Merge branch 'main' into release-update-0.1.50

This commit is contained in:
Sebastián Estévez 2025-12-03 19:45:49 -05:00 committed by GitHub
commit df9234d0ee
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
19 changed files with 870 additions and 338 deletions

View file

@ -4,12 +4,11 @@ import copy
import json
import time
import uuid
from typing import Any, List, Optional
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Any
from opensearchpy import OpenSearch, helpers
from opensearchpy.exceptions import RequestError
from opensearchpy.exceptions import OpenSearchException, RequestError
from lfx.base.vectorstores.model import LCVectorStoreComponent, check_cached_vector_store
from lfx.base.vectorstores.vector_store_connection_decorator import vector_store_connection
@ -50,11 +49,12 @@ def get_embedding_field_name(model_name: str) -> str:
Returns:
Field name in format: chunk_embedding_{normalized_model_name}
"""
logger.info(f"chunk_embedding_{normalize_model_name(model_name)}")
return f"chunk_embedding_{normalize_model_name(model_name)}"
@vector_store_connection
class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
class OpenSearchVectorStoreComponentMultimodalMultiEmbedding(LCVectorStoreComponent):
"""OpenSearch Vector Store Component with Multi-Model Hybrid Search Capabilities.
This component provides vector storage and retrieval using OpenSearch, combining semantic
@ -73,9 +73,15 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
- Parallel query embedding generation for all detected models
- Vector storage with configurable engines (jvector, nmslib, faiss, lucene)
- Flexible authentication (Basic auth, JWT tokens)
Model Name Resolution:
- Priority: deployment > model > model_name attributes
- This ensures correct matching between embedding objects and index fields
- When multiple embeddings are provided, specify embedding_model_name to select which one to use
- During search, each detected model in the index is matched to its corresponding embedding object
"""
display_name: str = "OpenSearch (Multi-Model)"
display_name: str = "OpenSearch (Multi-Model Multi-Embedding)"
icon: str = "OpenSearch"
description: str = (
"Store and search documents using OpenSearch with multi-model hybrid semantic and keyword search."
@ -130,7 +136,7 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
},
],
value=[],
input_types=["Data"]
input_types=["Data"],
),
StrInput(
name="opensearch_url",
@ -203,16 +209,19 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
advanced=True,
),
*LCVectorStoreComponent.inputs, # includes search_query, add_documents, etc.
HandleInput(name="embedding", display_name="Embedding", input_types=["Embeddings"]),
HandleInput(name="embedding", display_name="Embedding", input_types=["Embeddings"], is_list=True),
StrInput(
name="embedding_model_name",
display_name="Embedding Model Name",
value="",
info=(
"Name of the embedding model being used (e.g., 'text-embedding-3-small'). "
"Used to create dynamic vector field names and track which model embedded each document. "
"Auto-detected from embedding component if not specified."
"Name of the embedding model to use for ingestion. This selects which embedding from the list "
"will be used to embed documents. Matches on deployment, model, model_id, or model_name. "
"For duplicate deployments, use combined format: 'deployment:model' "
"(e.g., 'text-embedding-ada-002:text-embedding-3-large'). "
"Leave empty to use the first embedding. Error message will show all available identifiers."
),
advanced=False,
),
StrInput(
name="vector_field",
@ -265,20 +274,20 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
name="username",
display_name="Username",
value="admin",
show=False,
show=True,
),
SecretStrInput(
name="password",
display_name="OpenSearch Password",
value="admin",
show=False,
show=True,
),
SecretStrInput(
name="jwt_token",
display_name="JWT Token",
value="JWT",
load_from_db=False,
show=True,
show=False,
info=(
"Valid JSON Web Token for authentication. "
"Will be sent in the Authorization header (with optional 'Bearer ' prefix)."
@ -318,9 +327,16 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
),
]
def _get_embedding_model_name(self) -> str:
def _get_embedding_model_name(self, embedding_obj=None) -> str:
"""Get the embedding model name from component config or embedding object.
Priority: deployment > model > model_id > model_name
This ensures we use the actual model being deployed, not just the configured model.
Supports multiple embedding providers (OpenAI, Watsonx, Cohere, etc.)
