What is OpenRAG?

OpenRAG is an open-source package for building agentic RAG systems that integrates
with a wide range of orchestration tools, vector databases, and LLM providers.

OpenRAG connects and amplifies three popular, proven open-source projects into one
powerful platform:

e Langflow: Langflow is a versatile tool for building and deploying Al agents and MCP
servers. It supports all major LLMs, vector databases, and a growing library of Al
tools.

OpenRAG uses several built-in flows, and it provides full access to all Langflow
features through the embedded Langflow visual editor.

By customizing the built-in flows or creating your own flows, every part of the
OpenRAG stack interchangeable. You can modify any aspect of the flows from basic
settings, like changing the language model, to replacing entire components. You can
also write your own custom Langflow components, integrate MCP servers, call APlIs,
and leverage any other functionality provided by Langflow.

e OpenSearch: OpenSearch is a community-driven, Apache 2.0-licensed open source
search and analytics suite that makes it easy to ingest, search, visualize, and analyze
data. It provides powerful hybrid search capabilities with enterprise-grade security

and multi-tenancy support.

OpenRAG uses OpenSearch as the underlying vector database for storing and
retrieving your documents and associated vector data (embeddings). You can ingest
documents from a variety of sources, including your local filesystem and OAuth
authenticated connectors to popular cloud storage services.

¢ Docling: Docling simplifies document processing, supports many file formats and
advanced PDF parsing, and provides seamless integrations with the generative Al
ecosystem.

OpenRAG uses Docling to parse and chunk documents that are stored in your
OpenSearch knowledge base.


https://docs.langflow.org/
https://docs.opensearch.org/latest/
https://docling-project.github.io/docling/

Q TP

Ready to get started? Try the quickstart to install OpenRAG and start exploring in

minutes.

OpenRAG architecture

OpenRAG deploys and orchestrates a lightweight, container-based architecture that
combines Langflow, OpenSearch, and Docling into a cohesive RAG platform.

¢ OpenRAG backend: The central orchestration service that coordinates all other
components.

¢ Langflow: This container runs a Langflow instance. It provides the embedded
Langflow visual editor for editing and creating flow, and it connects to the
OpenSearch container for vector storage and retrieval.

* Docling Serve: This is a local document processing service managed by the
OpenRAG backend.

e External connectors: Integrate third-party cloud storage services with OAuth
authenticated connectors to the OpenRAG backend, allowing you to load
documents from external storage to your OpenSearch knowledge base.

e OpenRAG frontend: Provides the user interface for interacting with the OpenRAG
platform.



Quickstart

Use this quickstart to install OpenRAG, and then try some of OpenRAG's core features.
Prerequisites
This quickstart requires the following:

e An OpenAl API key. This quickstart uses OpenAl for simplicity. For other providers,
see the complete installation guide.

e Python version 3.13 or later.

e Microsoft Windows only: To run OpenRAG on Windows, you must use the Windows
Subsystem for Linux (WSL):

i. Install WSL with the Ubuntu distribution using WSL 2:

wsl ——install —-d Ubuntu

For new installations, the ws1 ——install command uses WSL 2 and Ubuntu
by default.

For existing WSL installations, you can change the distribution and check the
WSL version.

A KNOWN LIMITATION

OpenRAG isn't compatible with nested virtualization, which can cause
networking issues. Don't install OpenRAG on a WSL distribution that is
installed inside a Windows VM. Instead, install OpenRAG on your base OS
or a non-nested Linux VM.

ii. Start your WSL Ubuntu distribution if it doesn't start automatically.

iii. Set up a username and password for your WSL distribution.


https://platform.openai.com/api-keys
https://www.python.org/downloads/release/python-3100/
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install#change-the-default-linux-distribution-installed
https://learn.microsoft.com/en-us/windows/wsl/install#upgrade-version-from-wsl-1-to-wsl-2
https://learn.microsoft.com/en-us/windows/wsl/install#upgrade-version-from-wsl-1-to-wsl-2
https://learn.microsoft.com/en-us/windows/wsl/install#ways-to-run-multiple-linux-distributions-with-wsl
https://learn.microsoft.com/en-us/windows/wsl/setup/environment#set-up-your-linux-username-and-password

iv. Install Docker Desktop for Windows with WSL 2. When you reach the Docker
Desktop WSL integration settings, make sure your Ubuntu distribution is
enabled, and then click Apply & Restart to enable Docker support in WSL.

v. Install and run OpenRAG from within your WSL Ubuntu distribution.

If you encounter issues with port forwarding or the Windows Firewall, you might
need to adjust the Hyper-V firewall settings to allow communication between your
WSL distribution and the Windows host. For more troubleshooting advice for
networking issues, see Troubleshooting WSL common issues.

Install OpenRAG

For this quickstart, install OpenRAG with the automatic installer script and basic setup:

1. Create a directory to store the OpenRAG configuration files, and then change to that
directory:

mkdir openrag-workspace
cd openrag-workspace

2. Download the OpenRAG install script, move it to your OpenRAG directory, and then
run it:

bash run_openrag_with_prereqs.sh

This script installs OpenRAG and its dependencies, including Docker or Podman, and
it creates a .env file and docker-compose files in the current working directory.
You might be prompted to install certain dependencies if they aren't already present
in your environment. This process can take a few minutes. Once the environment is
ready, OpenRAG starts.

3. Click Basic Setup.

4. Create passwords for your OpenRAG installation's OpenSearch and Langflow
services. You can click Generate Passwords to automatically generate passwords.


https://learn.microsoft.com/en-us/windows/wsl/tutorials/wsl-containers
https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/hyper-v-firewall
https://learn.microsoft.com/en-us/windows/wsl/troubleshooting#common-issues
https://docs.openr.ag/files/run_openrag_with_prereqs.sh

The OpenSearch password is required. The Langflow admin password is optional. If
you don't generate a Langflow admin password, Langflow runs in autologin mode

with no password required.

Your passwords are saved in the .env file that is used to start OpenRAG. You can
find this file in your OpenRAG installation directory.
5. Click Save Configuration, and then click Start All Services.

Wait a few minutes while the startup process pulls and runs the necessary container

images. Proceed when you see the following messages in the terminal user interface
(TUI):

Services started successfully
Command completed successfully

6. To open the OpenRAG application, go to the TUI main menu, and then click Open
App. Alternatively, in your browser, navigate to localhost:3000.

7. Select the OpenAl model provider, enter your OpenAl API key, and then click
Complete.

For this quickstart, you can use the default options for the model settings.

8. Click through the overview slides for a brief introduction to OpenRAG and basic

setup, or click - Skip overview. You can complete this quickstart without going
through the overview.

Load and chat with documents

Use the OpenRAG Chat to explore the documents in your OpenRAG database using
natural language queries. Some documents are included by default to get you started,
and you can load your own documents.

1. In OpenRAG, click D Chat.

2. For this quickstart, ask the agent what documents are available. For example: What
documents are available to you?


https://docs.langflow.org/api-keys-and-authentication#langflow-auto-login

The agent responds with a summary of OpenRAG's default documents.

3. To verify the agent's response, click )\ Knowledge to view the documents stored
in the OpenRAG OpenSearch vector database. You can click a document to view the
chunks of the document as they are stored in the database.

4. Click Add Knowledge to add your own documents to your OpenRAG knowledge
base.

For this quickstart, use either the D File or D Folder upload options to load
documents from your local machine. Folder uploads an entire directory. The default
directory is the /openrag-documents subdirectory in your OpenRAG installation
directory.

For information about the cloud storage provider options, see Ingest files with OAuth
connectors.

5. Return to the Chat window, and then ask a question related to the documents that
you just uploaded.

If the agent's response doesn't seem to reference your documents correctly, try the
following:

o Click Function Call: search_documents (tool_call) to view the log of tool calls
made by the agent. This is helpful for troubleshooting because it shows you how
the agent used particular tools.

o Click i Knowledge to confirm that the documents are present in the
OpenRAG OpenSearch vector database, and then click each document to see
how the document was chunked. If a document was chunked improperly, you

might need to tweak the ingestion or modify and reupload the document.

o—
o Click =0 Settings to modify the knowledge ingestion settings.

For more information, see Configure knowledge and Ingest knowledge.

Change the language model and chat settings



1. To change the knowledge ingestion settings, agent behavior, or language model,

. * .
click —© Settings.

The Settings page provides quick access to commonly used parameters like the
Language model and Agent Instructions.

2. For greater insight into the underlying Langflow flow that drives the OpenRAG chat,
click Edit in Langflow and then click Proceed to launch the Langflow visual editor in
a new browser window.

If Langflow requests login information, enter the LANGFLOW_SUPERUSER and
LANGFLOW_SUPERUSER_PASSWORD from the .env file in your OpenRAG installation
directory.

The OpenRAG OpenSearch Agent flow opens in a new browser window.

mmmmmmmmmmm

nnnnnnnnnn

ssssssssss

uuuuuuuuuuuuuuuuuuu

3. For this quickstart, try changing the model. Click the Language Model component,
and then change the Model Name to a different OpenAl model.

After you edit a built-in flow, you can click Restore flow on the Settings page to
revert the flow to its original state when you first installed OpenRAG.

4. Press Command + S ( Ctrl + S ) to save your changes.



You can close the Langflow browser window, or leave it open if you want to continue
experimenting with the flow editor.

5. Switch to your OpenRAG browser window, and then click + in the Conversations
tab to start a new conversation. This ensures that the chat doesn't persist any

context from the previous conversation with the original model.

6. Ask the same question you asked in Load and chat with documents to see how the
response differs from the original model.

Integrate OpenRAG into an application

Langflow in OpenRAG includes pre-built flows that you can integrate into your
applications using the Langflow API. You can use these flows as-is or modify them to
better suit your needs, as demonstrated in Change the language model and chat
settings.

You can send and receive requests with the Langflow API using Python, TypeScript, or

curl.

1. Open the OpenRAG OpenSearch Agent flow in the Langflow visual editor: From the

o—
Chat window, click =0 Settings, click Edit in Langflow, and then click Proceed.

2. Create a Langflow API key, which is a user-specific token required to send requests
to the Langflow server. This key doesn't grant access to OpenRAG.

i. In the Langflow visual editor, click your user icon in the header, and then select
Settings.
ii. Click Langflow API Keys, and then click + Add New.
iii. Name your key, and then click Create API Key.
iv. Copy the API key and store it securely.
v. Exit the Langflow Settings page to return to the visual editor.
3. Click Share, and then select APl access to get pregenerated code snippets that call
the Langflow API and run the flow.

These code snippets construct API requests with your Langflow server URL
(LANGFLOW_SERVER_ADDRESS), the flow to run (FLOW_ID), required headers
(LANGFLOW_API_KEY, Content-Type), and a payload containing the required

inputs to run the flow, including a default chat input message.


https://docs.langflow.org/api-reference-api-examples
https://docs.langflow.org/api-keys-and-authentication

In production, you would modify the inputs to suit your application logic. For
example, you could replace the default chat input message with dynamic user input.

Python:

import requests
import os
import uuid
api_key = 'LANGFLOW_API_KEY'
url = "http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID" #
The complete API endpoint URL for this flow
# Request payload configuration
payload = {
"output_type": "chat",
"input_type": '"chat",
"input_value": "hello world!'"
¥
payload["session_id"] = str(uuid.uuid4())
headers = {"x-api-key": api_key}
try:
# Send API request
response = requests.request("POST", url, json=payload,
headers=headers)
response.raise_for_status() # Raise exception for bad
status codes
# Print response
print(response.text)
except requests.exceptions.RequestException as e:
print(f"Error making API request: {e}")
except ValueError as e:
print(f"Error parsing response: {e}")

TypeScript:

const crypto = require('crypto');
const apiKey = 'LANGFLOW_API_KEY';
const payload = {
"output_type": "chat",
"input_type": "chat",
"input_value": "hello world!'"
b



payload.session_id = crypto.randomUUID();
const options = {
method: 'POST',
headers: {
'Content-Type': 'application/json',
"x—api-key'": apiKey

}

body: JSON.stringify(payload)
A
fetch('http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID',
options)

.then(response => response.json())

.then(response => console.warn(response))

.catch(err => console.error(err));

curl:

curl ——request POST \
——url 'http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID?
stream=false' \
——header 'Content-Type: application/json' \
——header "x-api-key: LANGFLOW_API_KEY" \
——data '{
"output_type": "chat",
"input_type": "chat",
"input_value": "hello world!"

