares your environment and installs OpenRAG. You

might be prompted to install certain dependencies if they aren't already present in

your environment.

The entire process can take a few minutes. Once the environment is ready, the OpenRAG

Terminal User Interface (TUI) starts.

mkdir openrag-workspace
cd openrag-workspace

curl -fsSL
https://docs.openr.ag/files/run_openrag_with_prereqs.sh | bash

bash run_openrag_with_prereqs.sh

https://www.python.org/downloads/release/python-3100/
https://docs.openr.ag/files/run_openrag_with_prereqs.sh
https://docs.astral.sh/uv/guides/tools/#running-tools

OpenRAG TUI

██████╗ ██████╗ ███████╗███╗ ██╗██████╗ █████╗ ██████╗
██╔═══██╗██╔══██╗██╔════╝████╗ ██║██╔══██╗██╔══██╗██╔════╝
██║ ██║██████╔╝█████╗ ██╔██╗ ██║██████╔╝███████║██║ ███╗
██║ ██║██╔═══╝ ██╔══╝ ██║╚██╗██║██╔══██╗██╔══██║██║ ██║
╚██████╔╝██║ ███████╗██║ ╚████║██║ ██║██║ ██║╚██████╔╝
╚═════╝ ╚═╝ ╚══════╝╚═╝ ╚═══╝╚═╝ ╚═╝╚═╝ ╚═╝╚═════╝

Terminal User Interface for OpenRAG

OAuth credentials detected — Advanced Setup recommended

▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔ ▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔
 Advanced Setup Monitor Services

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

 q Quit 1 Basic Setup 2 Advanced Setup 3 Monitor Services 4 Diagnostics ▏^p palette

Because the installer script uses uvx , it creates a cached, ephemeral environment in

your local uv cache, and your OpenRAG configuration files and data are stored

separately from the uv cache. Clearing the cache doesn't delete your entire OpenRAG

installation, only the temporary TUI environment. After clearing the cache, run uvx

openrag to access the TUI and continue with your preserved configuration and data.

If you encounter errors during installation, see Troubleshoot OpenRAG.

Set up OpenRAG with the TUI

When you install OpenRAG with the installer script, you manage the OpenRAG services

with the Terminal User Interface (TUI). The TUI guides you through the initial

configuration process before you start the OpenRAG services.

Your OpenRAG configuration is stored in a .env file that is created automatically in the

OpenRAG installation directory. If OpenRAG detects an existing .env file, the TUI

automatically populates those values during setup and onboarding.

Container definitions are stored in the docker-compose files in the OpenRAG installation

directory.

Because the installer script uses uvx , the OpenRAG .env and docker-compose files

are stored in the directory where you ran the installer script.

You can use either Basic Setup or Advanced Setup to configure OpenRAG. This choice

determines how OpenRAG authenticates with OpenSearch and controls access to

documents.

INFO

You must use Advanced Setup if you want to use OAuth connectors to upload

documents from cloud storage.

If OpenRAG detects OAuth credentials during setup, it recommends Advanced Setup in

the TUI.

Basic setup

1. In the TUI, click Basic Setup or press 1 .

2. Enter administrator passwords for the OpenRAG OpenSearch and Langflow services,

or click Generate Passwords to generate passwords automatically.

The OpenSearch password is required.

The Langflow password is recommended but optional. If the Langflow password is

empty, the Langflow server starts without authentication enabled. For more

information, see Langflow settings.

3. Optional: Enter your OpenAI API key, or leave this field empty if you want to

configure model provider credentials later during application onboarding.

4. Click Save Configuration.

Your passwords and API key, if provided, are stored in the .env file in your

OpenRAG installation directory. If you modified any credentials that were pulled from

an existing .env file, those values are updated in the .env file.

5. Click Start All Services to start the OpenRAG services that run in containers.

This process can take some time while OpenRAG pulls and runs the container

images. If all services start successfully, the TUI prints a confirmation message:

6. Under Native Services, click Start to start the Docling service.

7. Launch the OpenRAG application:

From the TUI main menu, click Open App.

In your browser, navigate to localhost:3000 .

8. Continue with application onboarding.

Advanced setup

1. In the TUI, click Advanced Setup or press 2 .

2. Enter administrator passwords for the OpenRAG OpenSearch and Langflow services,

or click Generate Passwords to generate passwords automatically.

The OpenSearch password is required.

The Langflow password is recommended but optional. If the Langflow password is

empty, the Langflow server starts without authentication enabled. For more

information, see Langflow settings.

3. Optional: Enter your OpenAI API key, or leave this field empty if you want to

configure model provider credentials later during application onboarding.

4. To upload documents from external storage, such as Google Drive, add the required

OAuth credentials for the connectors that you want to use. These settings can be

populated automatically if OpenRAG detects these credentials in a .env file in the

OpenRAG installation directory.

Amazon: Provide your AWS Access Key ID and AWS Secret Access Key with

access to your S3 instance. For more information, see the AWS documentation

on Configuring access to AWS applications.

Google: Provide your Google OAuth Client ID and Google OAuth Client Secret.

You can generate these in the Google Cloud Console. For more information, see

the Google OAuth client documentation.

Services started successfully
Command completed successfully

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-applications.html
https://console.cloud.google.com/apis/credentials
https://developers.google.com/identity/protocols/oauth2

Microsoft: For the Microsoft OAuth Client ID and Microsoft OAuth Client Secret,

provide Azure application registration credentials for SharePoint and OneDrive.

For more information, see the Microsoft Graph OAuth client documentation.

You can manage OAuth credentials later, but it is recommended to configure them

during initial set up.

5. The OpenRAG TUI presents redirect URIs for your OAuth app. These are the URLs

your OAuth provider will redirect back to after user sign-in. Register these redirect

values with your OAuth provider as they are presented in the TUI.

6. Click Save Configuration.

Your passwords, API key, and OAuth credentials, if provided, are stored in the .env

file in your OpenRAG installation directory. If you modified any credentials that were

pulled from an existing .env file, those values are updated in the .env file.

7. Click Start All Services to start the OpenRAG services that run in containers.

This process can take some time while OpenRAG pulls and runs the container

images. If all services start successfully, the TUI prints a confirmation message:

8. Under Native Services, click Start to start the Docling service.

9. Launch the OpenRAG application:

From the TUI main menu, click Open App.

In your browser, navigate to localhost:3000 .

10. If you enabled OAuth connectors, you must sign in to your OAuth provider before

being redirected to your OpenRAG instance.

11. If required, you can edit the following additional environment variables. Only change

these variables if your OpenRAG deployment has a non-default network

configuration, such as a reverse proxy or custom domain.

LANGFLOW_PUBLIC_URL : Sets the base address to access the Langflow web

interface. This is where users interact with flows in a browser.

Services started successfully
Command completed successfully

https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/app-registration?view=odsp-graph-online
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/graph-oauth

WEBHOOK_BASE_URL : Sets the base address for the following OpenRAG OAuth

connector endpoints:

Amazon S3: Not applicable.

Google Drive: WEBHOOK_BASE_URL/connectors/google_drive/webhook
OneDrive: WEBHOOK_BASE_URL/connectors/onedrive/webhook

SharePoint: WEBHOOK_BASE_URL/connectors/sharepoint/webhook

12. Continue with application onboarding.

Application onboarding

The first time you start the OpenRAG application, you must complete application

onboarding to select language and embedding models that are essential for OpenRAG

features like the Chat.

Some of these variables, such as the embedding models, can be changed seamlessly

after onboarding. Others are immutable and require you to destroy and recreate the

OpenRAG containers. For more information, see Environment variables.

You can use different providers for your language model and embedding model, such as

Anthropic for the language model and OpenAI for the embedding model. Additionally, you

can set multiple embedding models.

You only need to complete onboarding for your preferred providers.

Anthropic

INFO

Anthropic doesn't provide embedding models. If you select Anthropic for your

language model, you must select a different provider for the embedding model.

1. Enter your Anthropic API key, or enable Get API key from environment variable to

pull the key from your OpenRAG .env file.

If you haven't set ANTHROPIC_API_KEY in your .env file, you must enter the key

manually.

2. Under Advanced settings, select the language model that you want to use.

3. Click Complete.

4. Select a provider for embeddings, provide the required information, and then select

the embedding model you want to use. For information about another provider's

credentials and settings, see the instructions for that provider.

5. Click Complete.

After you configure the embedding model, OpenRAG uses your credentials and

models to ingest some initial documents. This tests the connection, and it allows you

to ask OpenRAG about itself in the Chat. If there is a problem with the model

configuration, an error occurs and you are redirected back to application

onboarding. Verify that the credential is valid and has access to the selected model,

and then click Complete to retry ingestion.

6. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

IBM watsonx.ai

1. Use the values from your IBM watsonx deployment for the watsonx.ai API

Endpoint, IBM Project ID, and IBM API key fields.

2. Under Advanced settings, select the language model that you want to use.

3. Click Complete.

4. Select a provider for embeddings, provide the required information, and then select

the embedding model you want to use. For information about another provider's

credentials and settings, see the instructions for that provider.

5. Click Complete.

After you configure the embedding model, OpenRAG uses your credentials and

models to ingest some initial documents. This tests the connection, and it allows you

to ask OpenRAG about itself in the Chat. If there is a problem with the model

configuration, an error occurs and you are redirected back to application

onboarding. Verify that the credentials are valid and have access to the selected

model, and then click Complete to retry ingestion.

6. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

Ollama

INFO

Ollama isn't installed with OpenRAG. You must install it separately if you want to use

Ollama as a model provider.

Using Ollama as your language and embedding model provider offers greater flexibility

and configuration options for hosting models, but it can be advanced for new users. The

recommendations given here are a reasonable starting point for users with at least one

GPU and experience running LLMs locally.

The OpenRAG team recommends the OpenAI gpt-oss:20b lanuage model and the

nomic-embed-text embedding model. However, gpt-oss:20b uses 16GB of RAM, so

consider using Ollama Cloud or running Ollama on a remote machine.

1. Install Ollama locally or on a remote server or run models in Ollama Cloud.

If you are running a remote server, it must be accessible from your OpenRAG

deployment.

2. In OpenRAG onboarding, connect to your Ollama server:

Local Ollama server: Enter your Ollama server's base URL and port. The default

Ollama server address is http://localhost:11434 .

Ollama Cloud: Because Ollama Cloud models run at the same address as a

local Ollama server and automatically offload to Ollama's cloud service, you can

use the same base URL and port as you would for a local Ollama server. The

default address is http://localhost:11434 .

Remote server: Enter your remote Ollama server's base URL and port, such as

http://your-remote-server:11434 .

https://ollama.com/library/nomic-embed-text
https://docs.ollama.com/
https://docs.ollama.com/cloud

If the connection succeeds, OpenRAG populates the model lists with the server's

available models.

3. Select the model that your Ollama server is running.

Language model and embedding model selections are independent. You can use the

same or different servers for each model.

To use different providers for each model, you must configure both providers, and

select the relevant model for each provider.

4. Click Complete.

After you configure the embedding model, OpenRAG uses the address and models

to ingest some initial documents. This tests the connection, and it allows you to ask

OpenRAG about itself in the Chat. If there is a problem with the model configuration,

an error occurs and you are redirected back to application onboarding. Verify that

the server address is valid, and that the selected model is running on the server.

Then, click Complete to retry ingestion.

5. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

OpenAI (default)

1. Enter your OpenAI API key, or enable Get API key from environment variable to

pull the key from your OpenRAG .env file.

If you entered an OpenAI API key during setup, enable Get API key from

environment variable.

2. Under Advanced settings, select the language model that you want to use.

3. Click Complete.

4. Select a provider for embeddings, provide the required information, and then select

the embedding model you want to use. For information about another provider's

credentials and settings, see the instructions for that provider.

5. Click Complete.

After you configure the embedding model, OpenRAG uses your credentials and

models to ingest some initial documents. This tests the connection, and it allows you

to ask OpenRAG about itself in the Chat. If there is a problem with the model

configuration, an error occurs and you are redirected back to application

onboarding. Verify that the credential is valid and has access to the selected model,

and then click Complete to retry ingestion.

6. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

Next steps

Try some of OpenRAG's core features in the quickstart.

Learn how to manage OpenRAG services.

Upload documents, and then use the Chat to explore your data.

Install OpenRAG in a Python project with uv
For guided configuration and simplified service management, install OpenRAG with

services managed by the Terminal User Interface (TUI).

You can use uv to install OpenRAG as a managed or unmanaged dependency in a new

or existing Python project.

For other installation methods, see Select an installation method.

Prerequisites

For Microsoft Windows, you must use the Windows Subsystem for Linux (WSL). See

Install OpenRAG on Windows before proceeding.

Gather the credentials and connection details for your preferred model providers.

You must have access to at least one language model and one embedding model. If

a provider offers both types, you can use the same provider for both models. If a

provider offers only one type, you must select two providers.

OpenAI: Create an OpenAI API key.

Anthropic: Create an Anthropic API key. Anthropic provides language models

only; you must select an additional provider for embeddings.

IBM watsonx.ai: Get your watsonx.ai API endpoint, IBM project ID, and IBM API

key from your watsonx deployment.

Ollama: Deploy an Ollama instance and models locally, in the cloud, or on a

remote server, and then get your Ollama server's base URL and the names of

the models that you want to use.

Optional: Install GPU support with an NVIDIA GPU, CUDA support, and compatible

NVIDIA drivers on the OpenRAG host machine. If you don't have GPU capabilities,

OpenRAG provides an alternate CPU-only deployment.

Install Python version 3.13 or later.

Install uv.

Install Podman (recommended) or Docker.

https://docs.astral.sh/uv/getting-started/installation/
https://platform.openai.com/api-keys
https://www.anthropic.com/docs/api/reference
https://docs.ollama.com/
https://docs.nvidia.com/cuda/
https://www.python.org/downloads/release/python-3100/
https://docs.astral.sh/uv/getting-started/installation/
https://podman.io/docs/installation
https://docs.docker.com/get-docker/

Install podman-compose or Docker Compose. To use Docker Compose with

Podman, you must alias Docker Compose commands to Podman commands.

Install and start OpenRAG with uv

There are two ways to install OpenRAG with uv :

uv add (Recommended): Install OpenRAG as a managed dependency in a new or

existing uv Python project. This is recommended because it adds OpenRAG to your

pyproject.toml and lockfile for better management of dependencies and the

virtual environment.

uv pip install : Use the uv pip interface to install OpenRAG into an existing

Python project that uses pip , pip-tools , and virtualenv commands.

If you encounter errors during installation, see Troubleshoot OpenRAG.

uv add

1. Create a new uv -managed Python project:

2. Change into your new project directory:

Because uv manages the virtual environment for you, you won't see a (venv)
prompt. uv commands automatically use the project's virtual environment.

3. Add OpenRAG to your project:

Add the latest version:

Add a specific version:

uv init PROJECT_NAME

cd PROJECT_NAME

uv add openrag

https://docs.podman.io/en/latest/markdown/podman-compose.1.html
https://docs.docker.com/compose/install/
https://docs.astral.sh/uv/pip/

Add a local wheel:

For more options, see Managing dependencies with uv .

4. Start the OpenRAG TUI:

uv pip install

1. Activate your virtual environment.

2. Install the OpenRAG Python package:

3. Start the OpenRAG TUI:

Set up OpenRAG with the TUI

When you install OpenRAG with uv , you manage the OpenRAG services with the

Terminal User Interface (TUI). The TUI guides you through the initial configuration

process before you start the OpenRAG services.