Args:
embedding_obj: Specific embedding object to get name from (optional)
Returns:
Embedding model name
@ -331,17 +347,46 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
if hasattr(self, "embedding_model_name") and self.embedding_model_name:
return self.embedding_model_name.strip()
# Try to get from embedding component
# Try to get from provided embedding object
if embedding_obj:
# Priority: deployment > model > model_id > model_name
if hasattr(embedding_obj, "deployment") and embedding_obj.deployment:
return str(embedding_obj.deployment)
if hasattr(embedding_obj, "model") and embedding_obj.model:
return str(embedding_obj.model)
if hasattr(embedding_obj, "model_id") and embedding_obj.model_id:
return str(embedding_obj.model_id)
if hasattr(embedding_obj, "model_name") and embedding_obj.model_name:
return str(embedding_obj.model_name)
# Try to get from embedding component (legacy single embedding)
if hasattr(self, "embedding") and self.embedding:
if hasattr(self.embedding, "model"):
return str(self.embedding.model)
if hasattr(self.embedding, "model_name"):
return str(self.embedding.model_name)
# Handle list of embeddings
if isinstance(self.embedding, list) and len(self.embedding) > 0:
first_emb = self.embedding[0]
if hasattr(first_emb, "deployment") and first_emb.deployment:
return str(first_emb.deployment)
if hasattr(first_emb, "model") and first_emb.model:
return str(first_emb.model)
if hasattr(first_emb, "model_id") and first_emb.model_id:
return str(first_emb.model_id)
if hasattr(first_emb, "model_name") and first_emb.model_name:
return str(first_emb.model_name)
# Handle single embedding
elif not isinstance(self.embedding, list):
if hasattr(self.embedding, "deployment") and self.embedding.deployment:
return str(self.embedding.deployment)
if hasattr(self.embedding, "model") and self.embedding.model:
return str(self.embedding.model)
if hasattr(self.embedding, "model_id") and self.embedding.model_id:
return str(self.embedding.model_id)
if hasattr(self.embedding, "model_name") and self.embedding.model_name:
return str(self.embedding.model_name)
msg = (
"Could not determine embedding model name. "
"Please set the 'embedding_model_name' field or ensure the embedding component "
"has a 'model' or 'model_name' attribute."
"has a 'deployment', 'model', 'model_id', or 'model_name' attribute."
)
raise ValueError(msg)
@ -434,12 +479,8 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
},
},
# Also ensure the embedding_model tracking field exists as keyword
"embedding_model": {
"type": "keyword"
},
"embedding_dimensions": {
"type": "integer"
}
"embedding_model": {"type": "keyword"},
"embedding_dimensions": {"type": "integer"},
}
}
client.indices.put_mapping(index=index_name, body=mapping)
@ -450,9 +491,9 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
properties = self._get_index_properties(client)
if not self._is_knn_vector_field(properties, field_name):
raise ValueError(
f"Field '{field_name}' is not mapped as knn_vector. Current mapping: {properties.get(field_name)}"
)
msg = f"Field '{field_name}' is not mapped as knn_vector. Current mapping: {properties.get(field_name)}"
logger.aerror(msg)
raise ValueError(msg)
def _validate_aoss_with_engines(self, *, is_aoss: bool, engine: str) -> None:
"""Validate engine compatibility with Amazon OpenSearch Serverless (AOSS).
@ -600,8 +641,15 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
@check_cached_vector_store
def build_vector_store(self) -> OpenSearch:
# Return raw OpenSearch client as our "vector store."
self.log(self.ingest_data)
client = self.build_client()
# Check if we're in ingestion-only mode (no search query)
has_search_query = bool((self.search_query or "").strip())
if not has_search_query:
logger.debug("Ingestion-only mode activated: search operations will be skipped")
logger.debug("Starting ingestion mode...")
logger.warning(f"Embedding: {self.embedding}")
self._add_documents_to_vector_store(client=client)
return client
@ -611,33 +659,185 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
This method handles the complete document ingestion pipeline:
- Prepares document data and metadata
- Generates vector embeddings
- Generates vector embeddings using the selected model
- Creates appropriate index mappings with dynamic field names
- Bulk inserts documents with vectors and model tracking
Args:
client: OpenSearch client for performing operations
"""
logger.debug("[INGESTION] _add_documents_to_vector_store called")
# Convert DataFrame to Data if needed using parent's method
self.ingest_data = self._prepare_ingest_data()
logger.debug(
f"[INGESTION] ingest_data type: "
f"{type(self.ingest_data)}, length: {len(self.ingest_data) if self.ingest_data else 0}"
)
logger.debug(
f"[INGESTION] ingest_data content: "
f"{self.ingest_data[:2] if self.ingest_data and len(self.ingest_data) > 0 else 'empty'}"
)
docs = self.ingest_data or []
if not docs:
self.log("No documents to ingest.")
