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Abstract 
Large language models (LLMs) are increasingly used to extract clinical data from electronic 
health records (EHRs), offering significant improvements in scalability and efficiency for real-
world data (RWD) curation in oncology. However, the adoption of LLMs introduces new 
challenges in ensuring the reliability, accuracy, and fairness of extracted data, which are 
essential for research, regulatory, and clinical applications. Existing quality assurance 
frameworks for RWD and artificial intelligence do not fully address the unique error modes and 
complexities associated with LLM-extracted data. In this paper, we propose a comprehensive 
framework for evaluating the quality of clinical data extracted by LLMs. The framework 
integrates variable-level performance benchmarking against expert human abstraction, 
automated verification checks for internal consistency and plausibility, and replication analyses 
comparing LLM-extracted data to human-abstracted datasets or external standards. This 
multidimensional approach enables the identification of variables most in need of improvement, 
systematic detection of latent errors, and confirmation of dataset fitness-for-purpose in real-
world research. Additionally, the framework supports bias assessment by stratifying metrics 
across demographic subgroups. By providing a rigorous and transparent method for assessing 
LLM-extracted RWD, this framework advances industry standards and supports the trustworthy 
use of AI-powered evidence generation in oncology research and practice. 

 

Introduction 
As stakeholders across life sciences, academia, and regulatory agencies increasingly turn to 
electronic health record (EHR)-derived data to support oncology research, regulatory 
submissions, and commercial strategy, the need for scalable, reliable extraction methods that  
produce high quality data has never been greater. The rapid evolution of artificial intelligence 
(AI)/machine learning (ML) and large language models (LLMs) in particular is transforming the 
landscape of real-world data (RWD) curation in oncology and making it possible to generate real 
world evidence (RWE) at greater scale. Yet, the very features that make LLMs so powerful, 
including their ability to process vast volumes of unstructured clinical text and generate 
structured variables at unprecedented speed, also introduce new complexities and risks. For 
researchers and institutions, the central question is no longer whether to use LLM-extracted 
data, but how to rigorously evaluate its reliability, fairness, and fitness for purpose in high-stakes 
applications. 
 
One of the primary challenges is ensuring the reliability and accuracy of LLM-generated data, 
particularly in healthcare settings where data quality can profoundly impact clinical decisions 
and patient outcomes. LLMs can exhibit instability in generated datapoints, even when there are 
no changes to the prompt or inputs, leading to inconsistencies [1]. Additionally, these models 
are prone to hallucinations, producing information that appears plausible but is incorrect or 
fabricated [1,2]. Finally, LLMs may struggle to handle the clinical nuances and subjectivity 
present in clinical documentation as effectively as a human expert [3]. While open source LLMs 
trained on EHR data are emerging, most commonly used open-source LLMs are not pre-trained 
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on EHR data and may lack the clinical domain knowledge needed to perform well on the tasks 
where EHR documentation is inconsistent, missing, or subject to interpretation [4]. The 
complexity of medical language and the variability in clinical documentation further complicate 
the extraction process, necessitating a robust framework to assess the quality of the data 
produced by these models. 
 
A growing body of literature and regulatory guidance has sought to address the challenges of 
quality assurance in RWD and AI applications. The U.S. Food and Drug Administration (FDA) 
recently issued guidance emphasizing the need for transparency, traceability, and rigorous 
validation of AI/ML-based tools used in clinical research and healthcare decision-making [5]. 
The FDA’s 2025 framework highlights the importance of data provenance, model versioning, 
and continuous monitoring, but stops short of providing methodologies for evaluating the unique 
error modes and performance characteristics of LLMs applied to unstructured EHR data. 
Similarly, the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) 
has published good practices reports and checklists, such as the PALISADE Checklist for 
machine learning in health economics and outcomes research, which offer valuable 
recommendations for transparency, reproducibility, and bias assessment in traditional machine 
learning models and the SUITABILITY Checklist for assessing the quality of real-world data 
from EHRs [6,7].  
 
