from utils.logging_config import get_logger logger = get_logger(__name__) # User-scoped conversation state - keyed by user_id -> response_id -> conversation user_conversations = {} # user_id -> {response_id: {"messages": [...], "previous_response_id": parent_id, "created_at": timestamp, "last_activity": timestamp}} def get_user_conversations(user_id: str): """Get all conversations for a user""" if user_id not in user_conversations: user_conversations[user_id] = {} return user_conversations[user_id] def get_conversation_thread(user_id: str, previous_response_id: str = None): """Get or create a specific conversation thread""" conversations = get_user_conversations(user_id) if previous_response_id and previous_response_id in conversations: # Update last activity and return existing conversation conversations[previous_response_id]["last_activity"] = __import__( "datetime" ).datetime.now() return conversations[previous_response_id] # Create new conversation thread from datetime import datetime new_conversation = { "messages": [ { "role": "system", "content": "You are a helpful assistant. Always use the search_tools to answer questions.", } ], "previous_response_id": previous_response_id, # Parent response_id for branching "created_at": datetime.now(), "last_activity": datetime.now(), } return new_conversation def store_conversation_thread(user_id: str, response_id: str, conversation_state: dict): """Store a conversation thread with its response_id""" conversations = get_user_conversations(user_id) conversations[response_id] = conversation_state # Legacy function for backward compatibility def get_user_conversation(user_id: str): """Get the most recent conversation for a user (for backward compatibility)""" conversations = get_user_conversations(user_id) if not conversations: return get_conversation_thread(user_id) # Return the most recently active conversation latest_conversation = max(conversations.values(), key=lambda c: c["last_activity"]) return latest_conversation # Generic async response function for streaming async def async_response_stream( client, prompt: str, model: str, extra_headers: dict = None, previous_response_id: str = None, log_prefix: str = "response", ): logger.info("User prompt received", prompt=prompt) try: # Build request parameters request_params = { "model": model, "input": prompt, "stream": True, "include": ["tool_call.results"], } if previous_response_id is not None: request_params["previous_response_id"] = previous_response_id if "x-api-key" not in client.default_headers: if hasattr(client, "api_key") and extra_headers is not None: extra_headers["x-api-key"] = client.api_key if extra_headers: request_params["extra_headers"] = extra_headers response = await client.responses.create(**request_params) full_response = "" chunk_count = 0 async for chunk in response: chunk_count += 1 logger.debug("Stream chunk received", chunk_count=chunk_count, chunk=str(chunk)) # Yield the raw event as JSON for the UI to process import json # Also extract text content for logging if hasattr(chunk, "output_text") and chunk.output_text: full_response += chunk.output_text elif hasattr(chunk, "delta") and chunk.delta: # Handle delta properly - it might be a dict or string if isinstance(chunk.delta, dict): delta_text = ( chunk.delta.get("content", "") or chunk.delta.get("text", "") or str(chunk.delta) ) else: delta_text = str(chunk.delta) full_response += delta_text # Send the raw event as JSON followed by newline for easy parsing try: # Try to serialize the chunk object if hasattr(chunk, "model_dump"): # Pydantic model chunk_data = chunk.model_dump() elif hasattr(chunk, "__dict__"): chunk_data = chunk.__dict__ else: chunk_data = str(chunk) yield (json.dumps(chunk_data, default=str) + "\n").encode("utf-8") except Exception as e: # Fallback to string representation logger.warning("JSON serialization failed", error=str(e)) yield ( json.dumps( {"error": f"Serialization failed: {e}", "raw": str(chunk)} ) + "\n" ).encode("utf-8") logger.debug("Stream complete", total_chunks=chunk_count) logger.info("Response generated", log_prefix=log_prefix, response=full_response) except Exception as e: logger.error("Exception in streaming", error=str(e)) import traceback traceback.print_exc() raise # Generic async response function for non-streaming async def async_response( client, prompt: str, model: str, extra_headers: dict = None, previous_response_id: str = None, log_prefix: str = "response", ): logger.info("User prompt received", prompt=prompt) # Build request parameters request_params = { "model": model, "input": prompt, "stream": False, "include": ["tool_call.results"], } if previous_response_id is not None: request_params["previous_response_id"] = previous_response_id if extra_headers: request_params["extra_headers"] = extra_headers