logger.debug("Ingestion complete: No documents provided")
return
# Get embedding model name
embedding_model = self._get_embedding_model_name()
if not self.embedding:
msg = "Embedding handle is required to embed documents."
raise ValueError(msg)
# Normalize embedding to list first
embeddings_list = self.embedding if isinstance(self.embedding, list) else [self.embedding]
# Filter out None values (fail-safe mode) - do this BEFORE checking if empty
embeddings_list = [e for e in embeddings_list if e is not None]
# NOW check if we have any valid embeddings left after filtering
if not embeddings_list:
logger.warning("All embeddings returned None (fail-safe mode enabled). Skipping document ingestion.")
self.log("Embedding returned None (fail-safe mode enabled). Skipping document ingestion.")
return
logger.debug(f"[INGESTION] Valid embeddings after filtering: {len(embeddings_list)}")
self.log(f"Available embedding models: {len(embeddings_list)}")
# Select the embedding to use for ingestion
selected_embedding = None
embedding_model = None
# If embedding_model_name is specified, find matching embedding
if hasattr(self, "embedding_model_name") and self.embedding_model_name and self.embedding_model_name.strip():
target_model_name = self.embedding_model_name.strip()
self.log(f"Looking for embedding model: {target_model_name}")
for emb_obj in embeddings_list:
# Check all possible model identifiers (deployment, model, model_id, model_name)
# Also check available_models list from EmbeddingsWithModels
possible_names = []
deployment = getattr(emb_obj, "deployment", None)
model = getattr(emb_obj, "model", None)
model_id = getattr(emb_obj, "model_id", None)
model_name = getattr(emb_obj, "model_name", None)
available_models_attr = getattr(emb_obj, "available_models", None)
if deployment:
possible_names.append(str(deployment))
if model:
possible_names.append(str(model))
if model_id:
possible_names.append(str(model_id))
if model_name:
possible_names.append(str(model_name))
# Also add combined identifier
if deployment and model and deployment != model:
possible_names.append(f"{deployment}:{model}")
# Add all models from available_models dict
if available_models_attr and isinstance(available_models_attr, dict):
possible_names.extend(
str(model_key).strip()
for model_key in available_models_attr
if model_key and str(model_key).strip()
)
# Match if target matches any of the possible names
if target_model_name in possible_names:
# Check if target is in available_models dict - use dedicated instance
if (
available_models_attr
and isinstance(available_models_attr, dict)
and target_model_name in available_models_attr
):
# Use the dedicated embedding instance from the dict
selected_embedding = available_models_attr[target_model_name]
embedding_model = target_model_name
self.log(f"Found dedicated embedding instance for '{embedding_model}' in available_models dict")
else:
# Traditional identifier match
selected_embedding = emb_obj
embedding_model = self._get_embedding_model_name(emb_obj)
self.log(f"Found matching embedding model: {embedding_model} (matched on: {target_model_name})")
break
if not selected_embedding:
# Build detailed list of available embeddings with all their identifiers
available_info = []
for idx, emb in enumerate(embeddings_list):
emb_type = type(emb).__name__
identifiers = []
deployment = getattr(emb, "deployment", None)
model = getattr(emb, "model", None)
model_id = getattr(emb, "model_id", None)
model_name = getattr(emb, "model_name", None)
available_models_attr = getattr(emb, "available_models", None)
if deployment:
identifiers.append(f"deployment='{deployment}'")
if model:
identifiers.append(f"model='{model}'")
if model_id:
identifiers.append(f"model_id='{model_id}'")
if model_name:
identifiers.append(f"model_name='{model_name}'")
# Add combined identifier as an option
if deployment and model and deployment != model:
identifiers.append(f"combined='{deployment}:{model}'")
# Add available_models dict if present
if available_models_attr and isinstance(available_models_attr, dict):
identifiers.append(f"available_models={list(available_models_attr.keys())}")
available_info.append(
f" [{idx}] {emb_type}: {', '.join(identifiers) if identifiers else 'No identifiers'}"
)
msg = (
f"Embedding model '{target_model_name}' not found in available embeddings.\n\n"
f"Available embeddings:\n" + "\n".join(available_info) + "\n\n"
"Please set 'embedding_model_name' to one of the identifier values shown above "
"(use the value after the '=' sign, without quotes).\n"
"For duplicate deployments, use the 'combined' format.\n"
"Or leave it empty to use the first embedding."