However, these frameworks were developed primarily for structured data and conventional ML 
algorithms, and do not provide detailed recommendations around implementing accuracy 
assessments. Prior studies have demonstrated LLM/ML-based methods can be used to reliably 
extract variables from the EHR and propose approaches to accuracy assessment [8,9]. 
However, current frameworks and studies do not fully address the challenge of benchmarking 
against human abstraction at scale or the complexities introduced when LLMs are used across 
multiple variables to generate entire datasets or to answer a research question. Other published 
frameworks, including those from the Coalition for Health AI and the Holistic Evaluation of 
Language Models (HELM) project, provide important dimensions for model evaluation, such as 
fairness, robustness, and calibration, but lack practical guidance for operationalizing these 
metrics in the context of clinical variable extraction from EHRs [10]. As a result, a critical gap 
remains in the literature: no existing framework offers a comprehensive approach for assessing 
the accuracy and reliability of LLM-extracted clinical data from the EHR, leaving users of the 
data (eg, life science companies, academic researchers, governing bodies) without clear 
standards for dataset evaluation or internal quality assurance. 
 
This paper aims to move beyond existing limited resources and provide a practical, transparent 
framework for evaluating the quality of model-extracted oncology data, including data extracted 
by LLMs and other ML models. Drawing on the experience of Flatiron Health in developing and 
extensively validating ML- and LLM-based curation pipelines [11–24], and building on past 
approaches for evaluation of LLM/ML-extracted data [25], we outline a holistic approach to 
assess accuracy and completeness of data extraction approaches that includes evaluation 
across multiple LLM/ML-extracted variables in a dataset. While other components of data 
quality, such as relevance (including availability, sufficiency, and representativeness) and other 
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aspects of reliability (provenance, timeliness), are important, they are out of scope for this paper 
and have been previously described [26]. In addition, the framework focuses on the accuracy 
and completeness of data extracted by ML/LLMs relative to what is documented in the source 
EHR; however, evaluating the accuracy and completeness of the source data itself for the 
research question is still needed. By providing a framework to interrogate data quality at every 
stage, from model development to dataset delivery, we seek to raise the industry standard and 
foster greater confidence in the use of AI-powered RWD for oncology research and decision-
making. 
 

Validation of Accuracy for LLM/ML-Extracted Information and Data 
(VALID) Framework 
The accuracy assessment framework presented here is designed to provide a comprehensive, 
transparent, and reproducible approach for evaluating the quality and fitness-for-purpose of 
clinical data extracted from EHRs using LLMs or other ML models. Recognizing the unique 
challenges and opportunities posed by LLMs, including their ability to process unstructured text 
at scale and their potential for novel error modes, this framework moves beyond traditional 
accuracy metrics to offer a holistic evaluation strategy. The framework is built on three 
foundational pillars: variable-level performance metrics, automated verification checks, and 
replication and benchmarking analyses (Figure 1). 
 
By integrating these three components, the VALID framework provides a multidimensional view 
of LLM-extracted data quality. This approach not only quantifies accuracy but also surfaces 
latent errors and bias, supports continuous model improvement, and builds confidence in the 
use of LLM-extracted RWD for oncology research and decision-making. Below we go into 
greater detail about each section of the accuracy assessment framework.  
 

1 Variable-Level Performance Metrics 
Variable-level performance metrics measure the accuracy and completeness of a data curation 
approach by comparing it against a source of truth label. These metrics include standard 
accuracy measures such as recall, precision, F1, as well as completeness rates, which assess 
the percentage of patients with a known value. EHR data is inherently limited to the data 
captured within a specific health practice or network, which may not represent the full scope of a 
patient’s care. As a result, these metrics evaluate the accuracy and completeness of LLM-
extracted data relative to what is available in the source EHR documentation. Performance 
metrics are generated using a held-out testing data set that is not used for model training, is 
representative of the target population, and is sufficiently large to ensure statistical reliability. 
During the development of a new LLM approach, model performance can also be assessed 
using a prototyping test set (i.e. a dataset that is used to iterate on the model-extraction 
approach, including pre-processing and LLM prompts).    
 

https://app.readcube.com/library/81dd2a81-1d2b-4d8d-b59a-9a0f4d1d09b4/all?uuid=39960721746449057&item_ids=81dd2a81-1d2b-4d8d-b59a-9a0f4d1d09b4:168589f3-9567-4b13-a0b9-43353d513f53


 

 