Your OpenRAG configuration is stored in a .env file that is created automatically in the

Python project where you installed OpenRAG. If OpenRAG detects an existing .env file,

the TUI automatically populates those values during setup and onboarding. Container

definitions are stored in the docker-compose files in the same directory.

You can use either Basic Setup or Advanced Setup to configure OpenRAG. This choice

determines how OpenRAG authenticates with OpenSearch and controls access to

uv add openrag==0.1.30

uv add path/to/openrag-VERSION-py3-none-any.whl

uv run openrag

uv pip install openrag

uv run openrag

https://docs.astral.sh/uv/concepts/projects/dependencies/

documents.

INFO

You must use Advanced Setup if you want to use OAuth connectors to upload

documents from cloud storage.

If OpenRAG detects OAuth credentials during setup, it recommends Advanced Setup in

the TUI.

Basic setup

1. In the TUI, click Basic Setup or press 1 .

2. Enter administrator passwords for the OpenRAG OpenSearch and Langflow services,

or click Generate Passwords to generate passwords automatically.

The OpenSearch password is required.

The Langflow password is recommended but optional. If the Langflow password is

empty, the Langflow server starts without authentication enabled. For more

information, see Langflow settings.

3. Optional: Enter your OpenAI API key, or leave this field empty if you want to

configure model provider credentials later during application onboarding.

4. Click Save Configuration.

Your passwords and API key, if provided, are stored in the .env file in your

OpenRAG installation directory. If you modified any credentials that were pulled from

an existing .env file, those values are updated in the .env file.

5. Click Start All Services to start the OpenRAG services that run in containers.

This process can take some time while OpenRAG pulls and runs the container

images. If all services start successfully, the TUI prints a confirmation message:

Services started successfully
Command completed successfully

6. Under Native Services, click Start to start the Docling service.

7. Launch the OpenRAG application:

From the TUI main menu, click Open App.

In your browser, navigate to localhost:3000 .

8. Continue with application onboarding.

Advanced setup

1. In the TUI, click Advanced Setup or press 2 .

2. Enter administrator passwords for the OpenRAG OpenSearch and Langflow services,

or click Generate Passwords to generate passwords automatically.

The OpenSearch password is required.

The Langflow password is recommended but optional. If the Langflow password is

empty, the Langflow server starts without authentication enabled. For more

information, see Langflow settings.

3. Optional: Enter your OpenAI API key, or leave this field empty if you want to

configure model provider credentials later during application onboarding.

4. To upload documents from external storage, such as Google Drive, add the required

OAuth credentials for the connectors that you want to use. These settings can be

populated automatically if OpenRAG detects these credentials in a .env file in the

OpenRAG installation directory.

Amazon: Provide your AWS Access Key ID and AWS Secret Access Key with

access to your S3 instance. For more information, see the AWS documentation

on Configuring access to AWS applications.

Google: Provide your Google OAuth Client ID and Google OAuth Client Secret.

You can generate these in the Google Cloud Console. For more information, see

the Google OAuth client documentation.

Microsoft: For the Microsoft OAuth Client ID and Microsoft OAuth Client Secret,

provide Azure application registration credentials for SharePoint and OneDrive.

For more information, see the Microsoft Graph OAuth client documentation.

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-applications.html
https://console.cloud.google.com/apis/credentials
https://developers.google.com/identity/protocols/oauth2
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/app-registration?view=odsp-graph-online
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/graph-oauth

You can manage OAuth credentials later, but it is recommended to configure them

during initial set up.

5. The OpenRAG TUI presents redirect URIs for your OAuth app. These are the URLs

your OAuth provider will redirect back to after user sign-in. Register these redirect

values with your OAuth provider as they are presented in the TUI.

6. Click Save Configuration.

Your passwords, API key, and OAuth credentials, if provided, are stored in the .env

file in your OpenRAG installation directory. If you modified any credentials that were

pulled from an existing .env file, those values are updated in the .env file.

7. Click Start All Services to start the OpenRAG services that run in containers.

This process can take some time while OpenRAG pulls and runs the container

images. If all services start successfully, the TUI prints a confirmation message:

8. Under Native Services, click Start to start the Docling service.

9. Launch the OpenRAG application:

From the TUI main menu, click Open App.

In your browser, navigate to localhost:3000 .

10. If you enabled OAuth connectors, you must sign in to your OAuth provider before

being redirected to your OpenRAG instance.

11. If required, you can edit the following additional environment variables. Only change

these variables if your OpenRAG deployment has a non-default network

configuration, such as a reverse proxy or custom domain.

LANGFLOW_PUBLIC_URL : Sets the base address to access the Langflow web

interface. This is where users interact with flows in a browser.

WEBHOOK_BASE_URL : Sets the base address for the following OpenRAG OAuth

connector endpoints:

Services started successfully
Command completed successfully

Amazon S3: Not applicable.

Google Drive: WEBHOOK_BASE_URL/connectors/google_drive/webhook

OneDrive: WEBHOOK_BASE_URL/connectors/onedrive/webhook

SharePoint: WEBHOOK_BASE_URL/connectors/sharepoint/webhook

12. Continue with application onboarding.

Application onboarding

The first time you start the OpenRAG application, you must complete application

onboarding to select language and embedding models that are essential for OpenRAG

features like the Chat.

Some of these variables, such as the embedding models, can be changed seamlessly

after onboarding. Others are immutable and require you to destroy and recreate the

OpenRAG containers. For more information, see Environment variables.

You can use different providers for your language model and embedding model, such as

Anthropic for the language model and OpenAI for the embedding model. Additionally, you

can set multiple embedding models.

You only need to complete onboarding for your preferred providers.

Anthropic

INFO

Anthropic doesn't provide embedding models. If you select Anthropic for your

language model, you must select a different provider for the embedding model.

1. Enter your Anthropic API key, or enable Get API key from environment variable to

pull the key from your OpenRAG .env file.

If you haven't set ANTHROPIC_API_KEY in your .env file, you must enter the key

manually.

2. Under Advanced settings, select the language model that you want to use.

3. Click Complete.

4. Select a provider for embeddings, provide the required information, and then select

the embedding model you want to use. For information about another provider's

credentials and settings, see the instructions for that provider.

5. Click Complete.

After you configure the embedding model, OpenRAG uses your credentials and

models to ingest some initial documents. This tests the connection, and it allows you

to ask OpenRAG about itself in the Chat. If there is a problem with the model

configuration, an error occurs and you are redirected back to application

onboarding. Verify that the credential is valid and has access to the selected model,

and then click Complete to retry ingestion.

6. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

IBM watsonx.ai

1. Use the values from your IBM watsonx deployment for the watsonx.ai API

Endpoint, IBM Project ID, and IBM API key fields.

2. Under Advanced settings, select the language model that you want to use.

3. Click Complete.

4. Select a provider for embeddings, provide the required information, and then select

the embedding model you want to use. For information about another provider's

credentials and settings, see the instructions for that provider.

5. Click Complete.

After you configure the embedding model, OpenRAG uses your credentials and

models to ingest some initial documents. This tests the connection, and it allows you

to ask OpenRAG about itself in the Chat. If there is a problem with the model

configuration, an error occurs and you are redirected back to application

onboarding. Verify that the credentials are valid and have access to the selected

model, and then click Complete to retry ingestion.

6. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

Ollama

INFO

Ollama isn't installed with OpenRAG. You must install it separately if you want to use

Ollama as a model provider.

Using Ollama as your language and embedding model provider offers greater flexibility

and configuration options for hosting models, but it can be advanced for new users. The

recommendations given here are a reasonable starting point for users with at least one

GPU and experience running LLMs locally.

The OpenRAG team recommends the OpenAI gpt-oss:20b lanuage model and the

nomic-embed-text embedding model. However, gpt-oss:20b uses 16GB of RAM, so

consider using Ollama Cloud or running Ollama on a remote machine.

1. Install Ollama locally or on a remote server or run models in Ollama Cloud.

If you are running a remote server, it must be accessible from your OpenRAG

deployment.

2. In OpenRAG onboarding, connect to your Ollama server:

Local Ollama server: Enter your Ollama server's base URL and port. The default

Ollama server address is http://localhost:11434 .

Ollama Cloud: Because Ollama Cloud models run at the same address as a

local Ollama server and automatically offload to Ollama's cloud service, you can

use the same base URL and port as you would for a local Ollama server. The

default address is http://localhost:11434 .

Remote server: Enter your remote Ollama server's base URL and port, such as

http://your-remote-server:11434 .

If the connection succeeds, OpenRAG populates the model lists with the server's

available models.

https://ollama.com/library/nomic-embed-text
https://docs.ollama.com/
https://docs.ollama.com/cloud

3. Select the model that your Ollama server is running.

Language model and embedding model selections are independent. You can use the

same or different servers for each model.

To use different providers for each model, you must configure both providers, and

select the relevant model for each provider.

4. Click Complete.

After you configure the embedding model, OpenRAG uses the address and models

to ingest some initial documents. This tests the connection, and it allows you to ask

OpenRAG about itself in the Chat. If there is a problem with the model configuration,

an error occurs and you are redirected back to application onboarding. Verify that

the server address is valid, and that the selected model is running on the server.

Then, click Complete to retry ingestion.

5. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

OpenAI (default)

1. Enter your OpenAI API key, or enable Get API key from environment variable to

pull the key from your OpenRAG .env file.

If you entered an OpenAI API key during setup, enable Get API key from

environment variable.

2. Under Advanced settings, select the language model that you want to use.

3. Click Complete.

4. Select a provider for embeddings, provide the required information, and then select

the embedding model you want to use. For information about another provider's

credentials and settings, see the instructions for that provider.

5. Click Complete.

After you configure the embedding model, OpenRAG uses your credentials and

models to ingest some initial documents. This tests the connection, and it allows you

to ask OpenRAG about itself in the Chat. If there is a problem with the model

configuration, an error occurs and you are redirected back to application

onboarding. Verify that the credential is valid and has access to the selected model,

and then click Complete to retry ingestion.

6. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

Next steps

Try some of OpenRAG's core features in the quickstart.

Learn how to manage OpenRAG services.

Upload documents, and then use the Chat to explore your data.

Invoke OpenRAG with uvx
For guided configuration and simplified service management, install OpenRAG with

services managed by the Terminal User Interface (TUI).

You can use uvx to invoke OpenRAG outside of a Python project or without modifying

your project's dependencies.

TIP

The automatic installer script also uses uvx to install OpenRAG.

This installation method is best for testing OpenRAG by running it outside of a Python

project. For other installation methods, see Select an installation method.

Prerequisites

For Microsoft Windows, you must use the Windows Subsystem for Linux (WSL). See

Install OpenRAG on Windows before proceeding.

Gather the credentials and connection details for your preferred model providers.

You must have access to at least one language model and one embedding model. If

a provider offers both types, you can use the same provider for both models. If a

provider offers only one type, you must select two providers.

OpenAI: Create an OpenAI API key.

Anthropic: Create an Anthropic API key. Anthropic provides language models

only; you must select an additional provider for embeddings.

IBM watsonx.ai: Get your watsonx.ai API endpoint, IBM project ID, and IBM API

key from your watsonx deployment.

Ollama: Deploy an Ollama instance and models locally, in the cloud, or on a

remote server, and then get your Ollama server's base URL and the names of

the models that you want to use.

Optional: Install GPU support with an NVIDIA GPU, CUDA support, and compatible

NVIDIA drivers on the OpenRAG host machine. If you don't have GPU capabilities,

OpenRAG provides an alternate CPU-only deployment.

Install Python version 3.13 or later.

https://docs.astral.sh/uv/guides/tools/#running-tools
https://platform.openai.com/api-keys
https://www.anthropic.com/docs/api/reference
https://docs.ollama.com/
https://docs.nvidia.com/cuda/
https://www.python.org/downloads/release/python-3100/

Install uv.

Install Podman (recommended) or Docker.

Install podman-compose or Docker Compose. To use Docker Compose with

Podman, you must alias Docker Compose commands to Podman commands.

Install and run OpenRAG with uvx

1. Create a directory to store your OpenRAG configuration files and data, and then

change to that directory:

2. Optional: If you want to use a pre-populated .env file for OpenRAG, copy it to this

directory before invoking OpenRAG.

3. Invoke OpenRAG:

You can invoke a specific version using any of the uvx version specifiers, such as -

-from :

Invoking OpenRAG with uvx openrag creates a cached, ephemeral environment for

the TUI in your local uv cache. By invoking OpenRAG in a specific directory, your

OpenRAG configuration files and data are stored separately from the uv cache.

Clearing the uv cache doesn't remove your entire OpenRAG installation. After

clearing the cache, you can re-invoke OpenRAG (uvx openrag) to restart the TUI

with your preserved configuration and data.

If you encounter errors during installation, see Troubleshoot OpenRAG.

mkdir openrag-workspace
cd openrag-workspace

uvx openrag

uvx --from openrag==0.1.30 openrag

https://docs.astral.sh/uv/getting-started/installation/
https://podman.io/docs/installation
https://docs.docker.com/get-docker/
https://docs.podman.io/en/latest/markdown/podman-compose.1.html
https://docs.docker.com/compose/install/
https://docs.astral.sh/uv/guides/tools/#requesting-specific-versions

Set up OpenRAG with the TUI

When you install OpenRAG with uvx , you manage the OpenRAG services with the

Terminal User Interface (TUI). The TUI guides you through the initial configuration

process before you start the OpenRAG services.

Your OpenRAG configuration is stored in a .env file that is created automatically in the

OpenRAG installation directory. If OpenRAG detects an existing .env file, the TUI

automatically populates those values during setup and onboarding.

Container definitions are stored in the docker-compose files in the OpenRAG installation

directory.

With uvx , the OpenRAG .env and docker-compose files are stored in the directory

where you invoked OpenRAG.

You can use either Basic Setup or Advanced Setup to configure OpenRAG. This choice

determines how OpenRAG authenticates with OpenSearch and controls access to

documents.

INFO

You must use Advanced Setup if you want to use OAuth connectors to upload

documents from cloud storage.

If OpenRAG detects OAuth credentials during setup, it recommends Advanced Setup in

the TUI.

Basic setup

1. In the TUI, click Basic Setup or press 1 .

2. Enter administrator passwords for the OpenRAG OpenSearch and Langflow services,

or click Generate Passwords to generate passwords automatically.

The OpenSearch password is required.

The Langflow password is recommended but optional. If the Langflow password is

empty, the Langflow server starts without authentication enabled. For more

information, see Langflow settings.

3. Optional: Enter your OpenAI API key, or leave this field empty if you want to

configure model provider credentials later during application onboarding.

4. Click Save Configuration.

Your passwords and API key, if provided, are stored in the .env file in your

OpenRAG installation directory. If you modified any credentials that were pulled from

an existing .env file, those values are updated in the .env file.

5. Click Start All Services to start the OpenRAG services that run in containers.

This process can take some time while OpenRAG pulls and runs the container

images. If all services start successfully, the TUI prints a confirmation message:

6. Under Native Services, click Start to start the Docling service.

7. Launch the OpenRAG application:

From the TUI main menu, click Open App.

In your browser, navigate to localhost:3000 .

8. Continue with application onboarding.

Advanced setup

1. In the TUI, click Advanced Setup or press 2 .

2. Enter administrator passwords for the OpenRAG OpenSearch and Langflow services,

or click Generate Passwords to generate passwords automatically.

The OpenSearch password is required.

The Langflow password is recommended but optional. If the Langflow password is

empty, the Langflow server starts without authentication enabled. For more

information, see Langflow settings.

Services started successfully
Command completed successfully

3. Optional: Enter your OpenAI API key, or leave this field empty if you want to

configure model provider credentials later during application onboarding.

