update FLOW_ID variable

This commit is contained in:
Gabriel Luiz Freitas Almeida 2025-09-08 14:59:01 -03:00
parent 4f72b88fcc
commit e144f8f0ef

View file

@ -1,4 +1,5 @@
import json
from utils.logging_config import get_logger
logger = get_logger(__name__)
@ -178,9 +179,9 @@ class ChatService:
"Langflow client not initialized. Ensure LANGFLOW is reachable or set LANGFLOW_KEY."
)
response_text, response_id = await async_langflow(
langflow_client,
LANGFLOW_CHAT_FLOW_ID,
document_prompt,
langflow_client=langflow_client,
flow_id=LANGFLOW_CHAT_FLOW_ID,
prompt=document_prompt,
extra_headers=extra_headers,
previous_response_id=previous_response_id,
)
@ -199,17 +200,17 @@ class ChatService:
async def get_chat_history(self, user_id: str):
"""Get chat conversation history for a user"""
from agent import get_user_conversations, active_conversations
from agent import active_conversations, get_user_conversations
if not user_id:
return {"error": "User ID is required", "conversations": []}
# Get metadata from persistent storage
conversations_dict = get_user_conversations(user_id)
# Get in-memory conversations (with function calls)
in_memory_conversations = active_conversations.get(user_id, {})
logger.debug(
"Getting chat history for user",
user_id=user_id,
@ -219,7 +220,7 @@ class ChatService:
# Convert conversations dict to list format with metadata
conversations = []
# First, process in-memory conversations (they have function calls)
for response_id, conversation_state in in_memory_conversations.items():
# Filter out system messages
@ -235,13 +236,13 @@ class ChatService:
}
if msg.get("response_id"):
message_data["response_id"] = msg["response_id"]
# Include function call data if present
if msg.get("chunks"):
message_data["chunks"] = msg["chunks"]
if msg.get("response_data"):
message_data["response_data"] = msg["response_data"]
messages.append(message_data)
if messages: # Only include conversations with actual messages
@ -275,25 +276,27 @@ class ChatService:
"previous_response_id"
),
"total_messages": len(messages),
"source": "in_memory"
"source": "in_memory",
}
)
# Then, add any persistent metadata that doesn't have in-memory data
for response_id, metadata in conversations_dict.items():
if response_id not in in_memory_conversations:
# This is metadata-only conversation (no function calls)
conversations.append({
"response_id": response_id,
"title": metadata.get("title", "New Chat"),
"endpoint": "chat",
"messages": [], # No messages in metadata-only
"created_at": metadata.get("created_at"),
"last_activity": metadata.get("last_activity"),
"previous_response_id": metadata.get("previous_response_id"),
"total_messages": metadata.get("total_messages", 0),
"source": "metadata_only"
})
conversations.append(
{
"response_id": response_id,
"title": metadata.get("title", "New Chat"),
"endpoint": "chat",
"messages": [], # No messages in metadata-only
"created_at": metadata.get("created_at"),
"last_activity": metadata.get("last_activity"),
"previous_response_id": metadata.get("previous_response_id"),
"total_messages": metadata.get("total_messages", 0),
"source": "metadata_only",
}
)
# Sort by last activity (most recent first)
conversations.sort(key=lambda c: c.get("last_activity", ""), reverse=True)
@ -309,33 +312,37 @@ class ChatService:
"""Get langflow conversation history for a user - now fetches from both OpenRAG memory and Langflow database"""
from agent import get_user_conversations
from services.langflow_history_service import langflow_history_service
if not user_id:
return {"error": "User ID is required", "conversations": []}
all_conversations = []
try:
# 1. Get local conversation metadata (no actual messages stored here)
conversations_dict = get_user_conversations(user_id)
local_metadata = {}
for response_id, conversation_metadata in conversations_dict.items():
# Store metadata for later use with Langflow data
local_metadata[response_id] = conversation_metadata
# 2. Get actual conversations from Langflow database (source of truth for messages)
print(f"[DEBUG] Attempting to fetch Langflow history for user: {user_id}")
langflow_history = await langflow_history_service.get_user_conversation_history(user_id, flow_id=FLOW_ID)
langflow_history = (
await langflow_history_service.get_user_conversation_history(
user_id, flow_id=LANGFLOW_CHAT_FLOW_ID
)
)