This framework assesses LLM performance by comparing both LLM-extracted and expert 
human-abstracted data against a common reference standard (i.e., the ground truth that the 
LLM and single human abstractor is compared to) (Table 1). Even when there are rigorous 
quality control measures for expert human abstraction (including standardized procedures and 
inter-rater agreement monitoring), some disagreement among abstractors is inevitable due to 
the inherent complexity and ambiguity of documentation in EHRs (e.g., conflicting, incomplete or 
unclear documentation that could reasonably be interpreted two different ways for a nuanced 
concept such as date of cancer progression). The methodology, demonstrated with illustrative 
examples in Table 2, calculates both absolute performance metrics and the relative 
performance differences between LLMs and human abstractors. This relative performance 
measure (the difference between LLM and human accuracy metrics) provides more consistent 
comparisons across different variables and datasets by accounting for the natural variation in 
human performance. This relative measure also offers a more practical and understandable 
benchmark to determine when a model's quality is sufficient for the research purpose or if 
further iteration is needed, relative to setting thresholds for absolute metrics. 
 
The approach of comparing LLM performance relative to expert human abstraction enhances 
accuracy metric interpretation through human-model comparison. By measuring abstractor 
disagreement rates, we can identify when LLM performance appears low due to human labeling 
challenges rather than model limitations. Abstractor performance also reveals the inherent 
complexity or subjectivity of clinical concepts being extracted. For example, Table 2 provides a 
comparison of two variables, surgery and locoregional recurrence, with similar model 
performance against single-abstracted labels. However, when examining expert human 
abstraction metrics, we discover that surgery data has higher human consensus than 
locoregional diagnosis data. This indicates locoregional diagnosis may be inherently more 
complex or subjective in a patient’s record, which introduces ambiguity that increases the 
difficulty of the task and results in varying levels of performance for both human abstractors and 
models. Evaluating the relative performance difference between humans and LLMs (-10% pt for 
surgery vs. -5% pt for locoregional recurrence) helps contextualize model performance relative 
to task difficulty, highlights where to focus model development resources for the greatest 
potential gains, and reveals opportunities where LLMs may even exceed human-level 
performance. 
 
End-to-end evaluation metrics, as shown for triple negative breast cancer (TNBC) status at 
metastatic breast cancer (mBC) diagnosis in the last row of Table 2, are essential for complex 
derived variables such as line of therapy or biomarker status at key timepoints. Using TNBC 
status at mBC diagnosis as an example, accurate patient subgrouping requires the correct 
alignment of multiple extracted variables including: the test date and result for estrogen receptor 
(ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) as well as 
the mBC diagnosis date. Even with good performance on individual variables, compounding 
errors can significantly reduce end-to-end accuracy. These comprehensive metrics provide 
more clinically and analytically relevant performance indicators. Creating abstraction 
performance benchmarks for these complex metrics requires adjudication or duplicate 
abstraction for all component variables across the same patient cohort (Table 1). However as 



 

 

with individual variables, abstractor benchmarks are critical for interpreting performance of these 
derived variables.  
 
Finally, while human benchmarks are useful for interpreting and prioritizing quality improvement 
work, they may not be needed for every model. Some examples include a simple clinical 
concept where human abstractors are likely to have high agreement (e.g., history of smoking: 
yes/no), or situations where LLM/ML performance on single abstracted labels is very high (e.g., 
model F1: 99%). The intended use case may also influence the utility of human benchmarks 
(e.g., regulatory use case versus hypothesis generation).   
 

2 Automated Verification Checks 
Verification checks assess the prevalence of conflicting or erroneous data points at the patient 
level and ensure that cohort-level distributions align with clinical expectations. These checks 
serve as a proxy for accuracy and help evaluate the face validity and usability of the dataset. 
Even when LLM extraction performance is high, small amounts of misclassified data may result 
in usability issues as well as general distrust in the dataset. Verification checks help mitigate this 
issue by surfacing data inconsistencies that are likely the result of model errors; resolving them 
improves the overall quality and usability of the dataset.  
 
Previously described verification checks provide a powerful tool to assess quality of LLM-
extracted data [26]. These checks fall into three categories: conformance, plausibility and 
consistency. Table 3 provides examples of checks performed to assess a fully LLM-extracted 
breast cancer dataset.  
 