4. To upload documents from external storage, such as Google Drive, add the required

OAuth credentials for the connectors that you want to use. These settings can be

populated automatically if OpenRAG detects these credentials in a .env file in the

OpenRAG installation directory.

Amazon: Provide your AWS Access Key ID and AWS Secret Access Key with

access to your S3 instance. For more information, see the AWS documentation

on Configuring access to AWS applications.

Google: Provide your Google OAuth Client ID and Google OAuth Client Secret.

You can generate these in the Google Cloud Console. For more information, see

the Google OAuth client documentation.

Microsoft: For the Microsoft OAuth Client ID and Microsoft OAuth Client Secret,

provide Azure application registration credentials for SharePoint and OneDrive.

For more information, see the Microsoft Graph OAuth client documentation.

You can manage OAuth credentials later, but it is recommended to configure them

during initial set up.

5. The OpenRAG TUI presents redirect URIs for your OAuth app. These are the URLs

your OAuth provider will redirect back to after user sign-in. Register these redirect

values with your OAuth provider as they are presented in the TUI.

6. Click Save Configuration.

Your passwords, API key, and OAuth credentials, if provided, are stored in the .env
file in your OpenRAG installation directory. If you modified any credentials that were

pulled from an existing .env file, those values are updated in the .env file.

7. Click Start All Services to start the OpenRAG services that run in containers.

This process can take some time while OpenRAG pulls and runs the container

images. If all services start successfully, the TUI prints a confirmation message:

Services started successfully
Command completed successfully

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-applications.html
https://console.cloud.google.com/apis/credentials
https://developers.google.com/identity/protocols/oauth2
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/app-registration?view=odsp-graph-online
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/graph-oauth

8. Under Native Services, click Start to start the Docling service.

9. Launch the OpenRAG application:

From the TUI main menu, click Open App.

In your browser, navigate to localhost:3000 .

10. If you enabled OAuth connectors, you must sign in to your OAuth provider before

being redirected to your OpenRAG instance.

11. If required, you can edit the following additional environment variables. Only change

these variables if your OpenRAG deployment has a non-default network

configuration, such as a reverse proxy or custom domain.

LANGFLOW_PUBLIC_URL : Sets the base address to access the Langflow web

interface. This is where users interact with flows in a browser.

WEBHOOK_BASE_URL : Sets the base address for the following OpenRAG OAuth

connector endpoints:

Amazon S3: Not applicable.

Google Drive: WEBHOOK_BASE_URL/connectors/google_drive/webhook

OneDrive: WEBHOOK_BASE_URL/connectors/onedrive/webhook

SharePoint: WEBHOOK_BASE_URL/connectors/sharepoint/webhook

12. Continue with application onboarding.

Application onboarding

The first time you start the OpenRAG application, you must complete application

onboarding to select language and embedding models that are essential for OpenRAG

features like the Chat.

Some of these variables, such as the embedding models, can be changed seamlessly

after onboarding. Others are immutable and require you to destroy and recreate the

OpenRAG containers. For more information, see Environment variables.

You can use different providers for your language model and embedding model, such as

Anthropic for the language model and OpenAI for the embedding model. Additionally, you

can set multiple embedding models.

You only need to complete onboarding for your preferred providers.

Anthropic

INFO

Anthropic doesn't provide embedding models. If you select Anthropic for your

language model, you must select a different provider for the embedding model.

1. Enter your Anthropic API key, or enable Get API key from environment variable to

pull the key from your OpenRAG .env file.

If you haven't set ANTHROPIC_API_KEY in your .env file, you must enter the key

manually.

2. Under Advanced settings, select the language model that you want to use.

3. Click Complete.

4. Select a provider for embeddings, provide the required information, and then select

the embedding model you want to use. For information about another provider's

credentials and settings, see the instructions for that provider.

5. Click Complete.

After you configure the embedding model, OpenRAG uses your credentials and

models to ingest some initial documents. This tests the connection, and it allows you

to ask OpenRAG about itself in the Chat. If there is a problem with the model

configuration, an error occurs and you are redirected back to application

onboarding. Verify that the credential is valid and has access to the selected model,

and then click Complete to retry ingestion.

6. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

IBM watsonx.ai

1. Use the values from your IBM watsonx deployment for the watsonx.ai API

Endpoint, IBM Project ID, and IBM API key fields.

2. Under Advanced settings, select the language model that you want to use.

3. Click Complete.

4. Select a provider for embeddings, provide the required information, and then select

the embedding model you want to use. For information about another provider's

credentials and settings, see the instructions for that provider.

5. Click Complete.

After you configure the embedding model, OpenRAG uses your credentials and

models to ingest some initial documents. This tests the connection, and it allows you

to ask OpenRAG about itself in the Chat. If there is a problem with the model

configuration, an error occurs and you are redirected back to application

onboarding. Verify that the credentials are valid and have access to the selected

model, and then click Complete to retry ingestion.

6. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

Ollama

INFO

Ollama isn't installed with OpenRAG. You must install it separately if you want to use

Ollama as a model provider.

Using Ollama as your language and embedding model provider offers greater flexibility

and configuration options for hosting models, but it can be advanced for new users. The

recommendations given here are a reasonable starting point for users with at least one

GPU and experience running LLMs locally.

The OpenRAG team recommends the OpenAI gpt-oss:20b lanuage model and the

nomic-embed-text embedding model. However, gpt-oss:20b uses 16GB of RAM, so

consider using Ollama Cloud or running Ollama on a remote machine.

https://ollama.com/library/nomic-embed-text

1. Install Ollama locally or on a remote server or run models in Ollama Cloud.

If you are running a remote server, it must be accessible from your OpenRAG

deployment.

2. In OpenRAG onboarding, connect to your Ollama server:

Local Ollama server: Enter your Ollama server's base URL and port. The default

Ollama server address is http://localhost:11434 .

Ollama Cloud: Because Ollama Cloud models run at the same address as a

local Ollama server and automatically offload to Ollama's cloud service, you can

use the same base URL and port as you would for a local Ollama server. The

default address is http://localhost:11434 .

Remote server: Enter your remote Ollama server's base URL and port, such as

http://your-remote-server:11434 .

If the connection succeeds, OpenRAG populates the model lists with the server's

available models.

3. Select the model that your Ollama server is running.

Language model and embedding model selections are independent. You can use the

same or different servers for each model.

To use different providers for each model, you must configure both providers, and

select the relevant model for each provider.

4. Click Complete.

After you configure the embedding model, OpenRAG uses the address and models

to ingest some initial documents. This tests the connection, and it allows you to ask

OpenRAG about itself in the Chat. If there is a problem with the model configuration,

an error occurs and you are redirected back to application onboarding. Verify that

the server address is valid, and that the selected model is running on the server.

Then, click Complete to retry ingestion.

5. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

https://docs.ollama.com/
https://docs.ollama.com/cloud

OpenAI (default)

1. Enter your OpenAI API key, or enable Get API key from environment variable to

pull the key from your OpenRAG .env file.

If you entered an OpenAI API key during setup, enable Get API key from

environment variable.

2. Under Advanced settings, select the language model that you want to use.

3. Click Complete.

4. Select a provider for embeddings, provide the required information, and then select

the embedding model you want to use. For information about another provider's

credentials and settings, see the instructions for that provider.

5. Click Complete.

After you configure the embedding model, OpenRAG uses your credentials and

models to ingest some initial documents. This tests the connection, and it allows you

to ask OpenRAG about itself in the Chat. If there is a problem with the model

configuration, an error occurs and you are redirected back to application

onboarding. Verify that the credential is valid and has access to the selected model,

and then click Complete to retry ingestion.

6. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

Next steps

Try some of OpenRAG's core features in the quickstart.

Learn how to manage OpenRAG services.

Upload documents, and then use the Chat to explore your data.

Install OpenRAG on Microsoft Windows
If you're using Windows, you must install OpenRAG within the Windows Subsystem for

Linux (WSL).

Nested virtualization isn't supported

OpenRAG isn't compatible with nested virtualization, which can cause networking issues.

Don't install OpenRAG on a WSL distribution that is installed inside a Windows VM.

Instead, install OpenRAG on your base OS or a non-nested Linux VM.

Install OpenRAG in the WSL

1. Install WSL with an Ubuntu distribution using WSL 2:

For new installations, the wsl --install command uses WSL 2 and Ubuntu by

default.

For existing WSL installations, you can change the distribution and check the WSL

version.

2. Start your WSL Ubuntu distribution if it doesn't start automatically.

3. Set up a username and password for your WSL distribution.

4. Install Docker Desktop for Windows with WSL 2. When you reach the Docker

Desktop WSL integration settings, make sure your Ubuntu distribution is enabled,

and then click Apply & Restart to enable Docker support in WSL.

The Docker Desktop WSL integration makes Docker available within your WSL

distribution. You don't need to install Docker or Podman separately in your WSL

distribution before you install OpenRAG.

5. Install and run OpenRAG from within your WSL Ubuntu distribution. You can install

OpenRAG in your WSL distribution using any of the OpenRAG installation methods.

wsl --install -d Ubuntu

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install#change-the-default-linux-distribution-installed
https://learn.microsoft.com/en-us/windows/wsl/install#upgrade-version-from-wsl-1-to-wsl-2
https://learn.microsoft.com/en-us/windows/wsl/install#upgrade-version-from-wsl-1-to-wsl-2
https://learn.microsoft.com/en-us/windows/wsl/install#ways-to-run-multiple-linux-distributions-with-wsl
https://learn.microsoft.com/en-us/windows/wsl/setup/environment#set-up-your-linux-username-and-password
https://learn.microsoft.com/en-us/windows/wsl/tutorials/wsl-containers

Troubleshoot OpenRAG in WSL

If you encounter issues with port forwarding or the Windows Firewall, you might need to

adjust the Hyper-V firewall settings to allow communication between your WSL

distribution and the Windows host. For more troubleshooting advice for networking

issues, see Troubleshooting WSL common issues.

https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/hyper-v-firewall
https://learn.microsoft.com/en-us/windows/wsl/troubleshooting#common-issues

Deploy OpenRAG with self-managed
services
To manage your own OpenRAG services, deploy OpenRAG with Docker or Podman.

Use this installation method if you don't want to use the Terminal User Interface (TUI), or

you need to run OpenRAG in an environment where using the TUI is unfeasible.

Prerequisites

For Microsoft Windows, you must use the Windows Subsystem for Linux (WSL). See

Install OpenRAG on Windows before proceeding.

Gather the credentials and connection details for your preferred model providers.

You must have access to at least one language model and one embedding model. If

a provider offers both types, you can use the same provider for both models. If a

provider offers only one type, you must select two providers.

OpenAI: Create an OpenAI API key.

Anthropic: Create an Anthropic API key. Anthropic provides language models

only; you must select an additional provider for embeddings.

IBM watsonx.ai: Get your watsonx.ai API endpoint, IBM project ID, and IBM API

key from your watsonx deployment.

Ollama: Deploy an Ollama instance and models locally, in the cloud, or on a

remote server, and then get your Ollama server's base URL and the names of

the models that you want to use.

Optional: Install GPU support with an NVIDIA GPU, CUDA support, and compatible

NVIDIA drivers on the OpenRAG host machine. If you don't have GPU capabilities,

OpenRAG provides an alternate CPU-only deployment.

Install Python version 3.13 or later.

Install uv.

Install Podman (recommended) or Docker.

Install podman-compose or Docker Compose. To use Docker Compose with

Podman, you must alias Docker Compose commands to Podman commands.

https://platform.openai.com/api-keys
https://www.anthropic.com/docs/api/reference
https://docs.ollama.com/
https://docs.nvidia.com/cuda/
https://www.python.org/downloads/release/python-3100/
https://docs.astral.sh/uv/getting-started/installation/
https://podman.io/docs/installation
https://docs.docker.com/get-docker/
https://docs.podman.io/en/latest/markdown/podman-compose.1.html
https://docs.docker.com/compose/install/

Prepare your deployment

1. Clone the OpenRAG repository:

2. Change to the root of the cloned repository:

3. Install dependencies:

4. Create a .env file at the root of the cloned repository.

You can create an empty file or copy the repository's .env.example file. The

example file contains some of the OpenRAG environment variables to get you started

with configuring your deployment.

5. Edit the .env file to configure your deployment using OpenRAG environment

variables. The OpenRAG Docker Compose files pull values from your .env file to

configure the OpenRAG containers. The following variables are required or

recommended:

OPENSEARCH_PASSWORD (Required): Sets the OpenSearch administrator

password. It must adhere to the OpenSearch password complexity

requirements.

LANGFLOW_SUPERUSER : The username for the Langflow administrator user.

Defaults to admin if not set.

git clone https://github.com/langflow-ai/openrag.git

cd openrag

uv sync

cp .env.example .env

https://github.com/langflow-ai/openrag/blob/main/.env.example
https://docs.opensearch.org/latest/security/configuration/demo-configuration/#setting-up-a-custom-admin-password
https://docs.opensearch.org/latest/security/configuration/demo-configuration/#setting-up-a-custom-admin-password

LANGFLOW_SUPERUSER_PASSWORD (Strongly recommended): Sets the

Langflow administrator password, and determines the Langflow server's default

authentication mode. If not set, the Langflow server starts without

authentication enabled. For more information, see Langflow settings.

LANGFLOW_SECRET_KEY (Strongly recommended): A secret encryption key

for internal Langflow operations. It is recommended to generate your own

Langflow secret key. If not set, Langflow generates a secret key automatically.

Model provider credentials: Provide credentials for your preferred model

providers. If not set in the .env file, you must configure at least one provider

during application onboarding.

OPENAI_API_KEY

ANTHROPIC_API_KEY

OLLAMA_ENDPOINT

WATSONX_API_KEY

WATSONX_ENDPOINT

WATSONX_PROJECT_ID
OAuth provider credentials: To upload documents from external storage, such

as Google Drive, set the required OAuth credentials for the connectors that you

want to use. You can manage OAuth credentials later, but it is recommended to

configure them during initial set up so you don't have to rebuild the containers.

Amazon: Provide your AWS Access Key ID and AWS Secret Access Key

with access to your S3 instance. For more information, see the AWS

documentation on Configuring access to AWS applications.

Google: Provide your Google OAuth Client ID and Google OAuth Client

Secret. You can generate these in the Google Cloud Console. For more

information, see the Google OAuth client documentation.

Microsoft: For the Microsoft OAuth Client ID and Microsoft OAuth Client

Secret, provide Azure application registration credentials for SharePoint and

OneDrive. For more information, see the Microsoft Graph OAuth client

documentation.

For more information and variables, see OpenRAG environment variables.

Start services

https://docs.langflow.org/api-keys-and-authentication#langflow-secret-key
https://docs.langflow.org/api-keys-and-authentication#langflow-secret-key
https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-applications.html
https://console.cloud.google.com/apis/credentials
https://developers.google.com/identity/protocols/oauth2
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/app-registration?view=odsp-graph-online
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/app-registration?view=odsp-graph-online
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/graph-oauth
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/graph-oauth

1. Start docling serve on port 5001 on the host machine:

Docling cannot run inside a Docker container due to system-level dependencies, so

you must manage it as a separate service on the host machine. For more

information, see Stop, start, and inspect native services.

This port is required to deploy OpenRAG successfully; don't use a different port.

Additionally, this enables the MLX framework for accelerated performance on Apple

Silicon Mac machines.

2. Confirm docling serve is running.

If docling serve is running, the output includes the status, address, and process

ID (PID):

3. Deploy the OpenRAG containers locally using the appropriate Docker Compose file

for your environment. Both files deploy the same services.

docker-compose.yml : If your host machine has an NVIDIA GPU with CUDA

support and compatible NVIDIA drivers, you can use this file to deploy OpenRAG

with accelerated processing.