}I
4. Copy your preferred snippet, and then run it:

o Python: Paste the snippet into a .py file, save it, and then run it with python
filename.py.

o TypeScript: Paste the snippet into a . ts file, save it, and then run it with ts-
node filename.ts.

o curl: Paste and run snippet directly in your terminal.

If the request is successful, the response includes many details about the flow run,

including the session ID, inputs, outputs, components, durations, and more.

In production, you won't pass the raw response to the user in its entirety. Instead, you
extract and reformat relevant fields for different use cases, as demonstrated in the



Langflow quickstart. For example, you could pass the chat output text to a front-end
user-facing application, and store specific fields in logs and backend data stores for
monitoring, chat history, or analytics. You could also pass the output from one flow as
input to another flow.

Next steps

* Reinstall OpenRAG with your preferred settings: This quickstart used a minimal
setup to demonstrate OpenRAG's core functionality. It is recommended that you
reinstall OpenRAG with your preferred configuration because some settings are
immutable after initial setup. For all installation options, see Install OpenRAG with TUI
and Install OpenRAG with containers.

e Learn more about OpenRAG: Explore OpenRAG and the OpenRAG documentation
to learn more about its features and functionality.

e Learn more about Langflow: For a deep dive on the Langflow API and visual editor,

see the Langflow documentation.


https://docs.langflow.org/quickstart#extract-data-from-the-response
https://docs.langflow.org/

Install OpenRAG with TUI

Install OpenRAG and then run the OpenRAG Terminal User Interface(TUI) to start your
OpenRAG deployment with a guided setup process.

The OpenRAG Terminal User Interface (TUI) allows you to set up, configure, and monitor
your OpenRAG deployment directly from the terminal.

OpenRAG TUI

Terminal User Interface for OpenRAG

OAuth credentials detected — Advanced Setup recommended

Advanced Setup

g Quit 1 Basic Setup 2 Advanced Setup 3 Monitor Services 4 Diagnostics “p palette

Instead of starting OpenRAG using Docker commands and manually editing values in the
.env file, the TUI walks you through the setup. It prompts for variables where required,

creates a .env file for you, and then starts OpenRAG.

Once OpenRAG is running, use the TUI to monitor your application, control your
containers, and retrieve logs.

If you prefer running Podman or Docker containers and manually editing .env files, see

Install OpenRAG Containers.
Prerequisites
¢ All OpenRAG installations require Python version 3.13 or later.

e If you aren't using the automatic installer script, install the following:


https://www.python.org/downloads/release/python-3100/

o Uuv.
o Podman (recommended) or Docker.
o podman-compose or Docker Compose. To use Docker Compose with Podman,
you must alias Docker Compose commands to Podman commands.
e Microsoft Windows only: To run OpenRAG on Windows, you must use the Windows
Subsystem for Linux (WSL):

i. Install WSL with the Ubuntu distribution using WSL 2:

wsl ——install —-d Ubuntu

For new installations, the ws1 ——install command uses WSL 2 and Ubuntu
by default.

For existing WSL installations, you can change the distribution and check the
WSL version.

A KNOWN LIMITATION

OpenRAG isn't compatible with nested virtualization, which can cause
networking issues. Don't install OpenRAG on a WSL distribution that is
installed inside a Windows VM. Instead, install OpenRAG on your base OS
or a non-nested Linux VM.

ii. Start your WSL Ubuntu distribution if it doesn't start automatically.
iii. Set up a username and password for your WSL distribution.

iv. Install Docker Desktop for Windows with WSL 2. When you reach the Docker
Desktop WSL integration settings, make sure your Ubuntu distribution is
enabled, and then click Apply & Restart to enable Docker support in WSL.

v. Install and run OpenRAG from within your WSL Ubuntu distribution.

If you encounter issues with port forwarding or the Windows Firewall, you might
need to adjust the Hyper-V firewall settings to allow communication between your


https://docs.astral.sh/uv/getting-started/installation/
https://podman.io/docs/installation
https://docs.docker.com/get-docker/
https://docs.podman.io/en/latest/markdown/podman-compose.1.html
https://docs.docker.com/compose/install/
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install#change-the-default-linux-distribution-installed
https://learn.microsoft.com/en-us/windows/wsl/install#upgrade-version-from-wsl-1-to-wsl-2
https://learn.microsoft.com/en-us/windows/wsl/install#upgrade-version-from-wsl-1-to-wsl-2
https://learn.microsoft.com/en-us/windows/wsl/install#ways-to-run-multiple-linux-distributions-with-wsl
https://learn.microsoft.com/en-us/windows/wsl/setup/environment#set-up-your-linux-username-and-password
https://learn.microsoft.com/en-us/windows/wsl/tutorials/wsl-containers
https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/hyper-v-firewall

WSL distribution and the Windows host. For more troubleshooting advice for
networking issues, see Troubleshooting WSL common issues.

e Prepare model providers and credentials.

During application onboarding, you must select language model and embedding
model providers. If your chosen provider offers both types, you can use the same
provider for both selections. If your provider offers only one type, such as Anthropic,
you must select two providers.

Gather the credentials and connection details for your chosen model providers
before starting onboarding:

o OpenAl: Create an OpenAl API key.
o Anthropic language models: Create an Anthropic API key.
o |BM watsonx.ai: Get your watsonx.ai APl endpoint, IBM project ID, and IBM API
key from your watsonx deployment.
o QOllama: Use the Ollama documentation to set up your Ollama instance locally, in
the cloud, or on a remote server, and then get your Ollama server's base URL.
e Optional: Install GPU support with an NVIDIA GPU, CUDA support, and compatible
NVIDIA drivers on the OpenRAG host machine. If you don't have GPU capabilities,
OpenRAG provides an alternate CPU-only deployment.

Install OpenRAG

Choose an installation method based on your needs:

e For new users, the automatic installer script detects and installs prerequisites and
then runs OpenRAG.

e For a quick test, use uvx to run OpenRAG without creating a project or modifying
files.

e Use uv add to install OpenRAG as a managed dependency in a new or existing
Python project.

e Use uv pip install to install OpenRAG into an existing virtual environment.

Automatic installer

The script detects and installs uv, Docker/Podman, and Docker Compose prerequisites,
then runs OpenRAG with uvx.


https://learn.microsoft.com/en-us/windows/wsl/troubleshooting#common-issues
https://platform.openai.com/api-keys
https://www.anthropic.com/docs/api/reference
https://docs.ollama.com/
https://docs.nvidia.com/cuda/

1. Create a directory to store the OpenRAG configuration files:

mkdir openrag-workspace
cd openrag-workspace

2. Run the installer:

curl —fsSL
https://docs.openr.ag/files/run_openrag_with_prereqs.sh | bash

The TUI creates a .env file and docker-compose files in the current working directory.

uvx

Use uvx to quickly run OpenRAG without creating a project or modifying any files.

1. Create a directory to store the OpenRAG configuration files:

mkdir openrag-workspace
cd openrag-workspace

2. Run OpenRAG:

uvx openrag

To run a specific version:

uvx ——from openrag==0.1.30 openrag

The TUI creates a .env file and docker-compose files in the current working directory.

uv add

Use uv add to install OpenRAG as a dependency in your Python project. This adds
OpenRAG to your pyproject.toml and lockfile, making your installation reproducible

and version-controlled.



1. Create a new project with a virtual environment:

uv init YOUR_PROJECT_NAME
cd YOUR_PROJECT_NAME

The (venv) prompt doesn't change, but uv commands will automatically use the

project's virtual environment.

2. Add OpenRAG to your project:

uv add openrag

To add a specific version:

uv add openrag==0.1.30

3. Start the OpenRAG TUI:

uv run openrag

Install a local wheel

If you downloaded the OpenRAG wheel to your local machine, install it by specifying its

path:

1. Add the wheel to your project:

uv add PATH/TO/openrag—VERSION-py3—-none-any.whl

Replace PATH/TO/ and VERSION with the path and version of your downloaded
OpenRAG .whl file.

2. Run OpenRAG:



uv run openrag

uv pip install

Use uv pip install to install OpenRAG into an existing virtual environment that isn't

managed by uv.

Q TP

For new projects, uv add is recommended as it manages dependencies in your

project's lockfile.

1. Activate your virtual environment.

2. Install OpenRAG:

uv pip install openrag
3. Run OpenRAG:

uv run openrag

Continue with Set up OpenRAG with the TUI.

If you encounter errors during installation, see Troubleshoot OpenRAG.

Set up OpenRAG with the TUI

The OpenRAG setup process creates a .env file at the root of your OpenRAG directory,
and then starts OpenRAG. If it detects a .env file in the OpenRAG root directory, it

sources any variables from the .env file.

The TUI offers two setup methods to populate the required values. Basic Setup can
generate all minimum required values for OpenRAG. However, Basic Setup doesn't
enable OAuth connectors for cloud storage. If you want to use OAuth connectors to



upload documents from cloud storage, select Advanced Setup. If OpenRAG detects
OAuth credentials, it recommends Advanced Setup.

Basic setup

1. To install OpenRAG with Basic Setup, click Basic Setup or press 1.
2. Click Generate Passwords to generate passwords for OpenSearch and Langflow.

The OpenSearch password is required. The Langflow admin password is optional. If
no Langflow admin password is generated, Langflow runs in autologin mode with no
password required.

3. Optional: Paste your OpenAl API key in the OpenAl API key field. You can also
provide this during onboarding or choose a different model provider.

4. Click Save Configuration. Your passwords are saved in the .env file used to start
OpenRAG.

5. To start OpenRAG, click Start All Services. Startup pulls container images and runs
them, so it can take some time. When startup is complete, the TUI displays the
following:

Services started successfully
Command completed successfully

6. To start the Docling service, under Native Services, click Start.

7. To open the OpenRAG application, navigate to the TUI main menu, and then click
Open App. Alternatively, in your browser, navigate to localhost:3000.

8. Continue with application onboarding.

Advanced setup

1. To install OpenRAG with Advanced Setup, click Advanced Setup or press 2 .

2. Click Generate Passwords to generate passwords for OpenSearch and Langflow.


https://docs.langflow.org/api-keys-and-authentication#langflow-auto-login

The OpenSearch password is required. The Langflow admin password is optional. If
no Langflow admin password is generated, Langflow runs in autologin mode with no
password required.

3. Paste your OpenAl API key in the OpenAl API key field.

4. If you want to upload documents from external storage, such as Google Drive, add
the required OAuth credentials for the connectors that you want to use. These
settings can be populated automatically if OpenRAG detects these credentials in a

.env file in the OpenRAG installation directory.

o Amazon: Provide your AWS Access Key ID and AWS Secret Access Key with
access to your S3 instance. For more information, see the AWS documentation
on Configuring access to AWS applications.

o Google: Provide your Google OAuth Client ID and Google OAuth Client Secret.
You can generate these in the Google Cloud Console. For more information, see
the Google OAuth client documentation.

o Microsoft: For the Microsoft OAuth Client ID and Microsoft OAuth Client Secret,
provide Azure application registration credentials for SharePoint and OneDirive.
For more information, see the Microsoft Graph OAuth client documentation.

You can manage OAuth credentials later, but it is recommended to configure them
during initial set up.

5. The OpenRAG TUI presents redirect URIs for your OAuth app. These are the URLs
your OAuth provider will redirect back to after user sign-in. Register these redirect
values with your OAuth provider as they are presented in the TUI.

6. Click Save Configuration.

7. To start OpenRAG, click Start All Services. Startup pulls container images and runs
them, so it can take some time. When startup is complete, the TUI displays the
following:

Services started successfully
Command completed successfully

8. To start the Docling service, under Native Services, click Start.


https://docs.langflow.org/api-keys-and-authentication#langflow-auto-login
https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-applications.html
https://console.cloud.google.com/apis/credentials
https://developers.google.com/identity/protocols/oauth2
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/app-registration?view=odsp-graph-online
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/graph-oauth

9. To open the OpenRAG application, navigate to the TUI main menu, and then click
Open App. Alternatively, in your browser, navigate to localhost:3000.

10. If you enabled OAuth connectors, you must sign in to your OAuth provider before
being redirected to your OpenRAG instance.

11. Two additional variables are available for Advanced Setup at this point. Only change
these variables if you have a non-default network configuration for your deployment,
such as using a reverse proxy or custom domain.

o LANGFLOW_PUBLIC_URL: Sets the base address to access the Langflow web

interface. This is where users interact with flows in a browser.

o WEBHOOK_BASE_URL : Sets the base address of the OpenRAG OAuth connector

endpoint. Supported webhook endpoints:

= Amazon S3: Not applicable.
= Google Drive: /connectors/google_drive/webhook
= OneDrive: /connectors/onedrive/webhook
= SharePoint: /connectors/sharepoint/webhook
12. Continue with application onboarding.