Clinicians play a pivotal role in developing and interpreting a robust and comprehensive set of 
checks and identifying which inconsistencies require further investigation. This process allows 
for the targeted resolution of errors and results in a cleaner and more accurate dataset. Some 
conflicts, such as a metastatic diagnosis date prior to initial diagnosis, are clinically illogical and 
likely reflect a model error. It is clear that these discrepancies should be investigated and 
addressed. However, other conflicts may reflect real-world scenarios. For example, a patient 
receiving targeted therapy for a mutation they appear to lack in the EHR may be a result of 
incomplete biomarker data. It also could be off-label use and a true medical finding. A clinical 
team partnering with engineers to review the source documentation (if possible) can help tease 
this out. Not only does this ensure accurate answers, but it also gives insight into why the errors 
are occurring in the first place to inform any changes in our models that may be needed.  

3 Replication and Benchmarking Analyses 
Replication and benchmarking analyses assess whether an analysis performed using LLM-
extracted data produces similar results and conclusions when compared to a reference dataset. 
The reference dataset can be an internal benchmark, such as a dataset built using expert 
human abstraction, or an external benchmark, such as a comparative treatment effect or 
prognostic marker that has been well-established in literature or an external dataset such as the 
Surveillance, Epidemiology, and End Results (SEER) database. While variable metrics and 
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verification checks focus on one, or at most a few, variables at a time, replication and 
benchmarking analyses utilize the full dataset to answer a research question. This gives 
replication and benchmarking analyses the ability to describe how model errors across multiple 
LLM-extracted variables may interact together and potentially introduce bias when selecting 
cohorts and assessing outcomes. As a result, replication analyses are critical for assessing the 
fitness-for-purpose of RWD in research and regulatory contexts [13]. 
 
Like with verification checks, selection and design of replication and benchmarking analyses 
should be clinically informed and consider a multitude of RWD applications. Based on common 
use cases for disease-specific RWD cohorts, we propose conducting analyses in both: (1) broad 
cohorts, and (2) specific subcohorts of interest (e.g., biomarker or treatment based). 
 
3.1 Broad Cohort Characterization 
Broad cohort characterization validates outcomes and clinical distributions relative to an internal 
reference standard in a broad cohort. The definition of broad cohorts will vary by disease, but 
will most likely be based on disease setting (e.g., early vs. advanced/metastatic) alone or in 
combination with disease subtype (e.g., hormone sensitive vs. castrate resistant in prostate 
cancer). Since cancer care and outcomes vary significantly by disease setting and subtype, 
assessing outcomes and cohort distributions by disease setting is more interpretable than 
across a larger population. Because these analyses are assessing broad populations, rather 
than niche biomarker or treatment defined subgroups, obtaining an internal reference standard 
may be feasible, but cohort-level distributions and outcomes can also be assessed relative to 
clinical expectations, treatment guidelines, and the literature.  
 
These analyses consist of several types of outputs: cohort distributions, trends in clinical care 
over time, and patient outcomes. Cohort distributions assess the distribution of demographic 
and clinical characteristics (e.g., age at diagnosis, gender, distribution of stage, histology, 
menopausal status), biomarker testing information (e.g., testing and result rates, time from 
diagnosis to first test, biomarker status at key index dates) and treatment information (e.g., 
surgery/radiation rates stratified by stage, proportion of patients receiving neoadjuvant therapy, 
most prevalent 1L treatment regimens stratified by breast cancer subtype). Trends in clinical 
care over time can validate whether the data exhibits expected patterns, such as an increase in 
first-line treatment starts for a new drug that was recently approved. Finally, these reports 
validate meaningful patient outcomes by disease setting, such as recurrence-free survival (RFS) 
and overall survival (OS).   
 
3.2 Subcohorts of Interest 
Replication and benchmarking at the subcohort level is used to understand the reproducibility of 
analytic results and scientific conclusions for subpopulations of interest. While broad cohort 
characterization is important for validating the dataset as a whole, it has a similar limitation as 
test set metrics in that it may not detect where performance may differ for a specific subcohort. 
For example, consider an LLM that extracts oral treatment from the EHR. The model may have 
high performance on the broad cohort, but model errors may also be disproportionately high for 
patients who discontinue and then restart the oral treatment, resulting in multiple treatment start 
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and stop dates for the same oral drug. If multiple treatment spans happen more commonly in 
certain subpopulations (e.g., older patients) this can result in differential errors in this patient 
cohort.  
 