response = await client.responses.create(**request_params) response_text = response.output_text logger.info("Response generated", log_prefix=log_prefix, response=response_text) # Extract and store response_id if available response_id = getattr(response, "id", None) or getattr( response, "response_id", None ) return response_text, response_id # Unified streaming function for both chat and langflow async def async_stream( client, prompt: str, model: str, extra_headers: dict = None, previous_response_id: str = None, log_prefix: str = "response", ): async for chunk in async_response_stream( client, prompt, model, extra_headers=extra_headers, previous_response_id=previous_response_id, log_prefix=log_prefix, ): yield chunk # Async langflow function (non-streaming only) async def async_langflow( langflow_client, flow_id: str, prompt: str, extra_headers: dict = None, previous_response_id: str = None, ): response_text, response_id = await async_response( langflow_client, prompt, flow_id, extra_headers=extra_headers, previous_response_id=previous_response_id, log_prefix="langflow", ) return response_text, response_id # Async langflow function for streaming (alias for compatibility) async def async_langflow_stream( langflow_client, flow_id: str, prompt: str, extra_headers: dict = None, previous_response_id: str = None, ): logger.debug("Starting langflow stream", prompt=prompt) try: async for chunk in async_stream( langflow_client, prompt, flow_id, extra_headers=extra_headers, previous_response_id=previous_response_id, log_prefix="langflow", ): logger.debug("Yielding chunk from langflow stream", chunk_preview=chunk[:100].decode('utf-8', errors='replace')) yield chunk logger.debug("Langflow stream completed") except Exception as e: logger.error("Exception in langflow stream", error=str(e)) import traceback traceback.print_exc() raise # Async chat function (non-streaming only) async def async_chat( async_client, prompt: str, user_id: str, model: str = "gpt-4.1-mini", previous_response_id: str = None, ): logger.debug("async_chat called", user_id=user_id, previous_response_id=previous_response_id) # Get the specific conversation thread (or create new one) conversation_state = get_conversation_thread(user_id, previous_response_id) logger.debug("Got conversation state", message_count=len(conversation_state['messages'])) # Add user message to conversation with timestamp from datetime import datetime user_message = {"role": "user", "content": prompt, "timestamp": datetime.now()} conversation_state["messages"].append(user_message) logger.debug("Added user message", message_count=len(conversation_state['messages'])) response_text, response_id = await async_response( async_client, prompt, model, previous_response_id=previous_response_id, log_prefix="agent", ) logger.debug("Got response", response_preview=response_text[:50], response_id=response_id) # Add assistant response to conversation with response_id and timestamp assistant_message = { "role": "assistant", "content": response_text, "response_id": response_id, "timestamp": datetime.now(), } conversation_state["messages"].append(assistant_message) logger.debug("Added assistant message", message_count=len(conversation_state['messages'])) # Store the conversation thread with its response_id if response_id: conversation_state["last_activity"] = datetime.now() store_conversation_thread(user_id, response_id, conversation_state) logger.debug("Stored conversation thread", user_id=user_id, response_id=response_id) # Debug: Check what's in user_conversations now conversations = get_user_conversations(user_id) logger.debug("User conversations updated", user_id=user_id, conversation_count=len(conversations), conversation_ids=list(conversations.keys())) else: logger.warning("No response_id received, conversation not stored") return response_text, response_id # Async chat function for streaming (alias for compatibility) async def async_chat_stream( async_client, prompt: str, user_id: str, model: str = "gpt-4.1-mini", previous_response_id: str = None, ): # Get the specific conversation thread (or create new one) conversation_state = get_conversation_thread(user_id, previous_response_id) # Add user message to conversation with timestamp from datetime import datetime user_message = {"role": "user", "content": prompt, "timestamp": datetime.now()} conversation_state["messages"].append(user_message) full_response = "" response_id = None async for chunk in async_stream( async_client, prompt, model, previous_response_id=previous_response_id, log_prefix="agent", ): # Extract text content to build full response for history try: import json chunk_data = json.loads(chunk.decode("utf-8")) if "delta" in chunk_data and "content" in chunk_data["delta"]: full_response += chunk_data["delta"]["content"] # Extract