Application onboarding

The first time you start OpenRAG, regardless of how you installed it, you must complete
application onboarding.

Some of these variables, such as the embedding models, can be changed seamlessly
after onboarding. Others are immutable and require you to destroy and recreate the
OpenRAG containers. For more information, see Environment variables.

You can use different providers for your language model and embedding model, such as
Anthropic for the language model and OpenAl for the embeddings model. Additionally,

you can set multiple embedding models.
You only need to complete onboarding for your preferred providers.

Anthropic



@ INFO

Anthropic doesn't provide embedding models. If you select Anthropic for your

language model, you must select a different provider for embeddings.

1. Enable Use environment Anthropic API key to automatically use your key from the
.env file. Alternatively, paste an Anthropic API key into the field.

2. Under Advanced settings, select your Language Model.

3. Click Complete.

4. In the second onboarding panel, select a provider for embeddings and select your
Embedding Model.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a

Document. Alternatively, click 4 Skip overview.
6. Continue with the Quickstart.

OpenAl

1. Enable Get API key from environment variable to automatically enter your key
from the TUI-generated .env file. Alternatively, paste an OpenAl API key into the
field.

2. Under Advanced settings, select your Language Model.

3. Click Complete.

4. In the second onboarding panel, select a provider for embeddings and select your
Embedding Model.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a

Document. Alternatively, click - Skip overview.
6. Continue with the Quickstart.

IBM watsonx.ai

1. Complete the fields for watsonx.ai APl Endpoint, IBM Project ID, and IBM API key.
These values are found in your IBM watsonx deployment.

2. Under Advanced settings, select your Language Model.

3. Click Complete.

4. In the second onboarding panel, select a provider for embeddings and select your
Embedding Model.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a

Document. Alternatively, click - Skip overview.



6. Continue with the Quickstart.

Ollama

Q@ INFO

Ollama isn't installed with OpenRAG. To install Ollama, see the Ollama
documentation.

1. To connect to an Ollama server running on your local machine, enter your Ollama
server's base URL address. The default Ollama server address is
http://localhost:11434. OpenRAG connects to the Ollama server and
populates the model lists with the server's available models.

2. Select the Embedding Model and Language Model your Ollama server is running.

Ollama model selection and external server configuration

Using Ollama for your OpenRAG language model provider offers greater flexibility and
configuration, but can also be overwhelming to start. These recommendations are a
reasonable starting point for users with at least one GPU and experience running LLMs
locally.

For best performance, OpenRAG recommends OpenAl's gpt—-0ss:20b language model.
However, this model uses 16GB of RAM, so consider using Ollama Cloud or running

Ollama on a remote machine.

For generating embeddings, OpenRAG recommends the nomic-embed-text

embedding model, which provides high-quality embeddings optimized for retrieval tasks.
To run models in Ollama Cloud, follow these steps:

1. Sign in to Ollama Cloud. In a terminal, enter ollama signin to connect your local
environment with Ollama Cloud.

2. To run the model, in Ollama, select the gpt—o0ss:20b—cloud model, or run ollama
run gpt-o0ss:20b-cloud in aterminal. Ollama Cloud models are run at the same
URL as your local Ollama server at http://localhost:11434, and automatically
offloaded to Ollama's cloud service.

3. Connect OpenRAG to the same local Ollama server as you would for local models in
onboarding, using the default address of http://localhost:11434.


https://docs.ollama.com/
https://docs.ollama.com/
https://ollama.com/library/nomic-embed-text
https://docs.ollama.com/cloud

4. In the Language model field, select the gpt-o0ss:20b-cloud model.

To run models on a remote Ollama server, follow these steps:

1. Ensure your remote Ollama server is accessible from your OpenRAG instance.

2. In the Ollama Base URL field, enter your remote Ollama server's base URL, such as
http://your-remote-server:11434. OpenRAG connects to the remote Ollama
server and populates the lists with the server's available models.

3. Select your Embedding model and Language model from the available options.

3. Click Complete.

4. To complete the onboarding tasks, click What is OpenRAG, and then click Add a
Document.

5. Continue with the Quickstart.

Exit the OpenRAG TUI

To exit the OpenRAG TUI, navigate to the main menu, and then press q . The OpenRAG
containers continue to run until they are stopped. For more information, see Manage
OpenRAG containers with the TUI .

To relaunch the TUI, run uv run openrag. If you installed OpenRAG with uvx, run uvx

openrag.

Manage OpenRAG containers with the TUI
After installation, the TUI can deploy, manage, and upgrade your OpenRAG containers.

Diagnostics

The Diagnostics menu provides health monitoring for your container runtimes and
monitoring of your OpenSearch security.

Status

The Status menu displays information on your container deployment. Here you can
check container health, find your service ports, view logs, and upgrade your containers.



Logs: To view streaming logs, select the container you want to view, and press 1 .
To copy the logs, click Copy to Clipboard.

Upgrade: Check for updates. For more information, see upgrade OpenRAG.

Reset: This is a destructive action that resets your containers.

Native services: From the Status menu, you can view the status, port, and process
ID (PID) of the OpenRAG native services. You can also click Stop or Restart to stop
and start OpenRAG native services.

A native service in OpenRAG is a service that runs locally on your machine, not
within a container. For example, the docling serve process is an OpenRAG native
service because this document processing service runs on your local machine,

separate from the OpenRAG containers.

Reset containers

A WARNING

This is a destructive action that destroys and recreates all of your OpenRAG
containers.

To destroy and recreate your OpenRAG containers, go to the TUI Status menu, and then

click Reset.

The Reset function runs two commands. First, it stops and removes all containers,
volumes, and local images:

docker compose down —-volumes —--remove-orphans ——rmi local

Then, it removes any additional Docker objects with docker system prune -f.

If you reset your containers as part of reinstalling OpenRAG, continue the reinstallation
process after resetting the containers.

Start all services



On the TUI main page, click Start All Services to start the OpenRAG containers and
launch OpenRAG itself.

When you start all services, the following processes happen:

1. OpenRAG automatically detects your container runtime, and then checks if your
machine has compatible GPU support by checking for CUDA, NVIDIA_SMI, and
Docker/Podman runtime support. This check determines which Docker Compose file
OpenRAG uses.

2. OpenRAG pulls the OpenRAG container images with docker compose pull if any

images are missing.

3. OpenRAG deploys the containers with docker compose up -d.

Upgrade OpenRAG

To upgrade OpenRAG, upgrade the OpenRAG Python package, and then upgrade the
OpenRAG containers.

This is a two part process because upgrading the OpenRAG Python package updates the
TUI and Python code, but the container versions are controlled by environment variables

in your .env file.

1. Stop your OpenRAG containers: In the OpenRAG TUI, go to the Status menu, and
then click Stop Services.

2. Upgrade the OpenRAG Python package to the latest version from PyPI.

Automatic installer or uvx

Use these steps to upgrade the Python package if you installed OpenRAG using the
automatic installer or uvx:

1. Navigate to your OpenRAG workspace directory:
cd openrag-workspace

2. Upgrade the OpenRAG package:


https://pypi.org/project/openrag/

uvx ——from openrag openrag

To upgrade to a specific version:

uvx ——from openrag==0.1.33 openrag

uv add

Use these steps to upgrade the Python package if you installed OpenRAG in a Python
project with uv add:

1. Navigate to your project directory:

cd YOUR_PROJECT_NAME

2. Update OpenRAG to the latest version:

uv add —--upgrade openrag

To upgrade to a specific version:

uv add —--upgrade openrag==0.1.33

3. Start the OpenRAG TUI:

uv run openrag

uv pip install

Use these steps to upgrade the Python package if you installed OpenRAG in a venv with
uv pip install:

1. Activate your virtual environment.



2. Upgrade OpenRAG:

uv pip install —-upgrade openrag

To upgrade to a specific version:

uv pip install —--upgrade openrag==0.1.33

3. Start the OpenRAG TUI:

uv run openrag

4. Start the upgraded OpenRAG containers: In the OpenRAG TUI, click Start All
Services, and then wait while the containers start.

After upgrading the Python package, OpenRAG runs docker compose pull to get
the appropriate container images matching the version specified in your OpenRAG
.env file. Then, it recreates the containers with the new images using docker

compose up -d ——force-recreate.

In the .env file, the OPENRAG_VERSION environment variable is set to latest by
default, which it pulls the latest available container images. To pin a specific
container image version, you can set OPENRAG_VERSION to the desired container
image version, such as OPENRAG_VERSION=0.1.33.

However, when you upgrade the Python package, OpenRAG automatically attempts
to keep the OPENRAG_VERSION synchronized with the Python package version. You
might need to edit the .env file after upgrading the Python package to enforce a

different container version. The TUI warns you if it detects a version mismatch.

If you get an error that langflow container already exists error during
upgrade, see Langflow container already exists during upgrade.

5. When the upgrade process is complete, you can close the Status window and
continue using OpenRAG.



Reinstall OpenRAG

To reinstall OpenRAG with a completely fresh setup:

1. In the TUI Status menu, reset your containers to destroy the existing OpenRAG

containers and their data.
2. Optional: Delete your project's .env file.

The Reset operation doesn't remove your project's .env file, so your passwords,
API keys, and OAuth settings can be preserved. If you delete the .env file, you must
run the Set up OpenRAG with the TUI process again to create a new configuration

file.

3. Optional: Delete your OpenSearch knowledge base by deleting the contents of the
./opensearch-data folder in your OpenRAG installation directory.

4. In the TUI Setup menu, repeat the Basic Setup process:

i. Click Start All Services to pull container images and start them.
ii. Under Native Services, click Start to start the Docling service.
iii. Click Open App to open the OpenRAG application.

iv. Continue with application onboarding.

If reinstalling OpenRAG and deleting the .env file doesn't reset setup or onboarding, see

Reinstalling OpenRAG doesn't reset onboarding.



Install OpenRAG containers

OpenRAG has two Docker Compose files. Both files deploy the same applications and
containers locally, but they are for different environments:

e docker—compose.yml is an OpenRAG deployment with GPU support for
accelerated Al processing. This Docker Compose file requires an NVIDIA GPU with

CUDA support.

e docker-compose—cpu.yml is a CPU-only version of OpenRAG for systems without
NVIDIA GPU support. Use this Docker Compose file for environments where GPU

drivers aren't available.

Prerequisites

¢ Install the following:

o

Python version 3.13 or later.

o Uuv.

Podman (recommended) or Docker.

podman—compose or Docker Compose. To use Docker Compose with Podman,

[e]

o

you must alias Docker Compose commands to Podman commands.
e Microsoft Windows only: To run OpenRAG on Windows, you must use the Windows

Subsystem for Linux (WSL):

i. Install WSL with the Ubuntu distribution using WSL 2:
wsl —install —-d Ubuntu

For new installations, the ws1 ——install command uses WSL 2 and Ubuntu

by default.

For existing WSL installations, you can change the distribution and check the

WSL version.

A KNOWN LIMITATION


https://github.com/langflow-ai/openrag/blob/main/docker-compose.yml
https://docs.nvidia.com/cuda/
https://github.com/langflow-ai/openrag/blob/main/docker-compose-cpu.yml
https://www.python.org/downloads/release/python-3100/
https://docs.astral.sh/uv/getting-started/installation/
https://podman.io/docs/installation
https://docs.docker.com/get-docker/
https://docs.podman.io/en/latest/markdown/podman-compose.1.html
https://docs.docker.com/compose/install/
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install#change-the-default-linux-distribution-installed
https://learn.microsoft.com/en-us/windows/wsl/install#upgrade-version-from-wsl-1-to-wsl-2
https://learn.microsoft.com/en-us/windows/wsl/install#upgrade-version-from-wsl-1-to-wsl-2

OpenRAG isn't compatible with nested virtualization, which can cause
networking issues. Don't install OpenRAG on a WSL distribution that is
installed inside a Windows VM. Instead, install OpenRAG on your base OS
or a non-nested Linux VM.

ii. Start your WSL Ubuntu distribution if it doesn't start automatically.
iii. Set up a username and password for your WSL distribution.

iv. Install Docker Desktop for Windows with WSL 2. When you reach the Docker
Desktop WSL integration settings, make sure your Ubuntu distribution is
enabled, and then click Apply & Restart to enable Docker support in WSL.

v. Install and run OpenRAG from within your WSL Ubuntu distribution.

If you encounter issues with port forwarding or the Windows Firewall, you might
need to adjust the Hyper-V firewall settings to allow communication between your
WSL distribution and the Windows host. For more troubleshooting advice for
networking issues, see Troubleshooting WSL common issues.

e Prepare model providers and credentials.