To ensure replication and benchmarking analyses are clinically meaningful and aligned with 
real-world practice, clinician input is essential in defining and prioritizing subgroups of interest. 
Disease experts play a central role in identifying these cohorts based on clinical guidelines (e.g., 
National Comprehensive Cancer Network [NCCN], American Society of Clinical Oncology 
[ASCO]), therapeutic relevance, and RWD study needs. Cohort definitions are anchored in key 
clinical components, including disease setting (e.g., early vs. metastatic), histology or subtype 
classifications (e.g., hormone receptor [HR]/HER2 status), biomarker profiles (e.g., Breast 
Cancer gene [BRCA] status, programmed death ligand 1 [PD-L1] expression), treatment setting 
(e.g., adjuvant, first-line metastatic), and other relevant inclusion/exclusion criteria. Clinicians 
also guide the selection of index dates and outcome measures to ensure consistency, 
comparability, and clinical relevance across studies. 
 
Once subcohorts are selected, the next consideration is what reference standard is available. If 
the subcohort is a highly prevalent population, such as HR+/HER2- breast cancer, it may be 
possible to assess outcomes like treatment patterns and OS relative to an internal reference 
standard (e.g., a human abstracted dataset). However, if replicating outcomes and treatment 
patterns for a smaller subpopulation, (e.g., patients with BRCA mutations or patients with 
HR+/HER2- taking a newly approved first-line regimen) obtaining reference data may not be 
feasible and external benchmarking may be required. When benchmarking to literature, it may 
be the case that the specific point estimates for the outcome (e.g., median OS) do not replicate 
due to population differences (i.e. real-world vs. clinical study cohorts). However, we may still 
expect that similar conclusions can be drawn (e.g., an improved median OS of one treatment 
over another is still preserved despite differences in the actual OS point estimates).  

 

Applying VALID Framework for Bias Assessment 
Each of the accuracy components described in the VALID framework can be leveraged to 
provide a comprehensive assessment of model bias. Even when models are high performing 
overall, there is a potential risk that performance could vary across clinical and demographic 
subgroups, leading to biased RWD. If bias is not assessed and addressed, this could lead to 
misleading or inaccurate conclusions when RWD is used to generate RWE and can perpetuate 
existing inequities [27,28]. 
  
First, the approach of evaluating variable level performance metrics and evaluating the relative 
difference between humans and LLMs can be extended to assess model bias by stratifying 
metrics by demographic subgroups (e.g., race/ethnicity, age, gender) or clinical subgroups (e.g., 
by treatment, biomarker status, stage). Again, obtaining metrics for both the model and 
abstraction for these subgroups offers a unique advantage. If differences in performance are 
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observed in only the model metrics, but not the abstractor metrics, it indicates that model errors 
may be differential (i.e., occur more frequently in certain subgroups). When differences in 
performance are observed in both model and abstractor metrics, it may signal that more 
challenging and complex cases are not evenly distributed within the dataset. In this situation, 
reviewing cases and identifying error modes may lead to insights on how to improve quality.   
  
Model bias can also be assessed by stratifying verification checks by demographic subgroups 
or key subpopulations of interest. Since data conflicts can serve as a proxy for quality, stratified 
verification checks can identify model bias and ensure that certain subgroups are not at risk for 
being disproportionately removed from analyses due to non-sensical data. For variables with 
rare classes and those with less prevalent demographic subgroups, testing data sets may be 
too small to generate stratified variable-level metrics. Verification checks offer an alternative 
since they do not require a reference standard and are applied to the full dataset. 
 
Finally, replication and benchmarking can be used to assess model bias by replicating a health 
equity research question. For example, can LLM-generated data replicate findings that are well 
established in the literature, such as lower survival among Black patients with TNBC compared 
to their White counterparts? Simple replication analyses using an internal reference standard 
(e.g., OS patterns of patients with mBC) can be stratified by demographic subgroups or key 
subpopulations of interest when internal reference standards are sufficiently large. 
 