)
raise ValueError(msg)
else:
# Use first embedding if no model name specified
selected_embedding = embeddings_list[0]
embedding_model = self._get_embedding_model_name(selected_embedding)
self.log(f"No embedding_model_name specified, using first embedding: {embedding_model}")
dynamic_field_name = get_embedding_field_name(embedding_model)
self.log(f"Using embedding model: {embedding_model}")
logger.info(f"Selected embedding model for ingestion: '{embedding_model}'")
self.log(f"Using embedding model for ingestion: {embedding_model}")
self.log(f"Dynamic vector field: {dynamic_field_name}")
# Log embedding details for debugging
if hasattr(selected_embedding, "deployment"):
logger.info(f"Embedding deployment: {selected_embedding.deployment}")
if hasattr(selected_embedding, "model"):
logger.info(f"Embedding model: {selected_embedding.model}")
if hasattr(selected_embedding, "model_id"):
logger.info(f"Embedding model_id: {selected_embedding.model_id}")
if hasattr(selected_embedding, "dimensions"):
logger.info(f"Embedding dimensions: {selected_embedding.dimensions}")
if hasattr(selected_embedding, "available_models"):
logger.info(f"Embedding available_models: {selected_embedding.available_models}")
# No model switching needed - each model in available_models has its own dedicated instance
# The selected_embedding is already configured correctly for the target model
logger.info(f"Using embedding instance for '{embedding_model}' - pre-configured and ready to use")
# Extract texts and metadata from documents
texts = []
metadatas = []
# Process docs_metadata table input into a dict
additional_metadata = {}
logger.debug(f"[LF] Docs metadata {self.docs_metadata}")
if hasattr(self, "docs_metadata") and self.docs_metadata:
logger.info(f"[LF] Docs metadata {self.docs_metadata}")
if isinstance(self.docs_metadata[-1], Data):
@ -664,23 +864,27 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
metadatas.append(data_copy)
self.log(metadatas)
if not self.embedding:
msg = "Embedding handle is required to embed documents."
raise ValueError(msg)
# Generate embeddings (threaded for concurrency) with retries
def embed_chunk(chunk_text: str) -> list[float]:
return self.embedding.embed_documents([chunk_text])[0]
return selected_embedding.embed_documents([chunk_text])[0]
vectors: Optional[List[List[float]]] = None
last_exception: Optional[Exception] = None
vectors: list[list[float]] | None = None
last_exception: Exception | None = None
delay = 1.0
attempts = 0
max_attempts = 3
while attempts < 3:
while attempts < max_attempts:
attempts += 1
try:
max_workers = min(max(len(texts), 1), 8)
# Restrict concurrency for IBM/Watsonx models to avoid rate limits
is_ibm = (embedding_model and "ibm" in str(embedding_model).lower()) or (
selected_embedding and "watsonx" in type(selected_embedding).__name__.lower()
)
logger.debug(f"Is IBM: {is_ibm}")
max_workers = 1 if is_ibm else min(max(len(texts), 1), 8)
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = {executor.submit(embed_chunk, chunk): idx for idx, chunk in enumerate(texts)}
vectors = [None] * len(texts)
@ -690,16 +894,17 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
break
except Exception as exc:
last_exception = exc
if attempts >= 3:
if attempts >= max_attempts:
logger.error(
"Embedding generation failed after retries",
f"Embedding generation failed for model {embedding_model} after retries",
error=str(exc),
)
raise
logger.warning(
"Threaded embedding generation failed (attempt %s/%s), retrying in %.1fs",
"Threaded embedding generation failed for model %s (attempt %s/%s), retrying in %.1fs",
embedding_model,
attempts,
3,
max_attempts,
delay,
)
time.sleep(delay)
@ -707,11 +912,13 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
if vectors is None:
raise RuntimeError(
f"Embedding generation failed: {last_exception}" if last_exception else "Embedding generation failed"
f"Embedding generation failed for {embedding_model}: {last_exception}"
if last_exception
else f"Embedding generation failed for {embedding_model}"
)
if not vectors:
self.log("No vectors generated from documents.")
self.log(f"No vectors generated from documents for model {embedding_model}.")