During application onboarding, you must select language model and embedding
model providers. If your chosen provider offers both types, you can use the same
provider for both selections. If your provider offers only one type, such as Anthropic,
you must select two providers.

Gather the credentials and connection details for your chosen model providers
before starting onboarding:

o OpenAl: Create an OpenAl API key.

o Anthropic language models: Create an Anthropic API key.

o |BM watsonx.ai: Get your watsonx.ai APl endpoint, IBM project ID, and IBM API
key from your watsonx deployment.

o QOllama: Use the Ollama documentation to set up your Ollama instance locally, in
the cloud, or on a remote server, and then get your Ollama server's base URL.

e Optional: Install GPU support with an NVIDIA GPU, CUDA support, and compatible
NVIDIA drivers on the OpenRAG host machine. This is required to use the GPU-


https://learn.microsoft.com/en-us/windows/wsl/install#ways-to-run-multiple-linux-distributions-with-wsl
https://learn.microsoft.com/en-us/windows/wsl/setup/environment#set-up-your-linux-username-and-password
https://learn.microsoft.com/en-us/windows/wsl/tutorials/wsl-containers
https://learn.microsoft.com/en-us/windows/security/operating-system-security/network-security/windows-firewall/hyper-v-firewall
https://learn.microsoft.com/en-us/windows/wsl/troubleshooting#common-issues
https://platform.openai.com/api-keys
https://www.anthropic.com/docs/api/reference
https://docs.ollama.com/
https://docs.nvidia.com/cuda/

accelerated Docker Compose file. If you choose not to use GPU support, you must
use the CPU-only Docker Compose file instead.

Install OpenRAG with Docker Compose

To install OpenRAG with Docker Compose, do the following:

1. Clone the OpenRAG repository.

git clone https://github.com/langflow-ai/openrag.git
cd openrag

2. Install dependencies.
uv sync

3. Copy the example .env file included in the repository root. The example file
includes all environment variables with comments to guide you in finding and setting

their values.

Cp .env.example .env
Alternatively, create a new .env file in the repository root.
touch .env

4. The Docker Compose files are populated with the values from your .env file. The
OPENSEARCH_PASSWORD value must be set. OPENSEARCH_PASSWORD can be
automatically generated when using the TUI, but for a Docker Compose installation,
you can set it manually instead. To generate an OpenSearch admin password, see

the OpenSearch documentation.

The following values are optional:


https://docs.opensearch.org/latest/security/configuration/demo-configuration/#setting-up-a-custom-admin-password

OPENAI_API_KEY=your_openai_api_key
LANGFLOW_SECRET_KEY=your_secret_key

OPENAI_API_KEY is optional. You can provide it during application onboarding or
choose a different model provider. If you want to set it in your .env file, you can find

your OpenAl API key in your OpenAl account.

LANGFLOW_SECRET_KEY is optional. Langflow will auto-generate it if not set. For

more information, see the Langflow documentation.

The following Langflow configuration values are optional but important to consider:

LANGFLOW_SUPERUSER=admin
LANGFLOW_SUPERUSER_PASSWORD=your_1langflow_password

LANGFLOW_SUPERUSER defaults to admin. You can omit it or set it to a different
username. LANGFLOW_SUPERUSER_PASSWORD is optional. If omitted, Langflow runs
in autologin mode with no password required. If set, Langflow requires password
authentication.

For more information on configuring OpenRAG with environment variables, see
Environment variables.

. Start docling serve on the host machine. OpenRAG Docker installations require
that docling serve is running on port 5001 on the host machine. This enables

Mac MLX support for document processing.

uv run python scripts/docling_ctl.py start ——port 5001

. Confirm docling serve is running.

uv run python scripts/docling_ctl.py status

Make sure the response shows that docling serve is running, for example:


https://platform.openai.com/api-keys
https://docs.langflow.org/api-keys-and-authentication#langflow-secret-key
https://docs.langflow.org/api-keys-and-authentication#langflow-auto-login
https://opensource.apple.com/projects/mlx/

Status: running

Endpoint: http://127.0.0.1:5001
Docs: http://127.0.0.1:5001/docs

PID: 27746

7. Deploy OpenRAG locally with Docker Compose based on your deployment type.

docker—-compose.yml:

docker compose build
docker compose up -d

docker-compose-cpu.yml:

docker compose —-f docker-compose-cpu.yml up —-d

The OpenRAG Docker Compose file starts five containers:

Container Name

OpenRAG Backend

OpenRAG Frontend

Langflow

OpenSearch

OpenSearch
Dashboards

Default Address

http://localhost:8000

http://localhost:3000

http://localhost:7860

http://localhost:9200

http://localhost:5601

Purpose

FastAPI server and core
functionality.

React web interface for users.

Al workflow engine and flow
management.

Vector database for document
storage.

Database administration
interface.

8. Verify installation by confirming all services are running.

docker compose ps

You can now access OpenRAG at the following endpoints:


http://localhost:8000/
http://localhost:3000/
http://localhost:7860/
http://localhost:9200/
http://localhost:5601/

o Frontend: http://localhost:3000
o Backend API: http://localhost:8000
o Langflow: http://localhost:7860

9. Continue with application onboarding.

To stop docling serve when you're done with your OpenRAG deployment, run:

uv run python scripts/docling_ctl.py stop

Application onboarding

The first time you start OpenRAG, regardless of how you installed it, you must complete
application onboarding.

Some of these variables, such as the embedding models, can be changed seamlessly
after onboarding. Others are immutable and require you to destroy and recreate the
OpenRAG containers. For more information, see Environment variables.

You can use different providers for your language model and embedding model, such as
Anthropic for the language model and OpenAl for the embeddings model. Additionally,

you can set multiple embedding models.
You only need to complete onboarding for your preferred providers.

Anthropic

@ INFO

Anthropic doesn't provide embedding models. If you select Anthropic for your
language model, you must select a different provider for embeddings.

1. Enable Use environment Anthropic API key to automatically use your key from the
.env file. Alternatively, paste an Anthropic API key into the field.

2. Under Advanced settings, select your Language Model.

3. Click Complete.

4. In the second onboarding panel, select a provider for embeddings and select your
Embedding Model.


http://localhost:3000/
http://localhost:8000/
http://localhost:7860/

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a

Document. Alternatively, click 4 Skip overview.
6. Continue with the Quickstart.

OpenAl

1. Enable Get API key from environment variable to automatically enter your key
from the TUI-generated .env file. Alternatively, paste an OpenAl API key into the
field.

2. Under Advanced settings, select your Language Model.

3. Click Complete.

4. In the second onboarding panel, select a provider for embeddings and select your
Embedding Model.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a

Document. Alternatively, click 2 Skip overview.
6. Continue with the Quickstart.

IBM watsonx.ai

1. Complete the fields for watsonx.ai APl Endpoint, IBM Project ID, and IBM API key.
These values are found in your IBM watsonx deployment.

2. Under Advanced settings, select your Language Model.

3. Click Complete.

4. In the second onboarding panel, select a provider for embeddings and select your
Embedding Model.

5. To complete the onboarding tasks, click What is OpenRAG, and then click Add a

Document. Alternatively, click - Skip overview.
6. Continue with the Quickstart.

Ollama

@ INFO

Ollama isn't installed with OpenRAG. To install Ollama, see the Ollama
documentation.

1. To connect to an Ollama server running on your local machine, enter your Ollama

server's base URL address. The default Ollama server address is


https://docs.ollama.com/
https://docs.ollama.com/

http://localhost:11434. OpenRAG connects to the Ollama server and
populates the model lists with the server's available models.
2. Select the Embedding Model and Language Model your Ollama server is running.

Ollama model selection and external server configuration

Using Ollama for your OpenRAG language model provider offers greater flexibility and
configuration, but can also be overwhelming to start. These recommendations are a
reasonable starting point for users with at least one GPU and experience running LLMs
locally.

For best performance, OpenRAG recommends OpenAl's gpt—-0ss:20b language model.
However, this model uses 16GB of RAM, so consider using Ollama Cloud or running
Ollama on a remote machine.

For generating embeddings, OpenRAG recommends the nomic—-embed-text

embedding model, which provides high-quality embeddings optimized for retrieval tasks.
To run models in Ollama Cloud, follow these steps:

1. Sign in to Ollama Cloud. In a terminal, enter ollama signin to connect your local
environment with Ollama Cloud.

2. To run the model, in Ollama, select the gpt—o0ss:20b—cloud model, or run ollama
run gpt-o0ss:20b-cloud in aterminal. Ollama Cloud models are run at the same
URL as your local Ollama server at http://localhost:11434, and automatically
offloaded to Ollama's cloud service.

3. Connect OpenRAG to the same local Ollama server as you would for local models in
onboarding, using the default address of http://localhost:11434.

4. In the Language model field, select the gpt-o0ss:20b-cloud model.

To run models on a remote Ollama server, follow these steps:

1. Ensure your remote Ollama server is accessible from your OpenRAG instance.

2. In the Ollama Base URL field, enter your remote Ollama server's base URL, such as
http://your-remote-server:11434. OpenRAG connects to the remote Ollama
server and populates the lists with the server's available models.

3. Select your Embedding model and Language model from the available options.


https://ollama.com/library/nomic-embed-text
https://docs.ollama.com/cloud

3. Click Complete.

4. To complete the onboarding tasks, click What is OpenRAG, and then click Add a
Document.

5. Continue with the Quickstart.

Container management commands

Manage your OpenRAG containers with the following commands. These commands are
also available in the TUI's Status menu.

Upgrade containers

Upgrade your containers to the latest version while preserving your data.

docker compose pull
docker compose up -d ——force-recreate

Rebuild containers (destructive)

Reset state by rebuilding all of your containers. Your OpenSearch and Langflow
databases will be lost. Documents stored in the . /openrag—-documents directory will

persist, since the directory is mounted as a volume in the OpenRAG backend container.

docker compose up ——build ——force-recreate ——remove-orphans

Remove all containers and data (destructive)

Completely remove your OpenRAG installation and delete all data. This deletes all of your
data, including OpenSearch data, uploaded documents, and authentication.

docker compose down —-volumes —--remove-orphans ——rmi local
docker system prune -f



Use Langflow in OpenRAG

OpenRAG includes a built-in Langflow instance for creating and managing functional
application workflows called flows. In a flow, the individual workflow steps are

represented by components that are connected together to form a complete process.
OpenRAG includes several built-in flows:

e The OpenRAG OpenSearch Agent flow powers the Chat feature in OpenRAG.

¢ The OpenSearch Ingestion and OpenSearch URL Ingestion flows process
documents and web content for storage in your OpenSearch knowledge base.

e The OpenRAG OpenSearch Nudges flow provides optional contextual suggestions
in the OpenRAG Chat.

You can customize these flows and create your own flows using OpenRAG's embedded
Langflow visual editor.

Inspect and modify flows

All OpenRAG flows are designed to be modular, performant, and provider-agnostic.

o—
To modify a flow in OpenRAG, click —© Settings. From here, you can quickly edit
commonly used parameters, such as the Language model and Agent Instructions. To
further explore and edit the flow, click Edit in Langflow to launch the embedded

Langflow visual editor where you can fully customize the flow to suit your use case.

For example, to view and edit the built-in Chat flow (the OpenRAG OpenSearch Agent

flow), do the following:
1. In OpenRAG, click D Chat.

o—
2. Click =0 Settings, and then click Edit in Langflow to launch the Langflow visual

editor in a new browser window.
If prompted to acknowledge that you are entering Langflow, click Proceed.

If Langflow requests login information, enter the LANGFLOW_SUPERUSER and
LANGFLOW_SUPERUSER_PASSWORD from the .env file in your OpenRAG installation


https://docs.langflow.org/
https://docs.langflow.org/concepts-components
https://docs.langflow.org/concepts-overview
https://docs.langflow.org/concepts-flows

directory.

N
a
)
£
F
2
H
3
H
$
F
?
8
§
)
)
>
(o}

uuuuuuuuuuuuuuuuuuu & 0%~ O

3. Modify the flow as desired, and then press Command + S ( Ctrl + S ) to save your
changes.

You can close the Langflow browser window, or leave it open if you want to continue

experimenting with the flow editor.

Q TP

If you modify the built-in Chat flow, make sure you click + in the
Conversations tab to start a new conversation. This ensures that the chat
doesn't persist any context from the previous conversation with the original
flow settings.

Revert a built-in flow to its original configuration

After you edit a built-in flow, you can click Restore flow on the Settings page to revert
the flow to its original state when you first installed OpenRAG. This is a destructive action

that discards all customizations to the flow.