 

Discussion 
We present a comprehensive accuracy assessment framework for evaluating LLM-extracted 
data from the EHR. This approach, which is model agnostic and also applies to traditional ML 
extraction approaches, extends beyond conventional performance metrics to deliver a 
transparent and reproducible evaluation of oncology EHR LLM-extracted data quality. Central to 
this framework is the rigorous benchmarking of LLM accuracy metrics such as recall, precision, 
and completeness, to human-level performance. By calculating the relative difference between 
LLM and human performance rather than focusing solely on absolute metrics, especially for 
more complex clinical concepts or variables that may be used for regulatory or other high stakes 
applications, RWD developers can better contextualize model performance relative to humans, 
prioritize resource allocation for model improvements, and understand when LLM performance 
may exceed that of a human abstractor. Automated verification checks further enhance quality 
assurance by systematically flagging internal inconsistencies, implausible values, and temporal 
conflicts that may elude variable-level metrics, thereby enabling early detection and remediation 
of latent errors. The third pillar, replication and benchmarking analyses, evaluates the ability of 
LLM-extracted data to reproduce established clinical distributions and outcomes, either relative 
to internal human-abstracted datasets or external epidemiological benchmarks, thus providing 
critical evidence of fitness-for-purpose in research and regulatory settings. Replication helps 
build trust in LLM-extracted data when results are consistent with expectations and also 
identifies use cases or subpopulations where analyses are not concordant and can be used to 
prioritize further quality improvement efforts and analytical guidance. Finally, by integrating 



 

 

these multidimensional assessments, the framework not only quantifies accuracy, but can also 
be applied to assess model bias. This holistic approach is essential for ensuring that the 
promise of LLM-driven data curation translates into robust, equitable, and actionable real-world 
evidence in clinical practice and research. 
 
Local context must be considered across all three pillars of the framework when evaluating 
LLM-based extraction in different countries or treatment settings. Documentation patterns or 
EHR systems, for instance, may vary in a way that makes extracting certain information 
systematically more difficult in some countries or languages than others. Evaluating LLM-based 
extraction against local abstraction metrics is essential for accurately contextualizing differences 
in model performance across different settings. Similarly, patterns of care, including testing 
frequency or treatment guidelines, can vary across countries. These differences need to be 
taken into account when constructing automated verification checks such as plausibility checks 
and in choosing adequate reference standards for conducting replication analyses.  
 
The effective application of this framework demands a multidisciplinary team with diverse 
expertise. Clinical teams are essential for understanding and identifying use cases and their 
feasibility with RWD, designing meaningful verification checks, choosing appropriate subcohorts 
for replication assessment, interpreting the clinical significance of analysis results, and 
investigating chart-level errors for insights that can inform prompt refinement. Research 
scientists and health equity experts provide crucial context regarding the impact of model errors 
on downstream research applications, ensuring that quality assessments and quality 
improvement efforts remain focused on errors with meaningful consequences for evidence 
generation. Engineers develop and help maintain the technical infrastructure needed to 
implement metrics and verification checks in an efficient and scalable manner, and iterate on 
models when needed to optimize performance (e.g., prompt engineering, fine-tuning). Without 
this collaborative approach, the framework may focus improvement efforts on issues with limited 
research impact or may fail to detect clinically significant errors altogether, ultimately resulting in 
lower data quality and potentially incorrect conclusions that may impact research or patient 
care.  
 
Despite its comprehensive approach, our framework faces several practical limitations that 
require careful consideration during implementation. First, effective evaluation of model 
performance against human abstraction is only meaningful when the reference data is of known 
and sufficient quality. Without this, poor-quality reference data can confound performance 
assessments, leading to misleading conclusions and false reassurance about both model 
accuracy and overall data quality. The higher the quality of the reference data, the more 
interpretable and trustworthy the resulting performance metrics will be. Second, the framework 
requires pragmatic balancing of scientific rigor with realistic constraints. It may not always be 
possible to generate duplicate abstracted or adjudicated data due to limitations in time or 
resources. Further, there are an endless number of verification checks that can be designed 
and subcohorts that can be investigated via replication, and eventually some of these 
assessments may become redundant or not lead to any meaningful change in the data. A risk-
based approach is therefore necessary, where single abstracted data may be sufficient for 