Docker

uv run python scripts/docling_ctl.py start --port 5001

uv run python scripts/docling_ctl.py status

Status: running
Endpoint: http://127.0.0.1:5001
Docs: http://127.0.0.1:5001/docs
PID: 27746

docker compose build
docker compose up -d

https://opensource.apple.com/projects/mlx/
https://github.com/langflow-ai/openrag/blob/main/docker-compose.yml

Podman

docker-compose-cpu.yml : If your host machine doesn't have NVIDIA GPU

support, use this file for a CPU-only OpenRAG deployment.

Docker

Podman

4. Wait for the OpenRAG containers to start, and then confirm that all containers are

running:

Docker

Podman

The OpenRAG Docker Compose files deploy the following containers:

Container Name Default address Purpose

OpenRAG Backend http://localhost:8000 FastAPI server and core
functionality.

OpenRAG Frontend http://localhost:3000 React web interface for user
interaction.

podman compose build
podman compose up -d

docker compose -f docker-compose-cpu.yml up -d

podman compose -f docker-compose-cpu.yml up -d

docker compose ps

podman compose ps

https://github.com/langflow-ai/openrag/blob/main/docker-compose-cpu.yml
http://localhost:8000/
http://localhost:3000/

Container Name Default address Purpose

Langflow http://localhost:7860 AI workflow engine.

OpenSearch http://localhost:9200 Datastore for knowledge.

OpenSearch
Dashboards http://localhost:5601 OpenSearch database

administration interface.

When the containers are running, you can access your OpenRAG services at their

addresses.

5. Access the OpenRAG frontend at http://localhost:3000 , and then continue

with application onboarding.

Application onboarding

The first time you start the OpenRAG application, you must complete application

onboarding to select language and embedding models that are essential for OpenRAG

features like the Chat.

Some of these variables, such as the embedding models, can be changed seamlessly

after onboarding. Others are immutable and require you to destroy and recreate the

OpenRAG containers. For more information, see Environment variables.

You can use different providers for your language model and embedding model, such as

Anthropic for the language model and OpenAI for the embedding model. Additionally, you

can set multiple embedding models.

You only need to complete onboarding for your preferred providers.

Anthropic

INFO

Anthropic doesn't provide embedding models. If you select Anthropic for your

language model, you must select a different provider for the embedding model.

1. Enter your Anthropic API key, or enable Get API key from environment variable to

pull the key from your OpenRAG .env file.

http://localhost:7860/
http://localhost:9200/
http://localhost:5601/

If you haven't set ANTHROPIC_API_KEY in your .env file, you must enter the key

manually.

2. Under Advanced settings, select the language model that you want to use.

3. Click Complete.

4. Select a provider for embeddings, provide the required information, and then select

the embedding model you want to use. For information about another provider's

credentials and settings, see the instructions for that provider.

5. Click Complete.

After you configure the embedding model, OpenRAG uses your credentials and

models to ingest some initial documents. This tests the connection, and it allows you

to ask OpenRAG about itself in the Chat. If there is a problem with the model

configuration, an error occurs and you are redirected back to application

onboarding. Verify that the credential is valid and has access to the selected model,

and then click Complete to retry ingestion.

6. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

IBM watsonx.ai

1. Use the values from your IBM watsonx deployment for the watsonx.ai API

Endpoint, IBM Project ID, and IBM API key fields.

2. Under Advanced settings, select the language model that you want to use.

3. Click Complete.

4. Select a provider for embeddings, provide the required information, and then select

the embedding model you want to use. For information about another provider's

credentials and settings, see the instructions for that provider.

5. Click Complete.

After you configure the embedding model, OpenRAG uses your credentials and

models to ingest some initial documents. This tests the connection, and it allows you

to ask OpenRAG about itself in the Chat. If there is a problem with the model

configuration, an error occurs and you are redirected back to application

onboarding. Verify that the credentials are valid and have access to the selected

model, and then click Complete to retry ingestion.

6. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

Ollama

INFO

Ollama isn't installed with OpenRAG. You must install it separately if you want to use

Ollama as a model provider.

Using Ollama as your language and embedding model provider offers greater flexibility

and configuration options for hosting models, but it can be advanced for new users. The

recommendations given here are a reasonable starting point for users with at least one

GPU and experience running LLMs locally.

The OpenRAG team recommends the OpenAI gpt-oss:20b lanuage model and the

nomic-embed-text embedding model. However, gpt-oss:20b uses 16GB of RAM, so

consider using Ollama Cloud or running Ollama on a remote machine.

1. Install Ollama locally or on a remote server or run models in Ollama Cloud.

If you are running a remote server, it must be accessible from your OpenRAG

deployment.

2. In OpenRAG onboarding, connect to your Ollama server:

Local Ollama server: Enter your Ollama server's base URL and port. The default

Ollama server address is http://localhost:11434 .

Ollama Cloud: Because Ollama Cloud models run at the same address as a

local Ollama server and automatically offload to Ollama's cloud service, you can

https://ollama.com/library/nomic-embed-text
https://docs.ollama.com/
https://docs.ollama.com/cloud

use the same base URL and port as you would for a local Ollama server. The

default address is http://localhost:11434 .

Remote server: Enter your remote Ollama server's base URL and port, such as

http://your-remote-server:11434 .

If the connection succeeds, OpenRAG populates the model lists with the server's

available models.

3. Select the model that your Ollama server is running.

Language model and embedding model selections are independent. You can use the

same or different servers for each model.

To use different providers for each model, you must configure both providers, and

select the relevant model for each provider.

4. Click Complete.

After you configure the embedding model, OpenRAG uses the address and models

to ingest some initial documents. This tests the connection, and it allows you to ask

OpenRAG about itself in the Chat. If there is a problem with the model configuration,

an error occurs and you are redirected back to application onboarding. Verify that

the server address is valid, and that the selected model is running on the server.

Then, click Complete to retry ingestion.

5. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

OpenAI (default)

1. Enter your OpenAI API key, or enable Get API key from environment variable to

pull the key from your OpenRAG .env file.

If you entered an OpenAI API key during setup, enable Get API key from

environment variable.

2. Under Advanced settings, select the language model that you want to use.

3. Click Complete.

4. Select a provider for embeddings, provide the required information, and then select

the embedding model you want to use. For information about another provider's

credentials and settings, see the instructions for that provider.

5. Click Complete.

After you configure the embedding model, OpenRAG uses your credentials and

models to ingest some initial documents. This tests the connection, and it allows you

to ask OpenRAG about itself in the Chat. If there is a problem with the model

configuration, an error occurs and you are redirected back to application

onboarding. Verify that the credential is valid and has access to the selected model,

and then click Complete to retry ingestion.

6. Continue through the overview slides for a brief introduction to OpenRAG, or click

Skip overview. The overview demonstrates some basic functionality that is

covered in the quickstart and in other parts of the OpenRAG documentation.

Next steps

Try some of OpenRAG's core features in the quickstart.

Learn how to manage OpenRAG services.

Upload documents, and then use the Chat to explore your data.

Upgrade OpenRAG
Use these steps to upgrade your OpenRAG deployment to the latest version or a specific

version.

Export customized flows before upgrading

If you modified the built-in flows or created custom flows in your OpenRAG Langflow

instance, export your flows before upgrading. This ensure that you won't lose your flows

after upgrading, and you can reference the exported flows if there are any breaking

changes in the new version.

Upgrade TUI-managed installations

To upgrade OpenRAG, you need to upgrade the OpenRAG Python package, and then

upgrade the OpenRAG containers.

Upgrading the Python package also upgrades Docling by bumping the dependency in

pyproject.toml .

This is a two part process because upgrading the OpenRAG Python package updates the

Terminal User Interface (TUI) and Python code, but the container versions are controlled

by environment variables in your .env file.

1. To check for updates, open the TUI's Status menu (3), and then click Upgrade.

2. If there is an update, stop all OpenRAG services. In the Status menu, click Stop

Services.

3. Upgrade the OpenRAG Python package to the latest version from PyPI. The

commands to upgrade the package depend on how you installed OpenRAG.

Use these steps to upgrade the Python package if you installed OpenRAG using

the installer script or uvx :

a. Navigate to your OpenRAG workspace directory:

cd openrag-workspace

https://docs.langflow.org/concepts-flows-import
https://pypi.org/project/openrag/

b. Upgrade the OpenRAG package:

You can invoke a specific version using any of the uvx version specifiers,

such as --from :

Use these steps to upgrade the Python package if you installed OpenRAG with

uv add :

a. Navigate to your project directory:

b. Update OpenRAG to the latest version:

To upgrade to a specific version:

c. Start the OpenRAG TUI:

Use these steps to upgrade the Python package if you installed OpenRAG with

uv pip install :

a. Activate your virtual environment.

b. Upgrade OpenRAG:

uvx --from openrag openrag

uvx --from openrag==0.1.30 openrag

cd YOUR_PROJECT_NAME

uv add --upgrade openrag

uv add --upgrade openrag==0.1.33

uv run openrag

https://docs.astral.sh/uv/guides/tools/#requesting-specific-versions

To upgrade to a specific version:

c. Start the OpenRAG TUI:

4. In the OpenRAG TUI, click Start All Services, and then wait while the upgraded

containers start.

When you start services after upgrading the Python package, OpenRAG runs

docker compose pull to get the appropriate container images matching the

version specified in your OpenRAG .env file. Then, it recreates the containers with

the new images using docker compose up -d --force-recreate .

PIN CONTAINER VERSIONS

In the .env file, the OPENRAG_VERSION environment variable is set to latest
by default, which it pulls the latest available container images. To pin a

specific container image version, you can set OPENRAG_VERSION to the desired

container image version, such as OPENRAG_VERSION=0.1.33 .

However, when you upgrade the Python package, OpenRAG automatically

attempts to keep the OPENRAG_VERSION synchronized with the Python

package version. You might need to edit the .env file after upgrading the

Python package to enforce a different container version. The TUI warns you if it

detects a version mismatch.

If you get an error that langflow container already exists error during

upgrade, see Langflow container already exists during upgrade.

5. Under Native Services, click Start to start the Docling service.

uv pip install --upgrade openrag

uv pip install --upgrade openrag==0.1.33

uv run openrag

6. When the upgrade process is complete, you can close the Status window and

continue using OpenRAG.

Upgrade self-managed containers

To fetch and apply the latest container images while preserving your OpenRAG data, run

the commands for your container management tool. By default, OpenRAG's docker-

compose files pull the latest container images.

Docker

Podman

See also

Manage OpenRAG services

Troubleshoot OpenRAG

docker compose pull
docker compose up -d --force-recreate

podman compose pull
podman compose up -d --force-recreate

Reinstall OpenRAG
You can reset your OpenRAG deployment to its initial state by recreating the containers

and deleting accessory data like the .env file and ingested documents.

WARNING

These are destructive operations that reset your OpenRAG deployment to an initial

state. Destroyed containers and deleted data are lost and cannot be recovered after

running these operations.

Export customized flows before reinstalling

If you modified the built-in flows or created custom flows in your OpenRAG Langflow

instance, and you want to preserve those changes, export your flows before reinstalling

OpenRAG.

Reinstall TUI-managed containers

1. In the TUI's Status menu (3), click Factory Reset to destroy your OpenRAG

containers and some related data.

WARNING

This is a destructive action that does the following:

Destroys all OpenRAG containers, volumes, and local images with docker

compose down --volumes --remove-orphans --rmi local .

Prunes any additional Docker objects with docker system prune -f .

Deletes the contents of OpenRAG's config and ./opensearch-data

directories.

Deletes the conversations.json file.

Destroyed containers and deleted data are lost and cannot be recovered after

running this operation.

This operation doesn't remove the .env file or the contents of the

./openrag-documents directory.

https://docs.langflow.org/concepts-flows-import

2. Exit the TUI with q .

3. Optional: Remove data that wasn't deleted by the Factory Reset operation. For a

completely fresh installation, delete all of this data.

OpenRAG's .env file: Contains your OpenRAG configuration, including

OpenRAG passwords, API keys, OAuth settings, and other environment

variables. If you delete this file, OpenRAG automatically generates a new one

after you repeat the setup and onboarding process. Alternatively, you can add a

prepopulated .env file to your OpenRAG installation directory before restarting

OpenRAG.

The contents of the ./openrag-documents directory: Contains documents

that you uploaded to OpenRAG. Delete these files to prevent documents from

being reingested to your knowledge base after restarting OpenRAG. However,

you might want to preserve OpenRAG's default documents.

4. Restart the TUI with uv run openrag or uvx openrag .

5. Repeat the setup process to configure OpenRAG and restart all services. Then,

launch the OpenRAG app and repeat application onboarding.

If OpenRAG detects a .env file during setup and onboarding, it automatically

populates any OpenRAG passwords, OAuth credentials, and onboarding

configuration set in that file.

Reinstall with Docker Compose or Podman Compose

1. Destroy the containers, volumes, and local images, and then remove (prune) any

additional Podman objects:

Docker

Podman

docker compose down --volumes --remove-orphans --rmi local
docker system prune -f

https://github.com/langflow-ai/openrag/tree/main/openrag-documents

2. Optional: Remove data that wasn't deleted by the previous commands:

OpenRAG's .env file

The contents of OpenRAG's config directory

The contents of the ./openrag-documents directory

The contents of the ./opensearch-data directory

The conversations.json file

3. If you deleted the .env file, prepare a new .env before redeploying the containers.

For more information, see Deploy OpenRAG with self-managed services.

4. Redeploy OpenRAG:

Docker

Podman

5. Launch the OpenRAG app, and then repeat application onboarding.

Step-by-step reinstallation with Docker or Podman

Use these commands for step-by-step container removal and cleanup:

1. Stop all running containers:

Docker

podman compose down --volumes --remove-orphans --rmi local
podman system prune -f

docker compose up -d

podman compose up -d

docker stop $(docker ps -q)

Podman

2. Remove all containers, including stopped containers:

Docker

Podman

3. Remove all images:

Docker

Podman

4. Remove all volumes:

Docker

Podman

podman stop --all

docker rm --force $(docker ps -aq)

podman rm --all --force

docker rmi --force $(docker images -q)

podman rmi --all --force

docker volume prune --force

5. Remove all networks except the default network:

Docker

Podman

6. Clean up any leftover data:

Docker

Podman

7. Optional: Remove data that wasn't deleted by the previous commands:

OpenRAG's .env file

The contents of OpenRAG's config directory

The contents of the ./openrag-documents directory

The contents of the ./opensearch-data directory

The conversations.json file

8. Redeploy OpenRAG.

podman volume prune --force

docker network prune --force

podman network prune --force

docker system prune --all --force --volumes

podman system prune --all --force --volumes

Remove OpenRAG

TIP

If you want to reset your OpenRAG containers without removing OpenRAG entirely,

see Reset OpenRAG containers and Reinstall OpenRAG.

Uninstall TUI-managed deployments

If you used the automated installer script or uvx to install OpenRAG, clear your uv
cache (uv cache clean) to remove the TUI environment, and then delete the directory

containing your OpenRAG configuration files and data (where you would invoke

OpenRAG).

If you used uv to install OpenRAG, run uv remove openrag in your Python project.

Uninstall self-managed deployments

For self-managed services, destroy the containers, prune any additional Docker objects,

shut down the Docling service, and delete any remaining OpenRAG files.