Build custom flows and use other Langflow
functionality

In addition to OpenRAG's built-in flows, all Langflow features are available through
OpenRAG, including the ability to create your own flows and popular extensibility features


https://docs.langflow.org/concepts-flows

such as the following:

* Create custom components.

¢ Integrate with many third-party services through bundles.

e Use MCP clients and MCP servers, and serve flows as MCP tools for your agentic
flows.

Explore the Langflow documentation to learn more about the Langflow platform,
features, and visual editor.

Set the Langflow version
By default, OpenRAG is pinned to the latest Langflow Docker image for stability.

If necessary, you can set a specific Langflow version with the LANGFLOW_VERSION .

However, there are risks to changing this setting:

e The Langflow documentation describes the functionality present in the latest release
of the Langflow OSS Python package. If your LANGFLOW_VERSION is different, the

Langflow documentation might not align with the features and default settings in
your OpenRAG installation.

e Components might break, including components in OpenRAG's built-in flows.

e Default settings and behaviors might change causing unexpected results when
OpenRAG expects a newer default.


https://docs.langflow.org/components-custom-components
https://docs.langflow.org/components-bundle-components
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-server
https://docs.langflow.org/
https://docs.langflow.org/

Configure knowledge

OpenRAG includes a built-in OpenSearch instance that serves as the underlying
datastore for your knowledge (documents). This specialized database is used to store

and retrieve your documents and the associated vector data (embeddings).

The documents in your OpenSearch knowledge base provide specialized context in
addition to the general knowledge available to the language model that you select when
you install OpenRAG or edit a flow.

You can upload documents from a variety of sources to populate your knowledge base
with unique content, such as your own company documents, research papers, or
websites. Documents are processed through OpenRAG's knowledge ingestion flows with
Docling.

Then, the OpenRAG Chat can run similarity searches against your OpenSearch database
to retrieve relevant information and generate context-aware responses.

You can configure how documents are ingested and how the Chat interacts with your
knowledge base.

Browse knowledge

The Knowledge page lists the documents OpenRAG has ingested into your OpenSearch

database, specifically in an OpenSearch index named documents.

To explore the raw contents of your knowledge base, click i Knowledge to get a list of
all ingested documents. Click a document to view the chunks produced from splitting the
document during ingestion.

OpenRAG includes some initial documents about OpenRAG. You can use these
documents to ask OpenRAG about itself, and to test the Chat feature before uploading
your own documents. If you delete these documents, you won't be able to ask OpenRAG
about itself and it's own functionality. It is recommended that you keep these documents,
and use filters to separate them from your other knowledge.

OpenSearch authentication and document access


https://docs.opensearch.org/latest/
https://www.ibm.com/think/topics/vector-search
https://docs.opensearch.org/latest/getting-started/intro/#index

When you install OpenRAG, you can choose between two setup modes: Basic Setup and
Advanced Setup. The mode you choose determines how OpenRAG authenticates with

OpenSearch and controls access to documents:

¢ Basic Setup (no-auth mode): If you choose Basic Setup, then OpenRAG is
installed in no-auth mode. This mode uses one, anonymous JWT token for
OpenSearch authentication. There is no differentiation between users. All users that
access your OpenRAG instance can access all documents uploaded to your

OpenSearch knowledge base.

¢ Advanced Setup (OAuth mode): If you choose Advanced Setup, then OpenRAG is
installed in OAuth mode. This mode uses a unique JWT token for each OpenRAG
user, and each document is tagged with user ownership. Documents are filtered by
user owner. This means users see only the documents that they uploaded or have

access to.

You can enable OAuth mode after installation. For more information, see Ingest files with
OAuth connectors.

OpenSearch indexes
An OpenSearch index is a collection of documents in an OpenSearch database.

By default, all documents you upload to your OpenRAG knowledge base are stored in an
index named documents.

It is possible to change the index name by editing the ingestion flow. However, this can
impact dependent processes, such as the filters and Chat flow, that reference the
documents index by default. Make sure you edit other flows as needed to ensure all

processes use the same index name.

If you encounter errors or unexpected behavior after changing the index name, you can
revert the flows to their original configuration, or delete knowledge to clear the existing

documents from your knowledge base.
Knowledge ingestion settings

A WARNING


https://docs.opensearch.org/latest/getting-started/intro/#index

Knowledge ingestion settings apply to documents you upload after making the
changes. Documents uploaded before changing these settings aren't reprocessed.

After changing knowledge ingestion settings, you must determine if you need to reupload
any documents to be consistent with the new settings.

It isn't always necessary to reupload documents after changing knowledge ingestion
settings. For example, it is typical to upload some documents with OCR enabled and
others without OCR enabled.

If needed, you can use filters to separate documents that you uploaded with different
settings, such as different embedding models.

Set the embedding model and dimensions

When you install OpenRAG, you select at least one embedding model during application
onboarding. OpenRAG automatically detects and configures the appropriate vector
dimensions for your selected embedding model, ensuring optimal search performance
and compatibility.

In the OpenRAG repository, you can find the complete list of supported models in
models_service.py and the corresponding vector dimensions in settings.py.

During application onboarding, you can select from the supported models. The default
embedding dimension is 1536, and the default model is the OpenAl text-embedding-
3-small.

If you want to use an unsupported model, you must manually set the model in your
OpenRAG configuration. If you use an unsupported embedding model that doesn't have
defined dimensions in settings.py, then OpenRAG falls back to the default dimensions
(1536) and logs a warning. OpenRAG's OpenSearch instance and flows continue to work,
but similarity search quality can be affected if the actual model dimensions aren't 1536.

To change the embedding model after onboarding, it is recommended that you modify
the embedding model setting in the OpenRAG Settings page or in your OpenRAG
configuration. This will automatically update all relevant OpenRAG flows to use the new

embedding model configuration.


https://github.com/langflow-ai/openrag/blob/main/src/services/models_service.py
https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py
https://www.ibm.com/think/topics/vector-search

Set Docling parameters

OpenRAG uses Docling for document ingestion because it supports many file formats,
processes tables and images well, and performs efficiently.

When you upload documents, Docling processes the files, splits them into chunks, and
stores them as separate, structured documents in your OpenSearch knowledge base.

You can use either Docling Serve or OpenRAG's built-in Docling ingestion pipeline to
process documents.

¢ Docling Serve ingestion: By default, OpenRAG uses Docling Serve. This means that
OpenRAG starts a docling serve process on your local machine and runs Docling

ingestion through an API service.

e Built-in Docling ingestion: If you want to use OpenRAG's built-in Docling ingestion
pipeline instead of the separate Docling Serve service, set
DISABLE_INGEST_WITH_LANGFLOW=true in your OpenRAG environment variables.

The built-in pipeline uses the Docling processor directly instead of through the
Docling Serve API.

For the underlying functionality, see processors.py inthe OpenRAG repository.

o—
To modify the Docling ingestion and embedding parameters, click =© Settings in the
OpenRAG user interface.

Q TP

-

OpenRAG warns you if docling serve isn't running. You can start and stop

OpenRAG services from the TUI main menu with Start Native Services or Stop

Native Services.

* Embedding model: Select the model to use to generate vector embeddings for your
documents.

This is initially set during installation. The recommended way to change this setting
is in the OpenRAG Settings or your OpenRAG configuration. This will automatically
update all relevant OpenRAG flows to use the new embedding model configuration.


https://docling-project.github.io/docling/
https://github.com/docling-project/docling-serve
https://github.com/langflow-ai/openrag/blob/main/src/models/processors.py#L58

If you uploaded documents prior to changing the embedding model, you can create
filters to separate documents embedded with different models, or you can reupload
all documents to regenerate embeddings with the new model. If you want to use
multiple embeddings models, similarity search (in the Chat) can take longer as it
searching each model's embeddings separately.

Chunk size: Set the number of characters for each text chunk when breaking down
a file. Larger chunks yield more context per chunk, but can include irrelevant
information. Smaller chunks yield more precise semantic search, but can lack
context. The default value is 1000 characters, which is usually a good balance

between context and precision.

Chunk overlap: Set the number of characters to overlap over chunk boundaries.
Use larger overlap values for documents where context is most important. Use
smaller overlap values for simpler documents or when optimization is most
important. The default value is 200 characters, which represents an overlap of 20
percent if the Chunk size is 1000. This is suitable for general use. For faster
processing, decrease the overlap to approximately 10 percent. For more complex
documents where you need to preserve context across chunks, increase it to

approximately 40 percent.

Table Structure: Enables Docling's DocumentConverter tool for parsing tables.
Instead of treating tables as plain text, tables are output as structured table data

with preserved relationships and metadata. This option is enabled by default.

OCR: Enables Optical Character Recognition (OCR) processing when extracting text
from images and ingesting scanned documents. This setting is best suited for
processing text-based documents faster with Docling's DocumentConverter.

Images are ignored and not processed.
This option is disabled by default. Enabling OCR can slow ingestion performance.

If OpenRAG detects that the local machine is running on macOS, OpenRAG uses the
ocrmac OCR engine. Other platforms use easyocr.

Picture descriptions: Only applicable if OCR is enabled. Adds image descriptions
generated by the SmolVLM-256M-Instruct model. Enabling picture descriptions

can slow ingestion performance.


https://docling-project.github.io/docling/reference/document_converter/
https://docling-project.github.io/docling/reference/document_converter/
https://www.piwheels.org/project/ocrmac/
https://www.jaided.ai/easyocr/
https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct

Set the local documents path

The default path for local uploads is the . /openrag—documents subdirectory in your
OpenRAG installation directory. This is mounted to the /app/openrag-documents/
directory inside the OpenRAG container. Files added to the host or container directory
are visible in both locations.

To change this location, modify the Documents Paths variable in either the Advanced
Setup menu or in the .env used by Docker Compose.

Delete knowledge

To clear your entire knowledge base, delete the contents of the . /opensearch-data
folder in your OpenRAG installation directory. This is a destructive operation that cannot

be undone.

See also

Ingest knowledge

Filter knowledge

Chat with knowledge

Inspect and modify flows



Ingest knowledge

Upload documents to your OpenRAG OpenSearch instance to populate your knowledge
base with unique content, such as your own company documents, research papers, or
websites. Documents are processed through OpenRAG's knowledge ingestion flows with
Docling.

OpenRAG can ingest knowledge from direct file uploads, URLs, and OAuth authenticated
connectors.

Knowledge ingestion is powered by OpenRAG's built-in knowledge ingestion flows that
use Docling to process documents before storing the documents in your OpenSearch
database. During ingestion, documents are broken into smaller chunks of content that
are then embedded using your selected embedding model. Then, the chunks,
embeddings, and associated metadata (which connects chunks of the same document)
are stored in your OpenSearch database.

To modify chunking behavior and other ingestion settings, see Knowledge ingestion

settings and Inspect and modify flows.

Ingest local files and folders
You can upload files and folders from your local machine to your knowledge base:
1. Click )\ Knowledge to view your OpenSearch knowledge base.

2. Click Add Knowledge to add your own documents to your OpenRAG knowledge
base.

3. To upload one file, click D File. To upload all documents in a folder, click D
Folder.

The default path is the ./documents subdirectory in your OpenRAG installation
directory. To change this path, see Set the local documents path.

The selected files are processed in the background through the OpenSearch Ingestion
flow.

About the OpenSearch Ingestion flow



When you upload documents locally or with OAuth connectors, the OpenSearch
Ingestion flow runs in the background. By default, this flow uses Docling Serve to import

and process documents.

Like all OpenRAG flows, you can inspect the flow in Langflow, and you can customize it if

you want to change the knowledge ingestion settings.

The OpenSearch Ingestion flow is comprised of several components that work together
to process and store documents in your knowledge base:

¢ Docling Serve component: Ingests files and processes them by connecting to
OpenRAG's local Docling Serve service. The output is DoclingDocument data that

contains the extracted text and metadata from the documents.

e Export DoclingDocument component: Exports processed DoclingDocument data
to Markdown format with image placeholders. This conversion standardizes the

document data in preparation for further processing.

e DataFrame Operations component: Three of these components run sequentially to
add metadata to the document data: filename, file_size, and mimetype.

e Split Text component: Splits the processed text into chunks, based on the
configured chunk size and overlap settings.

e Secret Input component: If needed, four of these components securely fetch the
OAuth authentication configuration variables: CONNECTOR_TYPE, OWNER,
OWNER_EMAIL, and OWNER_NAME.

¢ Create Data component: Combines the authentication credentials from the Secret
Input components into a structured data object that is associated with the
document embeddings.