 

 

variables with high performance metrics. These variables might also require fewer replication 
analyses and verification checks. Third, the dynamic nature of LLM capabilities introduces 
temporal challenges, as models continually evolve through version updates and fine-tuning. 
Each significant change to models or data delivery pipelines may necessitate re-running quality 
assessment analyses to ensure consistent performance, creating an ongoing maintenance 
burden that must be factored into operational planning. Finally, it is important to recognize that 
our framework primarily measures accuracy relative to what is documented in the EHR, leaving 
the fundamental issue of missingness and potential bias in source documentation. The most 
sophisticated extraction approach cannot recover information that was never recorded, 
highlighting the need for complementary assessment of other quality dimensions such as 
relevance, completeness, and representativeness of the underlying EHR data. These limitations 
underscore that while our framework represents a significant advancement in quality 
assessment for LLM-extracted data, it must be implemented with careful consideration of 
available resources, organizational capabilities, and the specific research contexts in which the 
extracted data will ultimately be applied. 
 
While the proposed framework provides one approach to evaluating the accuracy and reliability 
of ML- and LLM-extracted EHR data, additional work is still required, including a need to build 
consensus across the field regarding what thresholds of LLM performance (as well as the 
reference data) are considered "good enough" for different research and regulatory applications. 
Comparative studies that benchmark LLM performance against expert human abstraction 
across diverse clinical variables and settings will be critical to inform these standards. In 
addition, as LLMs and EHR documentation practices continue to evolve, ongoing research is 
needed to ensure that quality assessment frameworks remain relevant and effective. This 
includes evaluating the impact of new model architectures, training data sources, and prompt 
engineering strategies on extraction quality. Finally, there is an opportunity to extend this 
framework beyond oncology to other diseases, therapeutic areas and healthcare systems. 

Conclusion 
The integration of ML and LLMs into healthcare data extraction represents a transformative 
opportunity to accelerate and enhance RWD generation. Our accuracy assessment framework 
provides a structured approach to evaluate the reliability and quality of LLM-extracted data, 
addressing critical concerns about model performance across diverse patient populations and 
the unique error modes for LLMs such as hallucinations. By combining rigorous benchmarking 
against human abstraction, automated verification checks, and replication analyses, we have 
created a multidimensional assessment strategy that not only quantifies accuracy but also 
identifies biases, inconsistencies, and areas for model improvement. This framework supports a 
responsible path forward for the adoption of LLM technologies in oncology research, ensuring 
that efficiency gains do not come at the expense of data quality or patient representation. As 
healthcare systems increasingly adopt AI-driven approaches to data extraction, frameworks like 
this will be essential to maintain scientific integrity and foster trustworthy, consistent evidence 
generation. Establishing robust quality standards now lays the groundwork for responsible 
innovation that benefits researchers, clinicians, and patients. 
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Table 1. Approaches for creating reference standards 
Approach Description Application and Interpretation 

Duplicate Abstraction For every patient in the test set, data elements are generated 
by the LLM as well as two expert human abstractors assigned 
to every task. The reference standard is the data elements 
generated by Abstractor 2. The performance of Abstractor 1 
and the LLM are both measured against the reference 
standard (Abstractor 2). While we refer to ‘Abstractor 1’ and 
‘Abstractor 2’, abstractors are randomly assigned to tasks and 
these do not refer to a single individual. 

● Useful during model iteration since the labels do not 
need to be updated as the model is changed 

● Absolute performance of both the LLM and 
abstractor will be underestimated since performance 
is being measured on single abstracted labels 

Double Adjudication  For every patient in the test set, data elements are generated 
by the LLM as well as one abstractor assigned to every task. 
The reference standard is generated by having an expert 
human abstractor adjudicate every case of LLM <> abstractor 
disagreement. Single abstracted labels and the LLM are both 
evaluated against the reference standard. 

● Useful when model iteration is complete because 
changes in the model will surface new patients with 
LLM <> abstractor disagreement that require 
adjudication. Most resource efficient approach.  