response_id from chunk if "id" in chunk_data: response_id = chunk_data["id"] elif "response_id" in chunk_data: response_id = chunk_data["response_id"] except: pass yield chunk # Add the complete assistant response to message history with response_id and timestamp if full_response: assistant_message = { "role": "assistant", "content": full_response, "response_id": response_id, "timestamp": datetime.now(), } conversation_state["messages"].append(assistant_message) # Store the conversation thread with its response_id if response_id: conversation_state["last_activity"] = datetime.now() store_conversation_thread(user_id, response_id, conversation_state) logger.debug("Stored conversation thread", user_id=user_id, response_id=response_id) # Async langflow function with conversation storage (non-streaming) async def async_langflow_chat( langflow_client, flow_id: str, prompt: str, user_id: str, extra_headers: dict = None, previous_response_id: str = None, ): logger.debug("async_langflow_chat called", user_id=user_id, previous_response_id=previous_response_id) # Get the specific conversation thread (or create new one) conversation_state = get_conversation_thread(user_id, previous_response_id) logger.debug("Got langflow conversation state", message_count=len(conversation_state['messages'])) # Add user message to conversation with timestamp from datetime import datetime user_message = {"role": "user", "content": prompt, "timestamp": datetime.now()} conversation_state["messages"].append(user_message) logger.debug("Added user message to langflow", message_count=len(conversation_state['messages'])) response_text, response_id = await async_response( langflow_client, prompt, flow_id, extra_headers=extra_headers, previous_response_id=previous_response_id, log_prefix="langflow", ) logger.debug("Got langflow response", response_preview=response_text[:50], response_id=response_id) # Add assistant response to conversation with response_id and timestamp assistant_message = { "role": "assistant", "content": response_text, "response_id": response_id, "timestamp": datetime.now(), } conversation_state["messages"].append(assistant_message) logger.debug("Added assistant message to langflow", message_count=len(conversation_state['messages'])) # Store the conversation thread with its response_id if response_id: conversation_state["last_activity"] = datetime.now() store_conversation_thread(user_id, response_id, conversation_state) logger.debug("Stored langflow conversation thread", user_id=user_id, response_id=response_id) # Debug: Check what's in user_conversations now conversations = get_user_conversations(user_id) logger.debug("User conversations updated", user_id=user_id, conversation_count=len(conversations), conversation_ids=list(conversations.keys())) else: logger.warning("No response_id received from langflow, conversation not stored") return response_text, response_id # Async langflow function with conversation storage (streaming) async def async_langflow_chat_stream( langflow_client, flow_id: str, prompt: str, user_id: str, extra_headers: dict = None, previous_response_id: str = None, ): logger.debug("async_langflow_chat_stream called", user_id=user_id, previous_response_id=previous_response_id) # Get the specific conversation thread (or create new one) conversation_state = get_conversation_thread(user_id, previous_response_id) # Add user message to conversation with timestamp from datetime import datetime user_message = {"role": "user", "content": prompt, "timestamp": datetime.now()} conversation_state["messages"].append(user_message) full_response = "" response_id = None async for chunk in async_stream( langflow_client, prompt, flow_id, extra_headers=extra_headers, previous_response_id=previous_response_id, log_prefix="langflow", ): # Extract text content to build full response for history try: import json chunk_data = json.loads(chunk.decode("utf-8")) if "delta" in chunk_data and "content" in chunk_data["delta"]: full_response += chunk_data["delta"]["content"] # Extract response_id from chunk if "id" in chunk_data: response_id = chunk_data["id"] elif "response_id" in chunk_data: response_id = chunk_data["response_id"] except: pass yield chunk # Add the complete assistant response to message history with response_id and timestamp if full_response: assistant_message = { "role": "assistant", "content": full_response, "response_id": response_id, "timestamp": datetime.now(), } conversation_state["messages"].append(assistant_message) # Store the conversation thread with its response_id if response_id: conversation_state["last_activity"] = datetime.now() store_conversation_thread(user_id, response_id, conversation_state) logger.debug("Stored langflow conversation thread", user_id=user_id, response_id=response_id)