Uninstall with Docker Compose or Podman Compose

1. Destroy the containers, volumes, and local images, and then remove (prune) any

additional Docker objects:

Docker

Podman

2. Remove data that wasn't deleted by the previous commands:

docker compose down --volumes --remove-orphans --rmi local
docker system prune -f

podman compose down --volumes --remove-orphans --rmi local
podman system prune -f

OpenRAG's .env file

The contents of OpenRAG's config directory

The contents of the ./openrag-documents directory

The contents of the ./opensearch-data directory

The conversations.json file

3. Stop docling-serve :

Step-by-step removal and cleanup with Docker or Podman

Use these commands for step-by-step container removal and cleanup:

1. Stop all running containers:

Docker

Podman

2. Remove all containers, including stopped containers:

Docker

Podman

3. Remove all images:

uv run python scripts/docling_ctl.py stop

docker stop $(docker ps -q)

podman stop --all

docker rm --force $(docker ps -aq)

podman rm --all --force

Docker

Podman

4. Remove all volumes:

Docker

Podman

5. Remove all networks except the default network:

Docker

Podman

6. Clean up any leftover data:

Docker

docker rmi --force $(docker images -q)

podman rmi --all --force

docker volume prune --force

podman volume prune --force

docker network prune --force

podman network prune --force

docker system prune --all --force --volumes

Podman

7. Remove data that wasn't deleted by the previous commands:

OpenRAG's .env file

The contents of OpenRAG's config directory

The contents of the ./openrag-documents directory

The contents of the ./opensearch-data directory

The conversations.json file

8. Stop docling-serve :

podman system prune --all --force --volumes

uv run python scripts/docling_ctl.py stop

Use the TUI
The OpenRAG Terminal User Interface (TUI) provides a simplified and guided experience

for configuring, managing, and monitoring your OpenRAG deployment directly from the

terminal.

OpenRAG TUI

██████╗ ██████╗ ███████╗███╗ ██╗██████╗ █████╗ ██████╗
██╔═══██╗██╔══██╗██╔════╝████╗ ██║██╔══██╗██╔══██╗██╔════╝
██║ ██║██████╔╝█████╗ ██╔██╗ ██║██████╔╝███████║██║ ███╗
██║ ██║██╔═══╝ ██╔══╝ ██║╚██╗██║██╔══██╗██╔══██║██║ ██║
╚██████╔╝██║ ███████╗██║ ╚████║██║ ██║██║ ██║╚██████╔╝
╚═════╝ ╚═╝ ╚══════╝╚═╝ ╚═══╝╚═╝ ╚═╝╚═╝ ╚═╝╚═════╝

Terminal User Interface for OpenRAG

OAuth credentials detected — Advanced Setup recommended

▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔ ▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔
 Advanced Setup Monitor Services

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

 q Quit 1 Basic Setup 2 Advanced Setup 3 Monitor Services 4 Diagnostics ▏^p palette

If you install OpenRAG with the automatic installer script, uv , or uvx , you use the TUI to

manage your OpenRAG deployment. The TUI guides you through the initial setup,

automatically manages your OpenRAG .env and docker-compose files, and provides

convenient access to service management controls.

In contrast, when you deploy OpenRAG with self-managed services, you must manually

configure OpenRAG by preparing a .env file and using Docker or Podman commands to

deploy and manage your OpenRAG services.

Access the TUI

If you installed OpenRAG with uv , access the TUI with uv run openrag .

If you installed OpenRAG with the automatic installer script or uvx , access the TUI with

uvx openrag .

Manage services with the TUI

Use the TUI's Status menu (3) and Diagnostics menu (4) to access controls and

information for your OpenRAG services. For more information, see Manage OpenRAG

services.

Exit the OpenRAG TUI

To exit the OpenRAG TUI, go to the TUI main menu, and then press q .

Your OpenRAG containers continue to run until they are stopped.

To restart the TUI, see Access the TUI.

Manage OpenRAG containers and services
Service management is an essential part of maintaining your OpenRAG deployment.

Most OpenRAG services run in containers. However, some services, like Docling, run

directly on the local machine.

If you installed OpenRAG with the automated installer script, uv , or uvx , you can use the

Terminal User Interface (TUI) to manage your OpenRAG configuration and services.

For self-managed deployments, run Docker or Podman commands to manage your

OpenRAG services.

Monitor services

TUI Status menu: In the Status menu (3), you can access streaming logs for all

OpenRAG services. Select the service you want to view, and then press l . To copy

the logs, click Copy to Clipboard.

TUI Diagnostics menu: The TUI's Diagnostics menu (4) provides health

monitoring for your container runtimes and monitoring of your OpenSearch instance.

Self-managed containers: Get container logs with docker compose logs or

podman logs .

Docling: See Stop, start, and inspect native services.

Stop and start containers

TUI: In the TUI's Status menu (3), click Stop Services to stop all OpenRAG

container-based services.

Click Start All Services to restart the OpenRAG containers. This function triggers

the following processes:

i. OpenRAG automatically detects your container runtime, and then checks if your

machine has compatible GPU support by checking for CUDA , NVIDIA_SMI , and

Docker/Podman runtime support. This check determines which Docker

https://docs.docker.com/reference/cli/docker/compose/logs/
https://docs.podman.io/en/latest/markdown/podman-logs.1.html

Compose file OpenRAG uses because there are separate Docker Compose files

for GPU and CPU deployments.

ii. OpenRAG pulls the OpenRAG container images with docker compose pull if

any images are missing.

iii. OpenRAG deploys the containers with docker compose up -d .

Self-managed containers: Use docker compose down and docker compose up

-d .

To stop or start individual containers, use targeted commands like docker stop

CONTAINER_ID and docker start CONTAINER_ID .

Stop, start, and inspect native services (Docling)

A native service in OpenRAG is a service that runs locally on your machine, not within a

container. For example, the docling serve process is an OpenRAG native service

because this document processing service runs on your local machine, separate from the

OpenRAG containers.

TUI: From the TUI's Status menu (3), click Native Services to do the following:

View the service's status, port, and process ID (PID).

Stop, start, and restart native services.

Self-managed services: Because the Docling service doesn't run in a container,

you must start and stop it manually on the host machine:

Stop docling serve :

Start docling serve :

Check that docling serve is running:

uv run python scripts/docling_ctl.py stop

uv run python scripts/docling_ctl.py start --port 5001

https://docs.docker.com/reference/cli/docker/compose/down/
https://docs.docker.com/reference/cli/docker/compose/up/
https://docs.docker.com/reference/cli/docker/compose/up/

If docling serve is running, the output includes the status, address, and

process ID (PID):

Upgrade services

See Upgrade OpenRAG.

Reset containers (destructive)

Reset your OpenRAG deployment by recreating the containers and removing some

related data.

To completely reset your OpenRAG deployment and delete all OpenRAG data, see

Reinstall OpenRAG.

Export customized flows before resetting containers

If you modified the built-in flows or created custom flows in your OpenRAG Langflow

instance, and you want to preserve those changes, export your flows before resetting

your OpenRAG containers.

Factory Reset with the TUI

WARNING

This is a destructive action that does the following:

Destroys all OpenRAG containers, volumes, and local images with docker

compose down --volumes --remove-orphans --rmi local .

Prunes any additional Docker objects with docker system prune -f .

uv run python scripts/docling_ctl.py status

Status: running
Endpoint: http://127.0.0.1:5001
Docs: http://127.0.0.1:5001/docs
PID: 27746

https://docs.langflow.org/concepts-flows-import

Deletes the contents of OpenRAG's config and ./opensearch-data
directories.

Deletes the conversations.json file.

Destroyed containers and deleted data are lost and cannot be recovered after

running this operation.

This operation doesn't remove the .env file or the contents of the ./openrag-

documents directory.

1. To destroy and recreate your OpenRAG containers, open the TUI's Status menu

(3), and then click Factory Reset.

2. Repeat the setup process to restart the services and launch the OpenRAG app. Your

OpenRAG passwords, OAuth credentials (if previously set), and onboarding

configuration are restored from the .env file.

Rebuild self-managed containers

This command destroys and recreates the containers. Data stored exclusively on the

containers is lost, such as Langflow flows.

If you want to preserve customized flows, see Export customized flows before resetting

containers.

The .env file, config directory, ./openrag-documents directory, ./opensearch-

data directory, and the conversations.json file are preserved.

Docker

Podman

Destroy and recreate self-managed containers

docker compose up --build --force-recreate --remove-orphans

podman compose up --build --force-recreate --remove-orphans

Use separate commands to destroy and recreate the containers if you want to modify the

configuration or delete other OpenRAG data before recreating the containers.

WARNING

These are destructive operations that reset your OpenRAG deployment to an initial

state. Destroyed containers and deleted data are lost and cannot be recovered after

running this operation.

1. Destroy the containers, volumes, and local images, and then remove (prune) any

additional Docker objects:

Docker

Podman

2. Optional: Remove data that wasn't deleted by the previous commands:

OpenRAG's .env file

The contents of OpenRAG's config directory

The contents of the ./openrag-documents directory

The contents of the ./opensearch-data directory

The conversations.json file

3. If you deleted the .env file, prepare a new .env before redeploying the containers.

For more information, see Deploy OpenRAG with self-managed services.

4. Recreate the containers:

Docker

docker compose down --volumes --remove-orphans --rmi local
docker system prune -f

podman compose down --volumes --remove-orphans --rmi local
podman system prune -f

Podman

5. Launch the OpenRAG app, and then repeat application onboarding.

See also

Uninstall OpenRAG

docker compose up -d

podman compose up -d

Use Langflow in OpenRAG
OpenRAG includes a built-in Langflow instance for creating and managing functional

application workflows called flows. In a flow, the individual workflow steps are

represented by components that are connected together to form a complete process.

OpenRAG includes several built-in flows:

The OpenRAG OpenSearch Agent flow powers the Chat feature in OpenRAG.

The OpenSearch Ingestion and OpenSearch URL Ingestion flows process

documents and web content for storage in your OpenSearch knowledge base.

The OpenRAG OpenSearch Nudges flow provides optional contextual suggestions

in the OpenRAG Chat.

You can customize these flows and create your own flows using OpenRAG's embedded

Langflow visual editor.

Inspect and modify flows

All OpenRAG flows are designed to be modular, performant, and provider-agnostic.

To modify a flow in OpenRAG, click Settings. From here, you can quickly edit

commonly used parameters, such as the Language model and Agent Instructions. To

further explore and edit the flow, click Edit in Langflow to launch the embedded

Langflow visual editor where you can fully customize the flow to suit your use case.

For example, to view and edit the built-in Chat flow (the OpenRAG OpenSearch Agent

flow), do the following:

1. In OpenRAG, click Chat.

2. Click Settings, and then click Edit in Langflow to launch the Langflow visual

editor in a new browser window.

If prompted to acknowledge that you are entering Langflow, click Proceed.

If Langflow requests login information, enter the LANGFLOW_SUPERUSER and

LANGFLOW_SUPERUSER_PASSWORD from the .env file in your OpenRAG installation

https://docs.langflow.org/
https://docs.langflow.org/concepts-components
https://docs.langflow.org/concepts-overview
https://docs.langflow.org/concepts-flows

directory.

3. Modify the flow as desired, and then press Command + S (Ctrl + S) to save your

changes.

You can close the Langflow browser window, or leave it open if you want to continue

experimenting with the flow editor.

TIP

If you modify the built-in Chat flow, make sure you click in the

Conversations tab to start a new conversation. This ensures that the chat

doesn't persist any context from the previous conversation with the original

flow settings.

Revert a built-in flow to its original configuration

After you edit a built-in flow, you can click Restore flow on the Settings page to revert

the flow to its original state when you first installed OpenRAG. This is a destructive action

that discards all customizations to the flow.

Build custom flows and use other Langflow
functionality

In addition to OpenRAG's built-in flows, all Langflow features are available through

OpenRAG, including the ability to create your own flows and popular extensibility features

https://docs.langflow.org/concepts-flows

such as the following:

Create custom components.

Integrate with many third-party services through bundles.

Use MCP clients and MCP servers, and serve flows as MCP tools for your agentic

flows.

Explore the Langflow documentation to learn more about the Langflow platform,

features, and visual editor.

Set the Langflow version

By default, OpenRAG is pinned to the latest Langflow Docker image for stability.

If necessary, you can set a specific Langflow version with the LANGFLOW_VERSION .

However, there are risks to changing this setting:

The Langflow documentation describes the functionality present in the latest release

of the Langflow OSS Python package. If your LANGFLOW_VERSION is different, the

Langflow documentation might not align with the features and default settings in

your OpenRAG installation.

Components might break, including components in OpenRAG's built-in flows.

Default settings and behaviors might change causing unexpected results when

OpenRAG expects a newer default.

https://docs.langflow.org/components-custom-components
https://docs.langflow.org/components-bundle-components
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-server
https://docs.langflow.org/
https://docs.langflow.org/

Configure knowledge
OpenRAG includes a built-in OpenSearch instance that serves as the underlying

datastore for your knowledge (documents). This specialized database is used to store

and retrieve your documents and the associated vector data (embeddings).

The documents in your OpenSearch knowledge base provide specialized context in

addition to the general knowledge available to the language model that you select when

you install OpenRAG or edit a flow.

You can upload documents from a variety of sources to populate your knowledge base

with unique content, such as your own company documents, research papers, or

websites. Documents are processed through OpenRAG's knowledge ingestion flows with

Docling.

Then, the OpenRAG Chat can run similarity searches against your OpenSearch database

to retrieve relevant information and generate context-aware responses.

You can configure how documents are ingested and how the Chat interacts with your

knowledge base.

Browse knowledge

The Knowledge page lists the documents OpenRAG has ingested into your OpenSearch

database, specifically in an OpenSearch index named documents .

To explore the raw contents of your knowledge base, click Knowledge to get a list of

all ingested documents. Click a document to view the chunks produced from splitting the

document during ingestion.

Default documents

By default, OpenRAG includes some initial documents about OpenRAG. These

documents are ingested automatically during application onboarding.

You can use these documents to ask OpenRAG about itself, and to test the Chat feature

before uploading your own documents.

https://docs.opensearch.org/latest/
https://www.ibm.com/think/topics/vector-search
https://docs.opensearch.org/latest/getting-started/intro/#index

If you delete these documents, you won't be able to ask OpenRAG about itself and it's

own functionality. It is recommended that you keep these documents, and use filters to

separate them from your other knowledge.

OpenSearch authentication and document access

When you install OpenRAG, you provide the initial configuration values for your OpenRAG

services. This includes authentication credentials for OpenSearch and OAuth connectors.

This configuration determines how OpenRAG authenticates with OpenSearch and

controls access to documents in your knowledge base:

No-auth mode (basic setup): If you select Basic Setup in the TUI, or your .env

file doesn't include OAuth credentials, then the OpenRAG OpenSearch instance runs

in no-auth mode.

This mode uses one anonymous JWT token for OpenSearch authentication. There is

no differentiation between users; all users that access your OpenRAG instance can

access all documents uploaded to your knowledge base.

OAuth mode (advanced setup): If you select Advanced Setup in the TUI, or your

.env file includes OAuth credentials, then the OpenRAG OpenSearch instance runs

in OAuth mode.

This mode uses a unique JWT token for each OpenRAG user, and each document is

tagged with user ownership. Documents are filtered by user owner; users see only

the documents that they uploaded or have access to through their cloud storage

accounts.

You can enable OAuth mode after installation, as explained in Ingest files with OAuth

connectors.

OpenSearch indexes

An OpenSearch index is a collection of documents in an OpenSearch database.