● Absolute metrics will be more accurate than 
duplicate abstraction, but may be underestimated in 
the case where the model and abstractor agree on 
the wrong answer. However this approach can show 
where the LLM is outperforming expert human 
abstraction 

Triple Adjudication For every patient in the test set, data elements are generated 
by the LLM as well as two expert human abstractors assigned 
to every task. The reference standard is generated by having 
an expert human abstractor adjudicate every case of LLM <> 
abstractor disagreement and abstractor <> abstractor 
disagreement. Single abstracted labels and the LLM are both 
evaluated against the reference standard. 

● Useful when model iteration is complete because 
changes in the model will surface new patients with 
LLM <> abstractor disagreement that require 
adjudication.  

● This is the most rigorous approach but also the most 
resource intensive. Therefore it is useful only in 
cases where most accurate absolute metrics are 
needed 

Abbreviations: LLM, large language model. 
 
  



 

 

Table 2. Examples with interpretation of LLM performance metrics to assess data quality 
Variable LLM Performance  Abstraction Performance Relative Performance 

Difference (LLM - 
Abstraction) 

Interpretation 

Surgery and date 85% recall  
85% precision 
85% date accuracy 

95% recall  
95% precision 
95% date accuracy 

-10% pt recall 
-10% pt  precision 
-10% pt date accuracy 

Model is further from human-
level performance on what is 
likely to be a simpler clinical 
concept. Additional model 
development should be 
considered. 

Locoregional recurrence and 
date 

85% recall  
85% precision 
85% date accuracy 

90% recall  
90% precision 
90% date accuracy 

-5% pt recall 
-5% pt  precision 
-5% pt date accuracy 

Model is close to human-level 
performance on a more 
complex and ambiguous 
concept 

Triple negative breast cancer 
(TNBC) status within +/- 60 
days of metastatic diagnosis 

92% recall  
90% precision 

90% recall  
93% precision 

+2% pt recall 
-3% pt precision 

Model is close to (and 
possibly exceeding) human 
performance on a clinically 
important cohort derived 
across multiple variables 
(ER/PR/HER2 test results 
and dates, and metastatic 
diagnosis and date) 

Abbreviations: ER, estrogen receptor; HER2, human estrogen receptor 2; LLM, large language model; % pt, percentage point; PR, progesterone receptor. 
 
  



 

 

Table 3. Types of verification checks to assess the face validity of LLM-extracted RWD 
Category Example Check Interpretation 

Patient level checks  Patients that have an initial breast cancer diagnosis that is equivalent to 
the metastatic diagnosis date should also show up as having stage IV 
disease 

Conflicting data points likely reflect a 
model extraction error, or less likely, a 
documentation error 

Events occur in an expected order (e.g., surgery date is after initial 
diagnosis date, but before metastatic diagnosis date) 

Patients should not have both a positive and negative gBRCA 1 result  

HER2 result dates do not pre-date the development of HER2 tests 

Events occur in an expected order (e.g., radiation does not occur prior to 
surgery for patients with breast cancer) 

While these findings may be examples of 
real world practice or off label usage, 
patients flagged by these checks may also 
be enriched for model errors. Time between surgery and start of adjuvant therapy is within an 

expected range 

Patients receiving endocrine therapy have positive HR status 

The metastatic diagnosis date extracted by the LLM for a given patient 
doesn’t change when the database is refreshed month over month in 
absence to a change in the underlying LLM 

Cohort level checks Distribution of first-line treatment regimens for patients with TNBC reflect 
expected clinical practice as described by NCCN guidelines 

Cohort distributions that yield unexpected 
results may identify models that are 
underperforming in specific subgroups 

Rates of surgery stratified by stage at initial diagnosis align with clinical 
practice as described by NCCN guidelines 

The number of patients with a metastatic diagnosis date each month is 
consistent over time 

Abbreviations: ER, estrogen receptor; gBRCA, germline BRCA; HER2, human estrogen receptor 2; HR, hormone receptor; LLM, large language model; NCCN, National 
Comprehensive Cancer Network; PR, progesterone receptor; RWD, real-world data; TNBC, triple-negative breast cancer. 
 
 



 

 

Figure 1. Components of the EHR LLM-extracted RWD Quality Framework  

 
 
 
 

 

 