return
# Get vector dimension for mapping
@ -746,9 +953,7 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
client.indices.create(index=self.index_name, body=mapping)
except RequestError as creation_error:
if creation_error.error != "resource_already_exists_exception":
logger.warning(
f"Failed to create index '{self.index_name}': {creation_error}"
)
logger.warning(f"Failed to create index '{self.index_name}': {creation_error}")
# Ensure the dynamic field exists in the index
self._ensure_embedding_field_mapping(
@ -763,6 +968,8 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
)
self.log(f"Indexing {len(texts)} documents into '{self.index_name}' with model '{embedding_model}'...")
logger.info(f"Will store embeddings in field: {dynamic_field_name}")
logger.info(f"Will tag documents with embedding_model: {embedding_model}")
# Use the bulk ingestion with model tracking
return_ids = self._bulk_ingest_embeddings(
@ -779,6 +986,9 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
)
self.log(metadatas)
logger.info(
f"Ingestion complete: Successfully indexed {len(return_ids)} documents with model '{embedding_model}'"
)
self.log(f"Successfully indexed {len(return_ids)} documents with model {embedding_model}.")
# ---------- helpers for filters ----------
@ -853,7 +1063,7 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
context_clauses.append({"terms": {field: values}})
return context_clauses
def _detect_available_models(self, client: OpenSearch, filter_clauses: list[dict] = None) -> list[str]:
def _detect_available_models(self, client: OpenSearch, filter_clauses: list[dict] | None = None) -> list[str]:
"""Detect which embedding models have documents in the index.
Uses aggregation to find all unique embedding_model values, optionally
@ -867,26 +1077,13 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
List of embedding model names found in the index
"""
try:
agg_query = {
"size": 0,
"aggs": {
"embedding_models": {
"terms": {
"field": "embedding_model",
"size": 10
}
}
}
}
agg_query = {"size": 0, "aggs": {"embedding_models": {"terms": {"field": "embedding_model", "size": 10}}}}
# Apply filters to model detection if any exist
if filter_clauses:
agg_query["query"] = {
"bool": {
"filter": filter_clauses
}
}
agg_query["query"] = {"bool": {"filter": filter_clauses}}
logger.debug(f"Model detection query: {agg_query}")
result = client.search(
index=self.index_name,
body=agg_query,
@ -895,21 +1092,33 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
buckets = result.get("aggregations", {}).get("embedding_models", {}).get("buckets", [])
models = [b["key"] for b in buckets if b["key"]]
# Log detailed bucket info for debugging
logger.info(
f"Detected embedding models in corpus: {models}"
+ (f" (with {len(filter_clauses)} filters)" if filter_clauses else "")
)
return models
except Exception as e:
if not models:
total_hits = result.get("hits", {}).get("total", {})
total_count = total_hits.get("value", 0) if isinstance(total_hits, dict) else total_hits
logger.warning(
f"No embedding_model values found in index '{self.index_name}'. "
f"Total docs in index: {total_count}. "
f"This may indicate documents were indexed without the embedding_model field."
)
except (OpenSearchException, KeyError, ValueError) as e:
logger.warning(f"Failed to detect embedding models: {e}")
# Fallback to current model
return [self._get_embedding_model_name()]
fallback_model = self._get_embedding_model_name()
logger.info(f"Using fallback model: {fallback_model}")
return [fallback_model]
else:
return models
def _get_index_properties(self, client: OpenSearch) -> dict[str, Any] | None:
"""Retrieve flattened mapping properties for the current index."""
try:
mapping = client.indices.get_mapping(index=self.index_name)
except Exception as e:
except OpenSearchException as e:
logger.warning(
f"Failed to fetch mapping for index '{self.index_name}': {e}. Proceeding without mapping metadata."
)
@ -927,9 +1136,7 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
if not field_name:
return False
if properties is None:
logger.warning(
f"Mapping metadata unavailable; assuming field '{field_name}' is usable."
)
logger.warning(f"Mapping metadata unavailable; assuming field '{field_name}' is usable.")
return True
field_def = properties.get(field_name)
if not isinstance(field_def, dict):
@ -938,10 +1145,35 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
return True
nested_props = field_def.get("properties")
if isinstance(nested_props, dict) and nested_props.get("type") == "knn_vector":
return True
return bool(isinstance(nested_props, dict) and nested_props.get("type") == "knn_vector")
return False
def _get_field_dimension(self, properties: dict[str, Any] | None, field_name: str) -> int | None:
"""Get the dimension of a knn_vector field from the index mapping.