¢ Embedding Model component: Generates vector embeddings using your selected
embedding model.

e OpenSearch component: Stores the processed documents and their embeddings in

a documents index of your OpenRAG OpenSearch knowledge base.


https://docs.langflow.org/bundles-docling#docling-serve
https://docs.langflow.org/bundles-docling#docling-serve
https://docs.langflow.org/bundles-docling#export-doclingdocument
https://docs.langflow.org/bundles-docling#export-doclingdocument
https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch

The default address for the OpenSearch instance is https://opensearch:9200.
To change this address, edit the OPENSEARCH_PORT environment variable.

The default authentication method is JSON Web Token (JWT) authentication. If you
edit the flow, you can select basic auth mode, which uses the
OPENSEARCH_USERNAME and OPENSEARCH_PASSWORD environment variables for
authentication instead of JWT.

You can monitor ingestion to see the progress of the uploads and check for failed
uploads.

Ingest local files temporarily

When using the OpenRAG Chat, click + in the chat input field to upload a file to the
current chat session. Files added this way are processed and made available to the agent
for the current conversation only. These files aren't stored in the knowledge base
permanently.

Ingest files with OAuth connectors

OpenRAG can use OAuth authenticated connectors to ingest documents from the

following external services:

AWS S3

Google Drive

Microsoft OneDrive

Microsoft Sharepoint

These connectors enable seamless ingestion of files from cloud storage to your
OpenRAG knowledge base.

Individual users can connect their personal cloud storage accounts to OpenRAG. Each
user must separately authorize OpenRAG to access their own cloud storage. When a
user connects a cloud storage service, they are redirected to authenticate with that
service provider and grant OpenRAG permission to sync documents from their personal
cloud storage.

Enable OAuth connectors



Before users can connect their own cloud storage accounts, you must configure the
provider's OAuth credentials in OpenRAG. Typically, this requires that you register
OpenRAG as an OAuth application in your cloud provider, and then obtain the app's
OAuth credentials, such as a client ID and secret key. To enable multiple connectors, you

must register an app and generate credentials for each provider.

TUI Advanced Setup

If you use the TUI to manage your OpenRAG containers, provide OAuth credentials in the
Advanced Setup.

You can do this during installation, or you can add the credentials afterwards:
1. If OpenRAG is running, stop it: Go to Status, and then click Stop Services.

2. Click Advanced Setup, and then add the OAuth credentials for the cloud storage
providers that you want to use:

o Amazon: Provide your AWS Access Key ID and AWS Secret Access Key with
access to your S3 instance. For more information, see the AWS documentation
on Configuring access to AWS applications.

o Google: Provide your Google OAuth Client ID and Google OAuth Client Secret.
You can generate these in the Google Cloud Console. For more information, see
the Google OAuth client documentation.

o Microsoft: For the Microsoft OAuth Client ID and Microsoft OAuth Client Secret,
provide Azure application registration credentials for SharePoint and OneDrive.
For more information, see the Microsoft Graph OAuth client documentation.

3. The OpenRAG TUI presents redirect URIs for your OAuth app that you must register
with your OAuth provider. These are the URLs your OAuth provider will redirect back

to after users authenticate and grant access to their cloud storage.
4. Click Save Configuration.

OpenRAG regenerates the .env file with the given credentials.
5. Click Start Container Services.

Docker Compose .env file


https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-applications.html
https://console.cloud.google.com/apis/credentials
https://developers.google.com/identity/protocols/oauth2
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/app-registration?view=odsp-graph-online
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/graph-oauth

If you install OpenRAG with self-managed containers, set OAuth credentials in the .env
file for Docker Compose.

You can do this during initial set up, or you can add the credentials afterwards:
1. Stop your OpenRAG deployment.

Podman:

podman stop ——all

Docker:

docker stop $(docker ps -q)

2. Edit the .env file for Docker Compose to add the OAuth credentials for the cloud

storage providers that you want to use:

o Amazon: Provide your AWS Access Key ID and AWS Secret Access Key with
access to your S3 instance. For more information, see the AWS documentation

on Configuring access to AWS applications.

AWS_ACCESS_KEY_ID=
AWS_SECRET_ACCESS_KEY=

o Google: Provide your Google OAuth Client ID and Google OAuth Client Secret.
You can generate these in the Google Cloud Console. For more information, see
the Google OAuth client documentation.

GOOGLE_OAUTH_CLIENT_ID=
GOOGLE_OAUTH_CLIENT_SECRET=

o Microsoft: For the Microsoft OAuth Client ID and Microsoft OAuth Client Secret,
provide Azure application registration credentials for SharePoint and OneDrive.
For more information, see the Microsoft Graph OAuth client documentation.


https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-applications.html
https://console.cloud.google.com/apis/credentials
https://developers.google.com/identity/protocols/oauth2
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/app-registration?view=odsp-graph-online
https://learn.microsoft.com/en-us/onedrive/developer/rest-api/getting-started/graph-oauth

MICROSOFT_GRAPH_OAUTH_CLIENT_ID=
MICROSOFT_GRAPH_OAUTH_CLIENT_SECRET=

3. Save the .env file.
4. Restart your OpenRAG deployment:

Podman:
podman-compose up -d
Docker:

docker—-compose up -d

Authenticate and ingest files from cloud storage

After you start OpenRAG with OAuth connectors enabled, each user is prompted to
authenticate with the OAuth provider upon accessing your OpenRAG instance. Individual
authentication is required to access a user's cloud storage from your OpenRAG instance.
For example, if a user navigates to the default OpenRAG URL at
http://localhost:3000, they are redirected to the OAuth provider's sign-in page.
After authenticating and granting the required permissions for OpenRAG, the user is
redirected back to OpenRAG.

To ingest knowledge with an OAuth connector, do the following:

1. Click i Knowledge to view your OpenSearch knowledge base.
2. Click Add Knowledge, and then select a storage provider.

3. On the Add Cloud Knowledge page, click Add Files, and then select the files and

folders to ingest from the connected storage.
4. Click Ingest Files.

The selected files are processed in the background through the OpenSearch Ingestion
flow.



About the OpenSearch Ingestion flow

When you upload documents locally or with OAuth connectors, the OpenSearch
Ingestion flow runs in the background. By default, this flow uses Docling Serve to import

and process documents.

Like all OpenRAG flows, you can inspect the flow in Langflow, and you can customize it if

you want to change the knowledge ingestion settings.

The OpenSearch Ingestion flow is comprised of several components that work together
to process and store documents in your knowledge base:

e Docling Serve component: Ingests files and processes them by connecting to
OpenRAG's local Docling Serve service. The output is DoclingDocument data that

contains the extracted text and metadata from the documents.

e Export DoclingDocument component: Exports processed DoclingDocument data
to Markdown format with image placeholders. This conversion standardizes the

document data in preparation for further processing.

e DataFrame Operations component: Three of these components run sequentially to
add metadata to the document data: filename, file_size, and mimetype.

e Split Text component: Splits the processed text into chunks, based on the
configured chunk size and overlap settings.

e Secret Input component: If needed, four of these components securely fetch the
OAuth authentication configuration variables: CONNECTOR_TYPE, OWNER,
OWNER_EMAIL, and OWNER_NAME.

¢ Create Data component: Combines the authentication credentials from the Secret
Input components into a structured data object that is associated with the
document embeddings.

e Embedding Model component: Generates vector embeddings using your selected

embedding model.

e OpenSearch component: Stores the processed documents and their embeddings in

a documents index of your OpenRAG OpenSearch knowledge base.


https://docs.langflow.org/bundles-docling#docling-serve
https://docs.langflow.org/bundles-docling#docling-serve
https://docs.langflow.org/bundles-docling#export-doclingdocument
https://docs.langflow.org/bundles-docling#export-doclingdocument
https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#dataframe-operations
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-processing#split-text
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch

The default address for the OpenSearch instance is https://opensearch:9200.
To change this address, edit the OPENSEARCH_PORT environment variable.

The default authentication method is JSON Web Token (JWT) authentication. If you
edit the flow, you can select basic auth mode, which uses the
OPENSEARCH_USERNAME and OPENSEARCH_PASSWORD environment variables for
authentication instead of JWT.

You can monitor ingestion to see the progress of the uploads and check for failed
uploads.

Ingest knowledge from URLs

The OpenSearch URL Ingestion flow is used to ingest web content from URLs. This flow
isn't directly accessible from the OpenRAG user interface. Instead, this flow is called by
the OpenRAG OpenSearch Agent flow as a Model Context Protocol (MCP) tool. The
agent can call this component to fetch web content from a given URL, and then ingest
that content into your OpenSearch knowledge base.

Like all OpenRAG flows, you can inspect the flow in Langflow, and you can customize it.

For more information about MCP in Langflow, see the Langflow documentation on MCP
clients and MCP servers.

Monitor ingestion

Document ingestion tasks run in the background.

Q

In the OpenRAG user interface, a badge is shown on < Tasks when OpenRAG tasks are

active. Click Q Tasks to inspect and cancel tasks:

* Active Tasks: All tasks that are Pending, Running, or Processing. For each active
task, depending on its state, you can find the task ID, start time, duration, number of
files processed, and the total files enqueued for processing.

¢ Pending: The task is queued and waiting to start.

* Running: The task is actively processing files.


https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-tutorial

* Processing: The task is performing ingestion operations.

e Failed: Something went wrong during ingestion, or the task was manually canceled.

For troubleshooting advice, see Troubleshoot ingestion.

To stop an active task, click X Cancel. Canceling a task stops processing immediately

and marks the task as Failed.

Ingestion performance expectations

The following performance test was conducted with Docling Serve.

On a local VM with 7 vCPUs and 8 GiB RAM, OpenRAG ingested approximately 5.03 GB
across 1,083 files in about 42 minutes. This equates to approximately 2.4 documents per
second.

You can generally expect equal or better performance on developer laptops, and
significantly faster performance on servers. Throughput scales with CPU cores, memory,
storage speed, and configuration choices, such as the embedding model, chunk size,

overlap, and concurrency.

This test returned 12 error, approximately 1.1 percent of the total files ingested. All errors
were file-specific, and they didn't stop the pipeline.

Ingestion performance test details

e Ingestion dataset:

o Total files: 1,083 items mounted
o Total size on disk: 5,026,474,862 bytes (approximately 5.03 GB)
e Hardware specifications:

o Machine: Apple M4 Pro

o Podman VM:
= Name: podman-machine-default
= Type: applehv
= vCPUs: 7
= Memory: 8 GiB
= Disk size: 100 GiB

e Test results:



2025-09-24T22:40:45.542190Z /app/src/main.py:231 Ingesting
default documents when ready disable_langflow_ingest=False
2025-09-24T22:40:45.546385Z /app/src/main.py:270 Using Langflow
ingestion pipeline for default documents file_count=1082

2025-09-24T23:19:44.866365Z /app/src/main.py:351 Langflow
ingestion completed success_count=1070 error_count=12
total_files=1082

e Elapsed time: Approximately 42 minutes 15 seconds (2,535 seconds)

e Throughput: Approximately 2.4 documents per second

Troubleshoot ingestion

If an ingestion task fails, do the following:

e Make sure you are uploading supported file types.

e Split excessively large files into smaller files before uploading.

e Remove unusual embedded content, such as videos or animations, before
uploading. Although Docling can replace some non-text content with placeholders
during ingestion, some embedded content might cause errors.

If the OpenRAG Chat doesn't seem to use your documents correctly, browse your
knowledge base to confirm that the documents are uploaded in full, and the chunks are
correct.

If the documents are present and well-formed, check your knowledge filters. If a global
filter is applied, make sure the expected documents are included in the global filter. If the
global filter excludes any documents, the agent cannot access those documents unless

you apply a chat-level filter or change the global filter.

If text is missing or incorrectly processed, you need to reupload the documents after

modifying the ingestion parameters or the documents themselves. For example:

e Break combined documents into separate files for better metadata context.

¢ Make sure scanned documents are legible enough for extraction, and enable the
OCR option. Poorly scanned documents might require additional preparation or
rescanning before ingestion.



¢ Adjust the Chunk Size and Chunk Overlap settings to better suit your documents.
Larger chunks provide more context but can include irrelevant information, while

smaller chunks yield more precise semantic search but can lack context.

For more information about modifying ingestion parameters and flows, see Knowledge
ingestion settings.

See also

Configure knowledge

Filter knowledge

Chat with knowledge

Inspect and modify flows



Filter knowledge

OpenRAG's knowledge filters help you organize and manage your knowledge base by
creating pre-defined views of your documents.

Each knowledge filter captures a specific subset of documents based on given a search
query and filters.