By default, all documents you upload to your OpenRAG knowledge base are stored in an

index named documents .

https://docs.opensearch.org/latest/getting-started/intro/#index

It is possible to change the index name by editing the ingestion flow. However, this can

impact dependent processes, such as the filters and Chat flow, that reference the

documents index by default. Make sure you edit other flows as needed to ensure all

processes use the same index name.

If you encounter errors or unexpected behavior after changing the index name, you can

revert the flows to their original configuration, or delete knowledge to clear the existing

documents from your knowledge base.

Knowledge ingestion settings

WARNING

Knowledge ingestion settings apply to documents you upload after making the

changes. Documents uploaded before changing these settings aren't reprocessed.

After changing knowledge ingestion settings, you must determine if you need to reupload

any documents to be consistent with the new settings.

It isn't always necessary to reupload documents after changing knowledge ingestion

settings. For example, it is typical to upload some documents with OCR enabled and

others without OCR enabled.

If needed, you can use filters to separate documents that you uploaded with different

settings, such as different embedding models.

Set the embedding model and dimensions

When you install OpenRAG, you select at least one embedding model during application

onboarding. OpenRAG automatically detects and configures the appropriate vector

dimensions for your selected embedding model, ensuring optimal search performance

and compatibility.

In the OpenRAG repository, you can find the complete list of supported models in

models_service.py and the corresponding vector dimensions in settings.py .

During application onboarding, you can select from the supported models. The default

embedding dimension is 1536 , and the default model is the OpenAI text-embedding-

3-small .

https://github.com/langflow-ai/openrag/blob/main/src/services/models_service.py
https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py

If you want to use an unsupported model, you must manually set the model in your

OpenRAG configuration. If you use an unsupported embedding model that doesn't have

defined dimensions in settings.py , then OpenRAG falls back to the default dimensions

(1536) and logs a warning. OpenRAG's OpenSearch instance and flows continue to work,

but similarity search quality can be affected if the actual model dimensions aren't 1536.

To change the embedding model after onboarding, it is recommended that you modify

the embedding model setting in the OpenRAG Settings page or in your OpenRAG

configuration. This will automatically update all relevant OpenRAG flows to use the new

embedding model configuration.

Set Docling parameters

OpenRAG uses Docling for document ingestion because it supports many file formats,

processes tables and images well, and performs efficiently.

When you upload documents, Docling processes the files, splits them into chunks, and

stores them as separate, structured documents in your OpenSearch knowledge base.

You can use either Docling Serve or OpenRAG's built-in Docling ingestion pipeline to

process documents.

Docling Serve ingestion: By default, OpenRAG uses Docling Serve. This means that

OpenRAG starts a docling serve process on your local machine and runs Docling

ingestion through an API service.

Built-in Docling ingestion: If you want to use OpenRAG's built-in Docling ingestion

pipeline instead of the separate Docling Serve service, set

DISABLE_INGEST_WITH_LANGFLOW=true in your OpenRAG environment variables.

The built-in pipeline uses the Docling processor directly instead of through the

Docling Serve API.

For the underlying functionality, see processors.py in the OpenRAG repository.

To modify the Docling ingestion and embedding parameters, click Settings in the

OpenRAG user interface.

https://www.ibm.com/think/topics/vector-search
https://docling-project.github.io/docling/
https://github.com/docling-project/docling-serve
https://github.com/langflow-ai/openrag/blob/main/src/models/processors.py#L58

TIP

OpenRAG warns you if docling serve isn't running. For information about

starting and stopping OpenRAG native services, like Docling, see Manage OpenRAG

services.

Embedding model: Select the model to use to generate vector embeddings for your

documents.

This is initially set during installation. The recommended way to change this setting

is in the OpenRAG Settings or your OpenRAG configuration. This will automatically

update all relevant OpenRAG flows to use the new embedding model configuration.

If you uploaded documents prior to changing the embedding model, you can create

filters to separate documents embedded with different models, or you can reupload

all documents to regenerate embeddings with the new model. If you want to use

multiple embeddings models, similarity search (in the Chat) can take longer as it

searching each model's embeddings separately.

Chunk size: Set the number of characters for each text chunk when breaking down

a file. Larger chunks yield more context per chunk, but can include irrelevant

information. Smaller chunks yield more precise semantic search, but can lack

context. The default value is 1000 characters, which is usually a good balance

between context and precision.

Chunk overlap: Set the number of characters to overlap over chunk boundaries.

Use larger overlap values for documents where context is most important. Use

smaller overlap values for simpler documents or when optimization is most

important. The default value is 200 characters, which represents an overlap of 20

percent if the Chunk size is 1000. This is suitable for general use. For faster

processing, decrease the overlap to approximately 10 percent. For more complex

documents where you need to preserve context across chunks, increase it to

approximately 40 percent.

Table Structure: Enables Docling's DocumentConverter tool for parsing tables.

Instead of treating tables as plain text, tables are output as structured table data

with preserved relationships and metadata. This option is enabled by default.

https://docling-project.github.io/docling/reference/document_converter/

OCR: Enables Optical Character Recognition (OCR) processing when extracting text

from images and ingesting scanned documents. This setting is best suited for

processing text-based documents faster with Docling's DocumentConverter .

Images are ignored and not processed.

This option is disabled by default. Enabling OCR can slow ingestion performance.

If OpenRAG detects that the local machine is running on macOS, OpenRAG uses the

ocrmac OCR engine. Other platforms use easyocr.

Picture descriptions: Only applicable if OCR is enabled. Adds image descriptions

generated by the SmolVLM-256M-Instruct model. Enabling picture descriptions

can slow ingestion performance.

Set the local documents path

The default path for local uploads is the ./openrag-documents subdirectory in your

OpenRAG installation directory. This is mounted to the /app/openrag-documents/
directory inside the OpenRAG container. Files added to the host or container directory

are visible in both locations.

To change this location, modify the Documents Paths variable in either the Advanced

Setup menu or in the .env used by Docker Compose.

Delete knowledge

To clear your entire knowledge base, delete the contents of the ./opensearch-data
folder in your OpenRAG installation directory. This is a destructive operation that cannot

be undone.

See also

Ingest knowledge

Filter knowledge

Chat with knowledge

Inspect and modify flows

https://docling-project.github.io/docling/reference/document_converter/
https://www.piwheels.org/project/ocrmac/
https://www.jaided.ai/easyocr/
https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct

Ingest knowledge
Upload documents to your OpenRAG OpenSearch instance to populate your knowledge

base with unique content, such as your own company documents, research papers, or

websites. Documents are processed through OpenRAG's knowledge ingestion flows with

Docling.

OpenRAG can ingest knowledge from direct file uploads, URLs, and OAuth authenticated

connectors.

Knowledge ingestion is powered by OpenRAG's built-in knowledge ingestion flows that

use Docling to process documents before storing the documents in your OpenSearch

database. During ingestion, documents are broken into smaller chunks of content that

are then embedded using your selected embedding model. Then, the chunks,

embeddings, and associated metadata (which connects chunks of the same document)

are stored in your OpenSearch database.

To modify chunking behavior and other ingestion settings, see Knowledge ingestion

settings and Inspect and modify flows.

Ingest local files and folders

You can upload files and folders from your local machine to your knowledge base:

1. Click Knowledge to view your OpenSearch knowledge base.

2. Click Add Knowledge to add your own documents to your OpenRAG knowledge

base.

3. To upload one file, click File. To upload all documents in a folder, click

Folder.

The default path is the ./documents subdirectory in your OpenRAG installation

directory. To change this path, see Set the local documents path.

When you upload documents locally or with OAuth connectors, the OpenSearch

Ingestion flow runs in the background. By default, this flow uses Docling Serve to import

and process documents.

Like all OpenRAG flows, you can inspect the flow in Langflow, and you can customize it if

you want to change the knowledge ingestion settings.

The OpenSearch Ingestion flow is comprised of several components that work together

to process and store documents in your knowledge base:

Docling Serve component: Ingests files and processes them by connecting to

OpenRAG's local Docling Serve service. The output is DoclingDocument data that

contains the extracted text and metadata from the documents.

Export DoclingDocument component: Exports processed DoclingDocument data

to Markdown format with image placeholders. This conversion standardizes the

document data in preparation for further processing.

DataFrame Operations component: Three of these components run sequentially to

add metadata to the document data: filename , file_size , and mimetype .

Split Text component: Splits the processed text into chunks, based on the

configured chunk size and overlap settings.

Secret Input component: If needed, four of these components securely fetch the

OAuth authentication configuration variables: CONNECTOR_TYPE , OWNER ,

OWNER_EMAIL , and OWNER_NAME .

Create Data component: Combines the authentication credentials from the Secret

Input components into a structured data object that is associated with the

document embeddings.

Embedding Model component: Generates vector embeddings using your selected

embedding model.

OpenSearch component: Stores the processed documents and their embeddings in

a documents index of your OpenRAG OpenSearch knowledge base.

The default address for the OpenSearch instance is https://opensearch:9200 .

To change this address, edit the OPENSEARCH_PORT environment variable.

The default authentication method is JSON Web Token (JWT) authentication. If you

edit the flow, you can select basic auth mode, which uses the

https://docs.langflow.org/bundles-docling#docling-serve
https://docs.langflow.org/bundles-docling#docling-serve
https://docs.langflow.org/bundles-docling#export-doclingdocument
https://docs.langflow.org/bundles-docling#export-doclingdocument
https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch

OPENSEARCH_USERNAME and OPENSEARCH_PASSWORD environment variables for

authentication instead of JWT.

You can monitor ingestion to see the progress of the uploads and check for failed

uploads.

Ingest local files temporarily

When using the OpenRAG Chat, click in the chat input field to upload a file to the

current chat session. Files added this way are processed and made available to the agent

for the current conversation only. These files aren't stored in the knowledge base

permanently.

Ingest files with OAuth connectors

OpenRAG can use OAuth authenticated connectors to ingest documents from the

following external services:

AWS S3

Google Drive

Microsoft OneDrive

Microsoft Sharepoint

These connectors enable seamless ingestion of files from cloud storage to your

OpenRAG knowledge base.

Individual users can connect their personal cloud storage accounts to OpenRAG. Each

user must separately authorize OpenRAG to access their own cloud storage. When a

user connects a cloud storage service, they are redirected to authenticate with that

service provider and grant OpenRAG permission to sync documents from their personal

cloud storage.

Enable OAuth connectors

Before users can connect their own cloud storage accounts, you must configure the

provider's OAuth credentials in OpenRAG. Typically, this requires that you register

OpenRAG as an OAuth application in your cloud provider, and then obtain the app's

OAuth credentials, such as a client ID and secret key. To enable multiple connectors, you

must register an app and generate credentials for each provider.

TUI-managed services

If you use the Terminal User Interface (TUI) to manage your OpenRAG services, enter

OAuth credentials in the Advanced Setup menu. You can do this during installation, or

you can add the credentials afterwards:

1. If OpenRAG is running, open the TUI's Status menu (3), and then click Stop

Services.

2. Open the Advanced Setup menu (2), and then add the OAuth credentials for the

cloud storage providers that you want to use:

Amazon: Provide your AWS Access Key ID and AWS Secret Access Key with

access to your S3 instance. For more information, see the AWS documentation

on Configuring access to AWS applications.

Google: Provide your Google OAuth Client ID and Google OAuth Client Secret.

You can generate these in the Google Cloud Console. For more information, see

the Google OAuth client documentation.

Microsoft: For the Microsoft OAuth Client ID and Microsoft OAuth Client Secret,

provide Azure application registration credentials for SharePoint and OneDrive.

For more information, see the Microsoft Graph OAuth client documentation.

3. The TUI presents redirect URIs for your OAuth app that you must register with your

OAuth provider. These are the URLs your OAuth provider will redirect back to after

users authenticate and grant access to their cloud storage.

4. Click Save Configuration to add the OAuth credentials to your OpenRAG .env file.

5. Click Start All Services to restart the OpenRAG containers with OAuth enabled.

6. Launch the OpenRAG app. You should be prompted to sign in to your OAuth provider

before being redirected to your OpenRAG instance.

Self-managed services

If you installed OpenRAG with self-managed services, set OAuth credentials in the .env
file for Docker Compose.

You can do this during initial set up, or you can add the credentials afterwards:

1. Stop all OpenRAG containers:

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-applications.html
https://console.cloud.google.com/apis/credentials
https://developers.google.com/identity/protocols/oauth2
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/app-registration?view=odsp-graph-online
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/graph-oauth

Docker

Podman

2. Edit the .env file for Docker Compose to add the OAuth credentials for the cloud

storage providers that you want to use:

Amazon: Provide your AWS Access Key ID and AWS Secret Access Key with

access to your S3 instance. For more information, see the AWS documentation

on Configuring access to AWS applications.

Google: Provide your Google OAuth Client ID and Google OAuth Client Secret.

You can generate these in the Google Cloud Console. For more information, see

the Google OAuth client documentation.

Microsoft: For the Microsoft OAuth Client ID and Microsoft OAuth Client Secret,

provide Azure application registration credentials for SharePoint and OneDrive.

For more information, see the Microsoft Graph OAuth client documentation.

3. Save the .env file.

4. Restart your OpenRAG containers:

docker stop $(docker ps -q)

podman stop --all

AWS_ACCESS_KEY_ID=
AWS_SECRET_ACCESS_KEY=

GOOGLE_OAUTH_CLIENT_ID=
GOOGLE_OAUTH_CLIENT_SECRET=

MICROSOFT_GRAPH_OAUTH_CLIENT_ID=
MICROSOFT_GRAPH_OAUTH_CLIENT_SECRET=

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-applications.html
https://console.cloud.google.com/apis/credentials
https://developers.google.com/identity/protocols/oauth2
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/app-registration?view=odsp-graph-online
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/graph-oauth

Docker

Podman

Authenticate and ingest files from cloud storage

After you start OpenRAG with OAuth connectors enabled, each user is prompted to

authenticate with the OAuth provider upon accessing your OpenRAG instance. Individual

authentication is required to access a user's cloud storage from your OpenRAG instance.

For example, if a user navigates to the default OpenRAG URL at

http://localhost:3000 , they are redirected to the OAuth provider's sign-in page.

After authenticating and granting the required permissions for OpenRAG, the user is

redirected back to OpenRAG.

To ingest knowledge with an OAuth connector, do the following:

1. Click Knowledge to view your OpenSearch knowledge base.

2. Click Add Knowledge, and then select a storage provider.

3. On the Add Cloud Knowledge page, click Add Files, and then select the files and

folders to ingest from the connected storage.

4. Click Ingest Files.

When you upload documents locally or with OAuth connectors, the OpenSearch

Ingestion flow runs in the background. By default, this flow uses Docling Serve to import

and process documents.

Like all OpenRAG flows, you can inspect the flow in Langflow, and you can customize it if

you want to change the knowledge ingestion settings.

docker compose up -d

podman compose up -d

The OpenSearch Ingestion flow is comprised of several components that work together

to process and store documents in your knowledge base:

Docling Serve component: Ingests files and processes them by connecting to

OpenRAG's local Docling Serve service. The output is DoclingDocument data that

contains the extracted text and metadata from the documents.

Export DoclingDocument component: Exports processed DoclingDocument data

to Markdown format with image placeholders. This conversion standardizes the

document data in preparation for further processing.

DataFrame Operations component: Three of these components run sequentially to

add metadata to the document data: filename , file_size , and mimetype .

Split Text component: Splits the processed text into chunks, based on the

configured chunk size and overlap settings.

Secret Input component: If needed, four of these components securely fetch the

OAuth authentication configuration variables: CONNECTOR_TYPE , OWNER ,

OWNER_EMAIL , and OWNER_NAME .

Create Data component: Combines the authentication credentials from the Secret

Input components into a structured data object that is associated with the

document embeddings.