if langflow_history.get("conversations"):
for conversation in langflow_history["conversations"]:
session_id = conversation["session_id"]
# Only process sessions that belong to this user (exist in local metadata)
if session_id not in local_metadata:
continue
# Use Langflow messages (with function calls) as source of truth
messages = []
for msg in conversation.get("messages", []):
@ -344,76 +351,91 @@ class ChatService:
"content": msg["content"],
"timestamp": msg.get("timestamp"),
"langflow_message_id": msg.get("langflow_message_id"),
"source": "langflow"
"source": "langflow",
}
# Include function call data if present
if msg.get("chunks"):
message_data["chunks"] = msg["chunks"]
if msg.get("response_data"):
message_data["response_data"] = msg["response_data"]
messages.append(message_data)
if messages:
# Use local metadata if available, otherwise generate from Langflow data
metadata = local_metadata.get(session_id, {})
if not metadata.get("title"):
first_user_msg = next((msg for msg in messages if msg["role"] == "user"), None)
first_user_msg = next(
(msg for msg in messages if msg["role"] == "user"), None
)
title = (
first_user_msg["content"][:50] + "..."
if first_user_msg and len(first_user_msg["content"]) > 50
if first_user_msg
and len(first_user_msg["content"]) > 50
else first_user_msg["content"]
if first_user_msg
else "Langflow chat"
)
else:
title = metadata["title"]
all_conversations.append({
"response_id": session_id,
"title": title,
"endpoint": "langflow",
"messages": messages, # Function calls preserved from Langflow
"created_at": metadata.get("created_at") or conversation.get("created_at"),
"last_activity": metadata.get("last_activity") or conversation.get("last_activity"),
"total_messages": len(messages),
"source": "langflow_enhanced",
"langflow_session_id": session_id,
"langflow_flow_id": conversation.get("flow_id")
})
all_conversations.append(
{
"response_id": session_id,
"title": title,
"endpoint": "langflow",
"messages": messages, # Function calls preserved from Langflow
"created_at": metadata.get("created_at")
or conversation.get("created_at"),
"last_activity": metadata.get("last_activity")
or conversation.get("last_activity"),
"total_messages": len(messages),
"source": "langflow_enhanced",
"langflow_session_id": session_id,
"langflow_flow_id": conversation.get("flow_id"),
}
)
# 3. Add any local metadata that doesn't have Langflow data yet (recent conversations)
for response_id, metadata in local_metadata.items():
if not any(c["response_id"] == response_id for c in all_conversations):
all_conversations.append({
"response_id": response_id,
"title": metadata.get("title", "New Chat"),
"endpoint": "langflow",
"messages": [], # Will be filled when Langflow sync catches up
"created_at": metadata.get("created_at"),
"last_activity": metadata.get("last_activity"),
"total_messages": metadata.get("total_messages", 0),
"source": "metadata_only"
})
all_conversations.append(
{
"response_id": response_id,
"title": metadata.get("title", "New Chat"),
"endpoint": "langflow",
"messages": [], # Will be filled when Langflow sync catches up
"created_at": metadata.get("created_at"),
"last_activity": metadata.get("last_activity"),
"total_messages": metadata.get("total_messages", 0),
"source": "metadata_only",
}
)
if langflow_history.get("conversations"):
print(f"[DEBUG] Added {len(langflow_history['conversations'])} historical conversations from Langflow")
print(
f"[DEBUG] Added {len(langflow_history['conversations'])} historical conversations from Langflow"
)
elif langflow_history.get("error"):
print(f"[DEBUG] Could not fetch Langflow history for user {user_id}: {langflow_history['error']}")
print(
f"[DEBUG] Could not fetch Langflow history for user {user_id}: {langflow_history['error']}"
)
else:
print(f"[DEBUG] No Langflow conversations found for user {user_id}")
except Exception as e:
print(f"[ERROR] Failed to fetch Langflow history: {e}")
# Continue with just in-memory conversations
# Sort by last activity (most recent first)
all_conversations.sort(key=lambda c: c.get("last_activity", ""), reverse=True)
print(f"[DEBUG] Returning {len(all_conversations)} conversations ({len(local_metadata)} from local metadata)")
print(
f"[DEBUG] Returning {len(all_conversations)} conversations ({len(local_metadata)} from local metadata)"
)
return {
"user_id": user_id,
"endpoint": "langflow",