Knowledge filters can be used with different OpenRAG functionality. For example,
knowledge filters can help agents access large knowledge bases efficiently by narrowing
the scope of documents that you want the agent to use.

Create afilter

To create a knowledge filter, do the following:

1. Click Knowledge, and then click + Knowledge Filters.
2. Enter a Name and Description, and then click Create Filter.

By default, new filters match all documents in your knowledge base. Modify the filter

to customize it.

3. To modify the filter, click )\ Knowledge, and then click your new filter. You can edit
the following settings:

o Search Query: Enter text for semantic search, such as financial reports
from Q4.

o Data Sources: Select specific data sources or folders to include.

o Document Types: Filter by file type.

o Owners: Filter by the user that uploaded the documents.

o Connectors: Filter by upload source, such as the local file system or a Google
Drive OAuth connector.

o Response Limit: Set the maximum number of results to return from the
knowledge base. The default is 10.

o Score Threshold: Set the minimum relevance score for similarity search. The
default scoreis 0.

4. To save your changes, click Update Filter.



Apply a filter

* Apply a global filter: Click |||\ Knowledge, and then enable the toggle next to your
preferred filter. Only one filter can be the global filter. The global filter applies to all

chat sessions.

e Apply a chat filter: In the l:l Chat window, click V Filter, and then select the filter

to apply. Chat filters apply to one chat session only.

Delete afilter
1. Click )\ Knowledge.
2. Click the filter that you want to delete.

3. Click Delete Filter.



Chat in OpenRAG

After you upload documents to your knowledge base, you can use the OpenRAG D
Chat feature to interact with your knowledge through natural language queries.

Q TP

Try chatting, uploading documents, and modifying chat settings in the quickstart.

OpenRAG OpenSearch Agent flow

When you use the OpenRAG Chat, the OpenRAG OpenSearch Agent flow runs in the
background to retrieve relevant information from your knowledge base and generate a
response.

If you inspect the flow in Langflow, you'll see that it is comprised of eight components
that work together to ingest chat messages, retrieve relevant information from your
knowledge base, and then generate responses.

N

tarter Project / (@) OpenRAG OpenSearch Agent Ouak @ o @

AAAAAAAAAAA

‘‘‘‘‘

uuuuuuuuuu

e Chat Input component: This component starts the flow when it receives a chat
message. It is connected to the Agent component's Input port. When you use the
OpenRAG Chat, your chat messages are passed to the Chat Input component,
which then sends them to the Agent component for processing.


https://docs.langflow.org/components-io
https://docs.langflow.org/components-io

e Agent component: This component orchestrates the entire flow by processing chat
messages, searching the knowledge base, and organizing the retrieved information
into a cohesive response. The agent's general behavior is defined by the prompt in
the Agent Instructions field and the model connected to the Language Model port.
One or more specialized tools can be attached to the Tools port to extend the
agent's capabilities. In this case, there are two tools: MCP Tools and OpenSearch.

The Agent component is the star of this flow because it powers decision making,

tool calling, and an LLM-driven conversational experience.
How do agents work:

Agents extend Large Language Models (LLMs) by integrating tools, which are
functions that provide additional context and enable autonomous task execution.
These integrations make agents more specialized and powerful than standalone
LLMs.

Whereas an LLM might generate acceptable, inert responses to general queries and
tasks, an agent can leverage the integrated context and tools to provide more
relevant responses and even take action. For example, you might create an agent
that can access your company's documentation, repositories, and other resources to
help your team with tasks that require knowledge of your specific products,
customers, and code.

Agents use LLMs as a reasoning engine to process input, determine which actions to
take to address the query, and then generate a response. The response could be a
typical text-based LLM response, or it could involve an action, like editing a file,

running a script, or calling an external API.

In an agentic context, tools are functions that the agent can run to perform tasks or
access external resources. A function is wrapped as a Tool object with a common
interface that the agent understands. Agents become aware of tools through tool
registration, which is when the agent is provided a list of available tools typically at
agent initialization. The Tool object's description tells the agent what the tool can do
so that it can decide whether the tool is appropriate for a given request.

e Language Model component: Connected to the Agent component's Language

Model port, this component provides the base language model driver for the agent.


https://docs.langflow.org/agents
https://docs.langflow.org/agents
https://docs.langflow.org/components-models
https://docs.langflow.org/components-models

The agent cannot function without a model because the model is used for general
knowledge, reasoning, and generating responses.

Different models can change the style and content of the agent's responses, and
some models might be better suited for certain tasks than others. If the agent
doesn't seem to be handling requests well, try changing the model to see how the
responses change. For example, fast models might be good for simple queries, but
they might not have the depth of reasoning for complex, multi-faceted queries.
MCP Tools component: Connected to the Agent component's Tools port, this
component can be used to access any Model Context Protocol (MCP) server and the
MCP tools provided by that server. In this case, your OpenRAG Langflow instance's
Starter Project is the MCP server, and the OpenSearch URL Ingestion flow is the
MCP tool. This flow fetches content from URLs, and then stores the content in your
OpenRAG OpenSearch knowledge base. By serving this flow as an MCP tool, the
agent can selectively call this tool if a URL is detected in the chat input.

OpenSearch component: Connected to the Agent component's Tools port, this
component lets the agent search your OpenRAG OpenSearch knowledge base. The
agent might not use this database for every request; the agent uses this connection

only if it decides that documents in your knowledge base are relevant to your query.

Embedding Model component: Connected to the OpenSearch component's
Embedding port, this component generates embeddings from chat input that are
used in similarity search to find content in your knowledge base that is relevant to
the chat input. The agent uses this information to generate context-aware responses

that are specialized for your data.

It is critical that the embedding model used here matches the embedding model
used when you upload documents to your knowledge base. Mismatched models and
dimensions can degrade the quality of similarity search results causing the agent to
retrieve irrelevant documents from your knowledge base.

Text Input component: Connected to the OpenSearch component's Search Filters
port, this component is populated with a Langflow global variable named OPENRAG-
QUERY-FILTER. If a global or chat-level knowledge filter is set, then the variable
contains the filter expression, which limits the documents that the agent can access
in the knowledge base. If no knowledge filter is set, then the OPENRAG-QUERY-


https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-client
https://docs.langflow.org/mcp-server
https://docs.langflow.org/concepts-flows#projects
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/bundles-elastic#opensearch
https://docs.langflow.org/components-embedding-models
https://docs.langflow.org/components-embedding-models
https://www.ibm.com/think/topics/vector-search
https://docs.langflow.org/components-io
https://docs.langflow.org/components-io

FILTER variable is empty, and the agent can access all documents in the knowledge
base.

e Chat Output component: Connected to the Agent component's Output port, this
component returns the agent's generated response as a chat message.

Nudges

When you use the OpenRAG Chat, the OpenRAG OpenSearch Nudges flow runs in the
background to pull additional context from your knowledge base and chat history.

Nudges appear as prompts in the chat. Click a nudge to accept it and provide the

nudge's context to the OpenRAG Chat agent (the OpenRAG OpenSearch Agent flow).

Like OpenRAG's other built-in flows, you can inspect the flow in Langflow, and you can
customize it if you want to change the nudge behavior.

Upload documents to the chat

When using the OpenRAG Chat, click + in the chat input field to upload a file to the
current chat session. Files added this way are processed and made available to the agent
for the current conversation only. These files aren't stored in the knowledge base

permanently.

Inspect tool calls and knowledge

During the chat, you'll see information about the agent's process. For more detail, you
can inspect individual tool calls. This is helpful for troubleshooting because it shows you
how the agent used particular tools. For example, click Function Call:
search_documents (tool_call) to view the log of tool calls made by the agent to the
OpenSearch component.

If documents in your knowledge base seem to be missing or interpreted incorrectly, see

Troubleshoot ingestion.

If tool calls and knowledge appear normal, but the agent's responses seem off-topic or
incorrect, consider changing the agent's language model or prompt, as explained in
Inspect and modify flows.

Integrate OpenRAG chat into an application


https://docs.langflow.org/components-io
https://docs.langflow.org/components-io

You can integrate OpenRAG flows into your applications using the Langflow API. To
simplify this integration, you can get pre-configured code snippets directly from the
embedded Langflow visual editor.

The following example demonstrates how to generate and use code snippets for the
OpenRAG OpenSearch Agent flow:

1. Open the OpenRAG OpenSearch Agent flow in the Langflow visual editor: From the

o—
Chat window, click =0 Settings, click Edit in Langflow, and then click Proceed.

2. Create a Langflow API key, which is a user-specific token required to send requests
to the Langflow server. This key doesn't grant access to OpenRAG.

i. In the Langflow visual editor, click your user icon in the header, and then select
Settings.

ii. Click Langflow API Keys, and then click + Add New.
iii. Name your key, and then click Create API Key.
iv. Copy the API key and store it securely.
v. Exit the Langflow Settings page to return to the visual editor.
3. Click Share, and then select APl access to get pregenerated code snippets that call
the Langflow APl and run the flow.

These code snippets construct API requests with your Langflow server URL
(LANGFLOW_SERVER_ADDRESS ), the flow to run (FLOW_ID), required headers
(LANGFLOW_API_KEY, Content-Type), and a payload containing the required

inputs to run the flow, including a default chat input message.

In production, you would modify the inputs to suit your application logic. For
example, you could replace the default chat input message with dynamic user input.

Python:

import requests

import os

import uuid

api_key = 'LANGFLOW_API_KEY'

url = "http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID" #
The complete API endpoint URL for this flow


https://docs.langflow.org/api-reference-api-examples
https://docs.langflow.org/api-keys-and-authentication

# Request payload configuration
payload = {
"output_type": "chat",
"input_type": '"chat",
"input_value": "hello world!"
b
payload["session_id"] = str(uuid.uuid4())
headers = {"x-api-key": api_key}
try:
# Send API request
response = requests.request("POST", url, json=payload,
headers=headers)
response.raise_for_status() # Raise exception for bad
status codes
# Print response
print(response.text)
except requests.exceptions.RequestException as e:
print(f"Error making API request: {e}")
except ValueError as e:
print(f"Error parsing response: {e}")

TypeScript:

const crypto = require('crypto');
const apiKey = 'LANGFLOW_API_KEY';
const payload = {
"output_type": "chat",
"input_type": "chat",
"input_value": "hello world!"
i
payload.session_id = crypto.randomUUID();
const options = {
method: 'POST',
headers: {
‘Content-Type': 'application/json',
"x—api-key": apiKey

b

body: JSON.stringify(payload)
I
fetch('http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID',
options)

.then(response => response.json())



.then(response => console.warn(response))
.catch(err => console.error(err));

curl:

curl ——request POST \
—url 'http://LANGFLOW_SERVER_ADDRESS/api/v1/run/FLOW_ID?
stream=false' \
——header 'Content-Type: application/json' \
——header "x—-api-key: LANGFLOW_API_KEY" \
——data '{
"output_type": "chat",
"input_type": "chat",
"input_value": "hello world!"

}I
4. Copy your preferred snippet, and then run it:

o Python: Paste the snippet into a .py file, save it, and then run it with python
filename.py.

o TypeScript: Paste the snippet into a . ts file, save it, and then run it with ts—
node filename.ts.

o curl: Paste and run snippet directly in your terminal.

If the request is successful, the response includes many details about the flow run,
including the session ID, inputs, outputs, components, durations, and more.

In production, you won't pass the raw response to the user in its entirety. Instead, you
extract and reformat relevant fields for different use cases, as demonstrated in the
Langflow quickstart. For example, you could pass the chat output text to a front-end
user-facing application, and store specific fields in logs and backend data stores for
monitoring, chat history, or analytics. You could also pass the output from one flow as

input to another flow.


https://docs.langflow.org/quickstart#extract-data-from-the-response

Environment variables

OpenRAG recognizes environment variables from the following sources:

e Environment variables: Values set in the .env file.

e Langflow runtime overrides: Langflow components can set environment variables at
runtime.

e Default or fallback values: These values are default or fallback values if OpenRAG

doesn't find a value.

Configure environment variables

Environment variables are setina .env file in the root of your OpenRAG project

directory.
For an example .env file, see .env.example in the OpenRAG repository.

The Docker Compose files are populated with values from your .env, so you don't need

to edit the Docker Compose files manually.
Environment variables always take precedence over other variables.

Set environment variables

After you start OpenRAG, you must stop and restart OpenRAG containers to apply any

changes you make to the .env file.
To set mutable environment variables, do the following:
1. Stop OpenRAG with the TUI or Docker Compose.