Embedding Model component: Generates vector embeddings using your selected

embedding model.

OpenSearch component: Stores the processed documents and their embeddings in

a documents index of your OpenRAG OpenSearch knowledge base.

The default address for the OpenSearch instance is https://opensearch:9200 .

To change this address, edit the OPENSEARCH_PORT environment variable.

The default authentication method is JSON Web Token (JWT) authentication. If you

edit the flow, you can select basic auth mode, which uses the

OPENSEARCH_USERNAME and OPENSEARCH_PASSWORD environment variables for

authentication instead of JWT.

https://docs.langflow.org/bundles-docling#docling-serve
https://docs.langflow.org/bundles-docling#docling-serve
https://docs.langflow.org/bundles-docling#export-doclingdocument
https://docs.langflow.org/bundles-docling#export-doclingdocument
https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch

You can monitor ingestion to see the progress of the uploads and check for failed

uploads.

Ingest knowledge from URLs

The OpenSearch URL Ingestion flow is used to ingest web content from URLs. This flow

isn't directly accessible from the OpenRAG user interface. Instead, this flow is called by

the OpenRAG OpenSearch Agent flow as a Model Context Protocol (MCP) tool. The

agent can call this component to fetch web content from a given URL, and then ingest

that content into your OpenSearch knowledge base.

Like all OpenRAG flows, you can inspect the flow in Langflow, and you can customize it.

For more information about MCP in Langflow, see the Langflow documentation on MCP

clients and MCP servers.

Monitor ingestion

Document ingestion tasks run in the background.

In the OpenRAG user interface, a badge is shown on Tasks when OpenRAG tasks are

active. Click Tasks to inspect and cancel tasks:

Active Tasks: All tasks that are Pending, Running, or Processing. For each active

task, depending on its state, you can find the task ID, start time, duration, number of

files processed, and the total files enqueued for processing.

Pending: The task is queued and waiting to start.

Running: The task is actively processing files.

Processing: The task is performing ingestion operations.

Failed: Something went wrong during ingestion, or the task was manually canceled.

For troubleshooting advice, see Troubleshoot ingestion.

To stop an active task, click Cancel. Canceling a task stops processing immediately

and marks the task as Failed.

https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-tutorial

Ingestion performance expectations

The following performance test was conducted with Docling Serve.

On a local VM with 7 vCPUs and 8 GiB RAM, OpenRAG ingested approximately 5.03 GB

across 1,083 files in about 42 minutes. This equates to approximately 2.4 documents per

second.

You can generally expect equal or better performance on developer laptops, and

significantly faster performance on servers. Throughput scales with CPU cores, memory,

storage speed, and configuration choices, such as the embedding model, chunk size,

overlap, and concurrency.

This test returned 12 error, approximately 1.1 percent of the total files ingested. All errors

were file-specific, and they didn't stop the pipeline.

Ingestion performance test details

Ingestion dataset:

Total files: 1,083 items mounted

Total size on disk: 5,026,474,862 bytes (approximately 5.03 GB)

Hardware specifications:

Machine: Apple M4 Pro

Podman VM:

Name: podman-machine-default

Type: applehv

vCPUs: 7

Memory: 8 GiB

Disk size: 100 GiB

Test results:

2025-09-24T22:40:45.542190Z /app/src/main.py:231 Ingesting
default documents when ready disable_langflow_ingest=False
2025-09-24T22:40:45.546385Z /app/src/main.py:270 Using Langflow
ingestion pipeline for default documents file_count=1082
...

Elapsed time: Approximately 42 minutes 15 seconds (2,535 seconds)

Throughput: Approximately 2.4 documents per second

Troubleshoot ingestion

If an ingestion task fails, do the following:

Make sure you are uploading supported file types.

Split excessively large files into smaller files before uploading.

Remove unusual embedded content, such as videos or animations, before

uploading. Although Docling can replace some non-text content with placeholders

during ingestion, some embedded content might cause errors.

If the OpenRAG Chat doesn't seem to use your documents correctly, browse your

knowledge base to confirm that the documents are uploaded in full, and the chunks are

correct.

If the documents are present and well-formed, check your knowledge filters. If a global

filter is applied, make sure the expected documents are included in the global filter. If the

global filter excludes any documents, the agent cannot access those documents unless

you apply a chat-level filter or change the global filter.

If text is missing or incorrectly processed, you need to reupload the documents after

modifying the ingestion parameters or the documents themselves. For example:

Break combined documents into separate files for better metadata context.

Make sure scanned documents are legible enough for extraction, and enable the

OCR option. Poorly scanned documents might require additional preparation or

rescanning before ingestion.

Adjust the Chunk Size and Chunk Overlap settings to better suit your documents.

Larger chunks provide more context but can include irrelevant information, while

smaller chunks yield more precise semantic search but can lack context.

For more information about modifying ingestion parameters and flows, see Knowledge

ingestion settings.

2025-09-24T23:19:44.866365Z /app/src/main.py:351 Langflow
ingestion completed success_count=1070 error_count=12
total_files=1082

See also

Configure knowledge

Filter knowledge

Chat with knowledge

Inspect and modify flows

Filter knowledge
OpenRAG's knowledge filters help you organize and manage your knowledge base by

creating pre-defined views of your documents.

Each knowledge filter captures a specific subset of documents based on given a search

query and filters.

Knowledge filters can be used with different OpenRAG functionality. For example,

knowledge filters can help agents access large knowledge bases efficiently by narrowing

the scope of documents that you want the agent to use.

Built-in filters

When you install OpenRAG, it automatically creates an OpenRAG docs filter that

includes OpenRAG's default documents. These documents provide information about

OpenRAG itself and help you learn how to use OpenRAG.

When you use the OpenRAG Chat, apply the OpenRAG docs filter if you want to ask

questions about OpenRAG's features and functionality. This limits the agent's context to

the default OpenRAG documentation rather than all documents in your knowledge base.

After uploading your own documents, it is recommended that you create your own filters

to organize your documents effectively and separate them from the default OpenRAG

documents.

Create a filter

To create a knowledge filter, do the following:

1. Click Knowledge, and then click Knowledge Filters.

2. Enter a Name and Description, and then click Create Filter.

By default, new filters match all documents in your knowledge base. Modify the filter

to customize it.

3. To modify the filter, click Knowledge, and then click your new filter. You can edit

the following settings:

Search Query: Enter text for semantic search, such as financial reports

from Q4 .

Data Sources: Select specific data sources or folders to include.

Document Types: Filter by file type.

Owners: Filter by the user that uploaded the documents.

Connectors: Filter by upload source, such as the local file system or a Google

Drive OAuth connector.

Response Limit: Set the maximum number of results to return from the

knowledge base. The default is 10 .

Score Threshold: Set the minimum relevance score for similarity search. The

default score is 0 .

4. To save your changes, click Update Filter.

Apply a filter

Apply a global filter: Click Knowledge, and then enable the toggle next to your

preferred filter. Only one filter can be the global filter. The global filter applies to all

chat sessions.

Apply a chat filter: In the Chat window, click Filter, and then select the filter

to apply. Chat filters apply to one chat session only.

Delete a filter

1. Click Knowledge.

2. Click the filter that you want to delete.

3. Click Delete Filter.

Chat in OpenRAG

After you upload documents to your knowledge base, you can use the OpenRAG

Chat feature to interact with your knowledge through natural language queries.

The OpenRAG Chat uses an LLM-powered agent to understand your queries, retrieve

relevant information from your knowledge base, and generate context-aware responses.

The agent can also fetch information from URLs and new documents that you provide

during the chat session. To limit the knowledge available to the agent, use filters.

The agent can call specialized Model Context Protocol (MCP) tools to extend its

capabilities. To add or change the available tools, you must edit the OpenRAG

OpenSearch Agent flow.

TIP

Try chatting, uploading documents, and modifying chat settings in the quickstart.

OpenRAG OpenSearch Agent flow

When you use the OpenRAG Chat, the OpenRAG OpenSearch Agent flow runs in the

background to retrieve relevant information from your knowledge base and generate a

response.

If you inspect the flow in Langflow, you'll see that it is comprised of eight components

that work together to ingest chat messages, retrieve relevant information from your

knowledge base, and then generate responses. When you inspect this flow, you can edit

the components to customize the agent's behavior.

Chat Input component: This component starts the flow when it receives a chat

message. It is connected to the Agent component's Input port. When you use the

OpenRAG Chat, your chat messages are passed to the Chat Input component,

which then sends them to the Agent component for processing.

Agent component: This component orchestrates the entire flow by processing chat

messages, searching the knowledge base, and organizing the retrieved information

into a cohesive response. The agent's general behavior is defined by the prompt in

the Agent Instructions field and the model connected to the Language Model port.

One or more specialized tools can be attached to the Tools port to extend the

agent's capabilities. In this case, there are two tools: MCP Tools and OpenSearch.

The Agent component is the star of this flow because it powers decision making,

tool calling, and an LLM-driven conversational experience.

Agents extend Large Language Models (LLMs) by integrating tools, which are

functions that provide additional context and enable autonomous task execution.

These integrations make agents more specialized and powerful than standalone

LLMs.

Whereas an LLM might generate acceptable, inert responses to general queries and

tasks, an agent can leverage the integrated context and tools to provide more

relevant responses and even take action. For example, you might create an agent

that can access your company's documentation, repositories, and other resources to

https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/agents
https://docs.langflow.org/agents

help your team with tasks that require knowledge of your specific products,

customers, and code.

Agents use LLMs as a reasoning engine to process input, determine which actions to

take to address the query, and then generate a response. The response could be a

typical text-based LLM response, or it could involve an action, like editing a file,

running a script, or calling an external API.

In an agentic context, tools are functions that the agent can run to perform tasks or

access external resources. A function is wrapped as a Tool object with a common

interface that the agent understands. Agents become aware of tools through tool

registration, which is when the agent is provided a list of available tools typically at

agent initialization. The Tool object's description tells the agent what the tool can do

so that it can decide whether the tool is appropriate for a given request.

Language Model component: Connected to the Agent component's Language

Model port, this component provides the base language model driver for the agent.

The agent cannot function without a model because the model is used for general

knowledge, reasoning, and generating responses.

Different models can change the style and content of the agent's responses, and

some models might be better suited for certain tasks than others. If the agent

doesn't seem to be handling requests well, try changing the model to see how the

responses change. For example, fast models might be good for simple queries, but

they might not have the depth of reasoning for complex, multi-faceted queries.

MCP Tools component: Connected to the Agent component's Tools port, this

component can be used to access any MCP server and the MCP tools provided by

that server. In this case, your OpenRAG Langflow instance's Starter Project is the

MCP server, and the OpenSearch URL Ingestion flow is the MCP tool. This flow

fetches content from URLs, and then stores the content in your OpenRAG

OpenSearch knowledge base. By serving this flow as an MCP tool, the agent can

selectively call this tool if a URL is detected in the chat input.

OpenSearch component: Connected to the Agent component's Tools port, this

component lets the agent search your OpenRAG OpenSearch knowledge base. The

agent might not use this database for every request; the agent uses this connection

only if it decides that documents in your knowledge base are relevant to your query.

https://docs.langflow.org/components-models
https://docs.langflow.org/components-models
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-server
https://docs.langflow.org/concepts-flows#projects
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch

Embedding Model component: Connected to the OpenSearch component's

Embedding port, this component generates embeddings from chat input that are

used in similarity search to find content in your knowledge base that is relevant to

the chat input. The agent uses this information to generate context-aware responses

that are specialized for your data.

It is critical that the embedding model used here matches the embedding model

used when you upload documents to your knowledge base. Mismatched models and

dimensions can degrade the quality of similarity search results causing the agent to

retrieve irrelevant documents from your knowledge base.

Text Input component: Connected to the OpenSearch component's Search Filters

port, this component is populated with a Langflow global variable named OPENRAG-

QUERY-FILTER . If a global or chat-level knowledge filter is set, then the variable

contains the filter expression, which limits the documents that the agent can access

in the knowledge base. If no knowledge filter is set, then the OPENRAG-QUERY-

FILTER variable is empty, and the agent can access all documents in the knowledge

base.

Chat Output component: Connected to the Agent component's Output port, this

component returns the agent's generated response as a chat message.

Nudges

When you use the OpenRAG Chat, the OpenRAG OpenSearch Nudges flow runs in the

background to pull additional context from your knowledge base and chat history.

Nudges appear as prompts in the chat. Click a nudge to accept it and provide the

nudge's context to the OpenRAG Chat agent (the OpenRAG OpenSearch Agent flow).

Like OpenRAG's other built-in flows, you can inspect the flow in Langflow, and you can

customize it if you want to change the nudge behavior.

Upload documents to the chat

When using the OpenRAG Chat, click in the chat input field to upload a file to the

current chat session. Files added this way are processed and made available to the agent

https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-embedding-models
https://www.ibm.com/think/topics/vector-search
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io

for the current conversation only. These files aren't stored in the knowledge base

permanently.

Inspect tool calls and knowledge

During the chat, you'll see information about the agent's process. For more detail, you

can inspect individual tool calls. This is helpful for troubleshooting because it shows you

how the agent used particular tools. For example, click Function Call:

search_documents (tool_call) to view the log of tool calls made by the agent to the

OpenSearch component.

If documents in your knowledge base seem to be missing or interpreted incorrectly, see

Troubleshoot ingestion.

If tool calls and knowledge appear normal, but the agent's responses seem off-topic or

incorrect, consider changing the agent's language model or prompt, as explained in

Inspect and modify flows.

Integrate OpenRAG chat into an application

You can integrate OpenRAG flows into your applications using the Langflow API. To

simplify this integration, you can get pre-configured code snippets directly from the

embedded Langflow visual editor.

The following example demonstrates how to generate and use code snippets for the

OpenRAG OpenSearch Agent flow:

1. Open the OpenRAG OpenSearch Agent flow in the Langflow visual editor: From the

Chat window, click Settings, click Edit in Langflow, and then click Proceed.

2. Optional: If you don't want to use the Langflow API key that is generated

automatically when you install OpenRAG, you can create a Langflow API key. This

key doesn't grant access to OpenRAG; it is only for authenticating with the Langflow

API.

i. In the Langflow visual editor, click your user icon in the header, and then select

Settings.

ii. Click Langflow API Keys, and then click Add New.

https://docs.langflow.org/api-reference-api-examples
https://docs.langflow.org/api-keys-and-authentication

iii. Name your key, and then click Create API Key.

iv. Copy the API key and store it securely.

v. Exit the Langflow Settings page to return to the visual editor.

3. Click Share, and then select API access to get pregenerated code snippets that call

the Langflow API and run the flow.

These code snippets construct API requests with your Langflow server URL

(LANGFLOW_SERVER_ADDRESS), the flow to run (FLOW_ID), required headers

(LANGFLOW_API_KEY , Content-Type), and a payload containing the required

inputs to run the flow, including a default chat input message.

In production, you would modify the inputs to suit your application logic. For

example, you could replace the default chat input message with dynamic user input.