2. Set the values in the .env file:

LOG_LEVEL=DEBUG
LOG_FORMAT=json
SERVICE_NAME=openrag-dev

3. Start OpenRAG with the TUI or Docker Compose.


https://github.com/langflow-ai/openrag/blob/main/.env.example

Certain environment variables that you set during application onboarding, such as
provider API keys and provider endpoints, require resetting the containers after

modifying the .env file.

To change immutable variables with TUI-managed containers, you must reinstall
OpenRAG and either delete or modify the .env file before you repeat the setup and

onboarding process in the TUI.
To change immutable variables with self-managed containers, do the following:
1. Stop OpenRAG with Docker Compose.

2. Remove the containers:

docker—-compose down

3. Update the values in your .env file.

4. Start OpenRAG with Docker Compose:

docker—-compose up -d

5. Repeat application onboarding. The values in your .env file are automatically

populated.

Supported environment variables

All OpenRAG configuration can be controlled through environment variables.

Al provider settings

Configure which models and providers OpenRAG uses to generate text and embeddings.
These are initially set during application onboarding. Some values are immutable and can
only be changed by recreating the OpenRAG containers, as explained in Set environment

variables.



Variable

EMBEDDING_MODEL

LLM_MODEL

MODEL_PROVIDER

OPENAI_API_KEY

PROVIDER_API_KEY

PROVIDER_ENDPOINT

PROVIDER_PROJECT_ID

Document processing

Default

text-
embedding-
3-small

apt-4o-
mini

openai

Not set

Not set

Not set

Not set

Description

Embedding model for generating
vector embeddings for documents in
the knowledge base and similarity
search queries. Can be changed after
application onboarding. Accepts one or
more models.

Language model for language
processing and text generation in the
Chat feature.

Model provider, such as OpenAl or IBM
watsonx.ai.

Optional OpenAl API key for the default
model. For other providers, use
PROVIDER_API_KEY.

API key for the model provider.

Custom provider endpoint for the IBM
and Ollama model providers. Leave
unset for other model providers.

Project ID for the IBM watsonx.ai model
provider only. Leave unset for other
model providers.

Control how OpenRAG processes and ingests documents into your knowledge base.

Variable

CHUNK_OVERLAP

CHUNK_SIZE

De

200

1000

DISABLE_INGEST_WITH_LANGFLOW false

DOCLING_OCR_ENGINE

Set by

fault Description
Overlap between chunks.

Text chunk size for
document processing.

Disable Langflow ingestion
pipeline.

(O OCR engine for document
processing. For macQOS,



Variable

OCR_ENABLED

OPENRAG_DOCUMENTS_PATHS

PICTURE_DESCRIPTIONS_ENABLED

Langflow settings

Configure Langflow authentication.

Variable

LANGFLOW_AUTO_LOGIN

LANGFLOW_CHAT_FLOW_ID

LANGFLOW_ENABLE_SUPERUSER_CLI

LANGFLOW_INGEST_FLOW_ID

Default

false

./openrag-
documents

false

Default

False

Built-in flow ID

False

Built-in flow ID

Description

ocrmac . For any other OS,
easyocr.

Enable OCR for image
processing.

Document paths for
ingestion.

Enable picture
descriptions.

Description

Enable auto-
login for
Langflow.

This value is
automatically
set to the ID of
the chat flow.
The default
value is found ir
.env.example
Only change
this value if you
explicitly don't
want to use this
built-in flow.

Enable
superuser
privileges for
Langflow CLI
commands.

This value is
automatically
set to the ID of
the ingestion
flow. The


https://github.com/langflow-ai/openrag/blob/main/.env.example

Variable

LANGFLOW_KEY

LANGFLOW_NEW_USER_IS_ACTIVE

LANGFLOW_PUBLIC_URL

LANGFLOW_SECRET_KEY

LANGFLOW_SUPERUSER

LANGFLOW_SUPERUSER_PASSWORD

LANGFLOW_URL

NUDGES_FLOW_ID

Default

Automatically generated

False

http://localhost:7860

Not set

None, must be explicitly
set

None, must be explicitly
set

http://localhost:7860

Built-in flow ID

Description

default value is
found in
.env.example
Only change
this value if you
explicitly don't
want to use this
built-in flow.

Explicit
Langflow API
key.

Whether new
Langflow users
are active by
default.

Public URL for
the Langflow
instance.

Secret key for
Langflow
internal
operations.

Langflow admin
username.
Required.

Langflow admin
password.
Required.

URL for the
Langflow
instance.

This value is
automatically
set to the ID of
the nudges flow
The default
value is found ir
.env.example
Only change
this value if you


https://github.com/langflow-ai/openrag/blob/main/.env.example
https://github.com/langflow-ai/openrag/blob/main/.env.example

Variable Default Description

explicitly don't
want to use this
built-in flow.

You are a helpful AI
assistant with access
to a knowledge base.

System prompt
instructions for

SYSTEM_PROMPT Answer questions gh.e gge{\r’]t Chat
based on the provided ﬂrlvmg etha
context. OW.

OAuth provider settings
Configure OAuth providers and external service integrations.
Variable Default Description

AWS_ACCESS_KEY_ID / AWS_SECRET_ACCESS_KEY

AWS integrations.

GOOGLE OAUTH CLIENT 1ID / Google OAuth
GOOGLE_OAUTH_CLIENT_SECRET authentication.

MICROSOFT GRAPH OAUTH CLIENT 1ID /

MICROSOFT_GRAPH_OAUTH_CLIENT_SECRET - Microsoft OAuth.

Base URL for
WEBHOOK_BASE_URL - webhook
endpoints.

OpenSearch settings

Configure OpenSearch database authentication.

Variable Default Description
OPENSEARCH_HOST localhost OpenSearch host.

Password for OpenSearch admin user.

OPENSEARCH_PASSWORD - .
Required.

OPENSEARCH_PORT 9200 OpenSearch port.



Variable

OPENSEARCH_USERNAME

System settings

Default

admin

Description

OpenSearch username.

Configure general system components, session management, and logging.

Variable

LANGFLOW_KEY_RETRIES

Default

15

LANGFLOW_KEY_RETRY_DELAY 2.0

LANGFLOW_VERSION

LOG_FORMAT

LOG_LEVEL

MAX_WORKERS

OPENRAG_VERSION

SERVICE_NAME

SESSION_SECRET

OPENRAG_VERSION

Disabled

INFO

latest

openrag

Automatically
generated

Description

Number of retries for
Langflow key generation.

Delay between retries in
seconds.

Langflow Docker image
version. By default,
OpenRAG uses the
OPENRAG_VERSION for the
Langflow Docker image
version.

Setto json to enabled
JSON-formatted log
output.

Logging level (DEBUG,
INFO, WARNING, ERROR).

Maximum number of
workers for document
processing.

The version of the
OpenRAG Docker images
to run. For more
information, see Upgrade
OpenRAG

Service name for logging.

Session management.



Langflow runtime overrides

You can modify flow settings at runtime without permanently changing the flow's
configuration.

Runtime overrides are implemented through tweaks, which are one-time parameter
modifications that are passed to specific Langflow components during flow execution.

For more information on tweaks, see the Langflow documentation on Input schema
(tweaks).

Default values and fallbacks

If a variable isn't set by environment variables or a configuration file, OpenRAG can use a
default value if one is defined in the codebase. Default values can be found in the
OpenRAG repository:

¢ OpenRAG configuration: config_manager.py
e System configuration: settings.py

* Logging configuration: logging_config.py


https://docs.langflow.org/concepts-publish#input-schema
https://docs.langflow.org/concepts-publish#input-schema
https://github.com/langflow-ai/openrag/blob/main/src/config/config_manager.py
https://github.com/langflow-ai/openrag/blob/main/src/config/settings.py
https://github.com/langflow-ai/openrag/blob/main/src/utils/logging_config.py

Troubleshoot OpenRAG

This page provides troubleshooting advice for issues you might encounter when using
OpenRAG or contributing to OpenRAG.

OpenSearch fails to start

Check that OPENSEARCH_PASSWORD set in Environment variables meets requirements.
The password must contain at least 8 characters, and must contain at least one
uppercase letter, one lowercase letter, one digit, and one special character that is strong.

OpenRAG fails to start from the TUI with operation not
supported

This error occurs when starting OpenRAG with the TUl in WSL (Windows Subsystem for

Linux).

The error occurs because OpenRAG is running within a WSL environment, so
webbrowser.open() can't launch a browser automatically.

To access the OpenRAG application, open a web browser and enter
http://localhost:3000 in the address bar.

OpenRAG installation fails with unable to get local issuer
certificate

If you are installing OpenRAG on macOS, and the installation fails with unable to get
local issuer certificate, run the following command, and then retry the

installation:

open "/Applications/Python VERSION/Install Certificates.command"

Replace VERSION with your installed Python version, such as 3.13.

Langflow connection issues

Verify the LANGFLOW_SUPERUSER credentials set in Environment variables are correct.


https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install

Container out of memory errors

Increase Docker memory allocation or use docker-compose-cpu.yml to deploy
OpenRAG.

Memory issue with Podman on macOS

If you're using Podman on macQOS, you might need to increase VM memory on your
Podman machine. This example increases the machine size to 8 GB of RAM, which

should be sufficient to run OpenRAG.

podman machine stop

podman machine rm

podman machine init —-memory 8192 # 8 GB example
podman machine start

Port conflicts

Ensure ports 3000, 7860, 8000, 9200, 5601 are available.

OCR ingestion fails (easyocr not installed)

If Docling ingestion fails with an OCR-related error and mentions easyocr is missing,

this is likely due to a stale uv cache.

easyocr is already included as a dependency in OpenRAG's pyproject.toml. Project-
managed installations using uv sync and uv run always sync dependencies directly

from your pyproject.toml, so they should have easyocr installed.

If you're running OpenRAG with uvx openrag, uvx creates a cached, ephemeral

environment that doesn't modify your project. This cache can become stale.

On macOS, this cache directory is typically a user cache directory such as
/Users/USER_NAME/.cache/uv.

1. To clear the uv cache, run:

uv cache clean


https://github.com/langflow-ai/openrag/blob/main/docker-compose-cpu.yml

2. Start OpenRAG:
uvx openrag

If you don't need OCR, you can disable OCR-based processing in your ingestion settings

to avoid requiring easyocr.

Upgrade fails due to Langflow container already exists

If you encounter a langflow container already exists error when upgrading
OpenRAG, this typically means you upgraded OpenRAG with uv, but you didn't remove

or upgrade containers from a previous installation.
To resolve this issue, do the following:

First, try removing only the Langflow container, and then retry the upgrade in the
OpenRAG TUI by clicking Status and then Upgrade.

Podman:

1. Stop the Langflow container:
podman stop langflow

2. Remove the Langflow container:
podman rm langflow ——force

Docker:

1. Stop the Langflow container:

docker stop langflow

2. Remove the Langflow container:



docker rm langflow ——force

If reinstalling the Langflow container doesn't resolve the issue, you must reset to a fresh
installation by removing all OpenRAG containers and data. Then, you can retry the
upgrade.

A\ WARNING
This is a destructive operation that destroys your OpenRAG containers and their

contents. However, your .env file (configuration settings) and ./opensearch-
data (OpenSearch knowledge base) are preserved.

To reset your installation, stop your containers, and then completely remove them. After

removing the containers, retry the upgrade in the OpenRAG TUI by clicking Status and
then Upgrade.

Podman:

1. Stop all running containers:

podman stop ——all

2. Remove all containers, including stopped containers:

podman rm ——all —-force

3. Remove all images:

podman rmi ——all ——force

4. Remove all volumes:

podman volume prune ——force



5. Remove all networks except the default network:

podman network prune ——force

6. Clean up any leftover data:

podman system prune ——all ——force —--volumes

Docker:

1. Stop all running containers:

docker stop $(docker ps -q)

2. Remove all containers, including stopped containers:

docker rm ——force $(docker ps -aq)

3. Remove all images:

docker rmi —-force $(docker images -q)

4. Remove all volumes:

docker volume prune —-force

5. Remove all networks except the default network:

docker network prune ——force

6. Clean up any leftover data:



docker system prune ——all —-force —-volumes

Reinstalling OpenRAG doesn't reset onboarding

If you reinstall OpenRAG, you can restore your installation to it's original, default state by
resetting the containers and deleting the .env file.

When you start OpenRAG after doing this, you should be prompted to go through the
initial setup and onboarding process again.

Due to a known issue, the onboarding process might not reset when you reinstall
OpenRAG. If this occurs, install OpenRAG in a new Python project directory (with uv
init and uv add openrag).

Document ingestion or similarity search issues

See Troubleshoot ingestion.