Python

import requests
import os
import uuid
api_key = 'LANGFLOW_API_KEY'
url = "http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID" #
The complete API endpoint URL for this flow
Request payload configuration
payload = {
 "output_type": "chat",
 "input_type": "chat",
 "input_value": "hello world!"
}
payload["session_id"] = str(uuid.uuid4())
headers = {"x-api-key": api_key}
try:
 # Send API request
 response = requests.request("POST", url, json=payload,
headers=headers)
 response.raise_for_status() # Raise exception for bad
status codes
 # Print response
 print(response.text)
except requests.exceptions.RequestException as e:
 print(f"Error making API request: {e}")

TypeScript

curl

4. Copy your preferred snippet, and then run it:

except ValueError as e:
 print(f"Error parsing response: {e}")

const crypto = require('crypto');
const apiKey = 'LANGFLOW_API_KEY';
const payload = {
 "output_type": "chat",
 "input_type": "chat",
 "input_value": "hello world!"
};
payload.session_id = crypto.randomUUID();
const options = {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 "x-api-key": apiKey
 },
 body: JSON.stringify(payload)
};
fetch('http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID',
options)
 .then(response => response.json())
 .then(response => console.warn(response))
 .catch(err => console.error(err));

curl --request POST \
--url 'http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID?
stream=false' \
--header 'Content-Type: application/json' \
--header "x-api-key: LANGFLOW_API_KEY" \
--data '{
 "output_type": "chat",
 "input_type": "chat",
 "input_value": "hello world!"
}'

Python: Paste the snippet into a .py file, save it, and then run it with python

filename.py .

TypeScript: Paste the snippet into a .ts file, save it, and then run it with ts-

node filename.ts .

curl: Paste and run snippet directly in your terminal.

If the request is successful, the response includes many details about the flow run,

including the session ID, inputs, outputs, components, durations, and more.

In production, you won't pass the raw response to the user in its entirety. Instead, you

extract and reformat relevant fields for different use cases, as demonstrated in the

Langflow quickstart. For example, you could pass the chat output text to a front-end

user-facing application, and store specific fields in logs and backend data stores for

monitoring, chat history, or analytics. You could also pass the output from one flow as

input to another flow.

https://docs.langflow.org/quickstart#extract-data-from-the-response

Environment variables
OpenRAG recognizes environment variables from the following sources:

Environment variables: Values set in the .env file.

Langflow runtime overrides: Langflow components can set environment variables at

runtime.

Default or fallback values: These values are default or fallback values if OpenRAG

doesn't find a value.

Configure environment variables

Environment variables are set in a .env file in the root of your OpenRAG project

directory.

For an example .env file, see .env.example in the OpenRAG repository.

The Docker Compose files are populated with values from your .env , so you don't need

to edit the Docker Compose files manually.

Environment variables always take precedence over other variables.

Set environment variables

Environment variables are either mutable or immutable.

If you edit mutable environment variables, you can apply the changes by stopping and

restarting the OpenRAG services after editing the .env file:

1. Stop the OpenRAG services.

2. Edit your .env file.

3. Restart the OpenRAG services.

If you edit immutable environment variables, you must redeploy OpenRAG with your

modified .env file. For example, with self-managed services, do the following:

1. Stop the deployment:

https://github.com/langflow-ai/openrag/blob/main/.env.example

Docker

Podman

2. Edit your .env file.

3. Redeploy OpenRAG:

Docker

Podman

4. Restart the Docling service.

5. Launch the OpenRAG app, and then repeat application onboarding. The values in

your .env file are automatically populated.

Supported environment variables

All OpenRAG configuration can be controlled through environment variables.

Model provider settings

Configure which models and providers OpenRAG uses to generate text and embeddings.

You only need to provide credentials for the providers you are using in OpenRAG.

These variables are initially set during application onboarding. Some of these variables

are immutable and can only be changed by redeploying OpenRAG, as explained in Set

environment variables.

docker compose down

podman compose down

docker compose up -d

podman compose up -d

Variable Default Description

EMBEDDING_MODEL
text-
embedding-3-
small

Embedding model for generating vector
embeddings for documents in the
knowledge base and similarity search
queries. Can be changed after
application onboarding. Accepts one or
more models.

LLM_MODEL gpt-4o-mini
Language model for language
processing and text generation in the
Chat feature.

MODEL_PROVIDER openai Model provider, as one of openai ,
watsonx , ollama , or anthropic .

ANTHROPIC_API_KEY Not set API key for the Anthropic language
model provider.

OPENAI_API_KEY Not set
API key for the OpenAI model provider,
which is also the default model
provider.

OLLAMA_ENDPOINT Not set Custom provider endpoint for the
Ollama model provider.

WATSONX_API_KEY Not set API key for the IBM watsonx.ai model
provider.

WATSONX_ENDPOINT Not set Custom provider endpoint for the IBM
watsonx.ai model provider.

WATSONX_PROJECT_ID Not set Project ID for the IBM watsonx.ai model
provider.

Document processing settings

Control how OpenRAG processes and ingests documents into your knowledge base.

Variable Default Description

CHUNK_OVERLAP 200 Overlap between chunks.

CHUNK_SIZE 1000 Text chunk size for
document processing.

Variable Default Description

DISABLE_INGEST_WITH_LANGFLOW false Disable Langflow ingestion
pipeline.

DOCLING_OCR_ENGINE Set by OS

OCR engine for document
processing. For macOS,
ocrmac . For any other OS,
easyocr .

OCR_ENABLED false Enable OCR for image
processing.

OPENRAG_DOCUMENTS_PATHS ./openrag-
documents

Document paths for
ingestion.

PICTURE_DESCRIPTIONS_ENABLED false Enable picture
descriptions.

Langflow settings

Configure the OpenRAG Langflow server's authentication, contact point, and built-in flow

definitions.

INFO

The LANGFLOW_SUPERUSER_PASSWORD is set in your .env file, and this value

determines the default values for several other Langflow authentication variables.

If the LANGFLOW_SUPERUSER_PASSWORD variable isn't set, then the Langflow server

starts without authentication enabled.

For better security, it is recommended to set LANGFLOW_SUPERUSER_PASSWORD so

the Langflow server starts with authentication enabled.

Variable Default

LANGFLOW_AUTO_LOGIN Determined by
LANGFLOW_SUPERUSER_PASSWORD

Whether
for the L
CLI. If
LANGFLO
isn't set,
LANGFLO

https://docs.langflow.org/api-keys-and-authentication#start-a-langflow-server-with-authentication-enabled

Variable Default

and auto
LANGFLO
set, then
False a
disabled
require a
Langflow
auto-log

LANGFLOW_ENABLE_SUPERUSER_CLI Determined by
LANGFLOW_SUPERUSER_PASSWORD

Whether
langflo
LANGFLO
isn't set,
LANGFLO
is True
be creat
LANGFLO
set, then
LANGFLO
is False
superus

LANGFLOW_NEW_USER_IS_ACTIVE Determined by
LANGFLOW_SUPERUSER_PASSWORD

Whether
accounts
LANGFLO
isn't set,
LANGFLO
True an
active by
LANGFLO
set, then
LANGFLO
False a
inactive

LANGFLOW_PUBLIC_URL http://localhost:7860

Public U
instance
Langflow
interface
Langflow

LANGFLOW_KEY Automatically generated

A Langfl
Langflow
Langflow
specific,
this key
additiona
deployin

https://docs.langflow.org/api-keys-and-authentication#langflow-enable-superuser-cli
https://docs.langflow.org/api-keys-and-authentication#langflow-new-user-is-active

Variable Default

LANGFLOW_SECRET_KEY Automatically generated

Secret e
internal o
recomm
Langflow
If not set
secret ke

LANGFLOW_SUPERUSER admin Usernam
administ

LANGFLOW_SUPERUSER_PASSWORD Not set

Langflow
not set, t
without a
recomm
LANGFLO
so the La
authenti

LANGFLOW_URL http://localhost:7860 URL for t

LANGFLOW_CHAT_FLOW_ID ,
LANGFLOW_INGEST_FLOW_ID ,
NUDGES_FLOW_ID

Built-in flow IDs

These va
to the ID
nudges f
found in
change t
replace a
custom f
present
OpenRA
you depl
you can
local clo
reposito
OpenRA

SYSTEM_PROMPT

You are a helpful AI
assistant with access to a
knowledge base. Answer
questions based on the
provided context.

System p
agent dr

OAuth provider settings

Configure OAuth providers and external service integrations.

https://docs.langflow.org/api-keys-and-authentication#langflow-secret-key
https://docs.langflow.org/api-keys-and-authentication#start-a-langflow-server-with-authentication-enabled
https://docs.langflow.org/api-keys-and-authentication#start-a-langflow-server-with-authentication-enabled

Variable Default Description

AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY Not set

Enable access to AWS S3
with an AWS OAuth app
integration.

GOOGLE_OAUTH_CLIENT_ID
GOOGLE_OAUTH_CLIENT_SECRET Not set

Enable the Google OAuth
client integration. You can
generate these values in
the Google Cloud
Console.

MICROSOFT_GRAPH_OAUTH_CLIENT_ID
MICROSOFT_GRAPH_OAUTH_CLIENT_SECRET Not set

Enable the Microsoft
Graph OAuth client
integration by providing
Azure application
registration credentials
for SharePoint and
OneDrive.

WEBHOOK_BASE_URL Not set

Base URL for OAuth
connector webhook
endpoints. If not set, a
default base URL is used.

OpenSearch settings

Configure OpenSearch database authentication.

Variable Default Description

OPENSEARCH_HOST localhost OpenSearch instance host.

OPENSEARCH_PORT 9200 OpenSearch instance port.

OPENSEARCH_USERNAME admin OpenSearch administrator username.

OPENSEARCH_PASSWORD Must be set
at start up

Required. OpenSearch administrator
password. Must adhere to the
OpenSearch password complexity
requirements. You must set this directly
in the .env or in the TUI's
[Basic/Advanced
Setup(/install#setup)].

System settings

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-applications.html
https://developers.google.com/identity/protocols/oauth2
https://developers.google.com/identity/protocols/oauth2
https://console.cloud.google.com/apis/credentials
https://console.cloud.google.com/apis/credentials
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/graph-oauth
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/graph-oauth
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/app-registration?view=odsp-graph-online
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/app-registration?view=odsp-graph-online
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/app-registration?view=odsp-graph-online
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/app-registration?view=odsp-graph-online
https://docs.opensearch.org/latest/security/configuration/demo-configuration/#setting-up-a-custom-admin-password
https://docs.opensearch.org/latest/security/configuration/demo-configuration/#setting-up-a-custom-admin-password

Configure general system components, session management, and logging.

Variable Default Description

LANGFLOW_KEY_RETRIES 15 Number of retries for
Langflow key generation.

LANGFLOW_KEY_RETRY_DELAY 2.0 Delay between retries in
seconds.

LANGFLOW_VERSION OPENRAG_VERSION

Langflow Docker image
version. By default,
OpenRAG uses the
OPENRAG_VERSION for the
Langflow Docker image
version.

LOG_FORMAT Not set

Set to json to enabled
JSON-formatted log
output. If not set, the
default format is used.

LOG_LEVEL INFO

Logging level. Can be one
of DEBUG , INFO ,
WARNING , or ERROR .
DEBUG provides the most
detailed logs but can
impact performance.

MAX_WORKERS 1
Maximum number of
workers for document
processing.

OPENRAG_VERSION latest

The version of the
OpenRAG Docker images
to run. For more
information, see Upgrade
OpenRAG

SERVICE_NAME openrag Service name for logging.

SESSION_SECRET Automatically
generated Session management.

Langflow runtime overrides

You can modify flow settings at runtime without permanently changing the flow's

configuration.

Runtime overrides are implemented through tweaks, which are one-time parameter

modifications that are passed to specific Langflow components during flow execution.

For more information on tweaks, see the Langflow documentation on Input schema

(tweaks).

Default values and fallbacks

If a variable isn't set by environment variables or a configuration file, OpenRAG can use a

default value if one is defined in the codebase. Default values can be found in the

OpenRAG repository:

OpenRAG configuration: config_manager.py

System configuration: settings.py

Logging configuration: logging_config.py

https://docs.langflow.org/concepts-publish#input-schema
https://docs.langflow.org/concepts-publish#input-schema
https://github.com/langflow-ai/openrag/blob/main/src/config/config_manager.py
https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py
https://github.com/langflow-ai/openrag/blob/main/src/utils/logging_config.py

Troubleshoot OpenRAG
This page provides troubleshooting advice for issues you might encounter when using

OpenRAG or contributing to OpenRAG.

OpenSearch fails to start

Check that OPENSEARCH_PASSWORD set in Environment variables meets requirements.

The password must contain at least 8 characters, and must contain at least one

uppercase letter, one lowercase letter, one digit, and one special character that is strong.

OpenRAG fails to start from the TUI with operation not
supported

This error occurs when starting OpenRAG with the TUI in WSL (Windows Subsystem for

Linux).

The error occurs because OpenRAG is running within a WSL environment, so

webbrowser.open() can't launch a browser automatically.

To access the OpenRAG application, open a web browser and enter

http://localhost:3000 in the address bar.

OpenRAG installation fails with unable to get local issuer
certificate

If you are installing OpenRAG on macOS, and the installation fails with unable to get

local issuer certificate , run the following command, and then retry the

installation:

Replace VERSION with your installed Python version, such as 3.13 .

Langflow connection issues

Verify the LANGFLOW_SUPERUSER credentials set in Environment variables are correct.

open "/Applications/Python VERSION/Install Certificates.command"

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install

Container out of memory errors

Increase Docker memory allocation or use docker-compose-cpu.yml to deploy

OpenRAG.

Memory issue with Podman on macOS

If you're using Podman on macOS, you might need to increase VM memory on your

Podman machine. This example increases the machine size to 8 GB of RAM, which

should be sufficient to run OpenRAG.

Port conflicts

With the default configuration, OpenRAG requires the following ports to be available on

the host machine:

3000: Langflow application

5001: Docling local ingestion service

5601: OpenSearch Dashboards

7860: Docling UI

8000: Docling API

9200: OpenSearch service

OCR ingestion fails (easyocr not installed)

Docling ingestion can fail with an OCR-related error that mentions easyocr is missing.

This is likely due to a stale uv cache when you install OpenRAG with uvx .

When you invoke OpenRAG with uvx openrag , uvx creates a cached, ephemeral

environment that doesn't modify your project. The location and path of this cache

depends on your operating system. For example, on macOS, this is typically a user cache

directory, such as /Users/USER_NAME/.cache/uv .

This cache can become stale, producing errors like missing dependencies.

podman machine stop
podman machine rm
podman machine init --memory 8192 # 8 GB example
podman machine start

https://github.com/langflow-ai/openrag/blob/main/docker-compose-cpu.yml

1. Exit the TUI.

2. Clear the uv cache:

To clear the OpenRAG cache only, run:

3. Invoke OpenRAG to restart the TUI:

4. Click Open App, and then retry document ingestion.

If you install OpenRAG with uv , dependencies are synced directly from your

pyproject.toml file. This should automatically install easyocr because easyocr is

included as a dependency in OpenRAG's pyproject.toml .

If you don't need OCR, you can disable OCR-based processing in your ingestion settings

to avoid requiring easyocr .

Upgrade fails due to Langflow container already exists

If you encounter a langflow container already exists error when upgrading

OpenRAG, this typically means you upgraded OpenRAG with uv , but you didn't remove

or upgrade containers from a previous installation.

To resolve this issue, do the following:

1. Remove only the Langflow container:

i. Stop the Langflow container:

Docker

uv cache clean

uv cache clean openrag

uvx openrag

Podman

ii. Remove the Langflow container:

Docker

Podman

2. Retry the upgrade.

3. If reinstalling the Langflow container doesn't resolve the issue, then you must reset

all containers or reinstall OpenRAG.

4. Retry the upgrade.

If no updates are available after reinstalling OpenRAG, then you reinstalled at the

latest version, and your deployment is up to date.

Document ingestion or similarity search issues

See Troubleshoot ingestion.

docker stop langflow

podman stop langflow

docker rm langflow --force

podman rm langflow --force