Args:
properties: Index properties from mapping
field_name: Name of the vector field
Returns:
Dimension of the field, or None if not found
"""
if not field_name or properties is None:
return None
field_def = properties.get(field_name)
if not isinstance(field_def, dict):
return None
# Check direct knn_vector field
if field_def.get("type") == "knn_vector":
return field_def.get("dimension")
# Check nested properties
nested_props = field_def.get("properties")
if isinstance(nested_props, dict) and nested_props.get("type") == "knn_vector":
return nested_props.get("dimension")
return None
# ---------- search (multi-model hybrid) ----------
def search(self, query: str | None = None) -> list[dict[str, Any]]:
@ -985,6 +1217,11 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
msg = "Embedding is required to run hybrid search (KNN + keyword)."
raise ValueError(msg)
# Check if embedding is None (fail-safe mode)
if self.embedding is None or (isinstance(self.embedding, list) and all(e is None for e in self.embedding)):
logger.error("Embedding returned None (fail-safe mode enabled). Cannot perform search.")
return []
# Build filter clauses first so we can use them in model detection
filter_clauses = self._coerce_filter_clauses(filter_obj)
@ -995,42 +1232,166 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
logger.warning("No embedding models found in index, using current model")
available_models = [self._get_embedding_model_name()]
# Generate embeddings for ALL detected models in parallel
# Generate embeddings for ALL detected models
query_embeddings = {}
# Note: Langflow is synchronous, so we can't use true async here
# But we log the intent for parallel processing
logger.info(f"Generating embeddings for {len(available_models)} models")
# Normalize embedding to list
embeddings_list = self.embedding if isinstance(self.embedding, list) else [self.embedding]
# Filter out None values (fail-safe mode)
embeddings_list = [e for e in embeddings_list if e is not None]
original_model_attr = getattr(self.embedding, "model", None)
original_deployment_attr = getattr(self.embedding, "deployment", None)
original_dimensions_attr = getattr(self.embedding, "dimensions", None)
if not embeddings_list:
logger.error(
"No valid embeddings available after filtering None values (fail-safe mode). Cannot perform search."
)
return []
# Create a comprehensive map of model names to embedding objects
# Check all possible identifiers (deployment, model, model_id, model_name)
# Also leverage available_models list from EmbeddingsWithModels
# Handle duplicate identifiers by creating combined keys
embedding_by_model = {}
identifier_conflicts = {} # Track which identifiers have conflicts
for idx, emb_obj in enumerate(embeddings_list):
# Get all possible identifiers for this embedding
identifiers = []
deployment = getattr(emb_obj, "deployment", None)
model = getattr(emb_obj, "model", None)
model_id = getattr(emb_obj, "model_id", None)
model_name = getattr(emb_obj, "model_name", None)
dimensions = getattr(emb_obj, "dimensions", None)
available_models_attr = getattr(emb_obj, "available_models", None)
logger.info(
f"Embedding object {idx}: deployment={deployment}, model={model}, "
f"model_id={model_id}, model_name={model_name}, dimensions={dimensions}, "
f"available_models={available_models_attr}"
)
# If this embedding has available_models dict, map all models to their dedicated instances
if available_models_attr and isinstance(available_models_attr, dict):
logger.info(
f"Embedding object {idx} provides {len(available_models_attr)} models via available_models dict"
)
for model_name_key, dedicated_embedding in available_models_attr.items():
if model_name_key and str(model_name_key).strip():
model_str = str(model_name_key).strip()
if model_str not in embedding_by_model:
# Use the dedicated embedding instance from the dict
embedding_by_model[model_str] = dedicated_embedding
logger.info(f"Mapped available model '{model_str}' to dedicated embedding instance")
else:
# Conflict detected - track it
if model_str not in identifier_conflicts:
identifier_conflicts[model_str] = [embedding_by_model[model_str]]
identifier_conflicts[model_str].append(dedicated_embedding)
logger.warning(f"Available model '{model_str}' has conflict - used by multiple embeddings")
# Also map traditional identifiers (for backward compatibility)
if deployment:
identifiers.append(str(deployment))
if model:
identifiers.append(str(model))
if model_id:
identifiers.append(str(model_id))
if model_name:
identifiers.append(str(model_name))
# Map all identifiers to this embedding object
for identifier in identifiers:
if identifier not in embedding_by_model:
embedding_by_model[identifier] = emb_obj
logger.info(f"Mapped identifier '{identifier}' to embedding object {idx}")
else:
# Conflict detected - track it
if identifier not in identifier_conflicts:
identifier_conflicts[identifier] = [embedding_by_model[identifier]]
identifier_conflicts[identifier].append(emb_obj)
logger.warning(f"Identifier '{identifier}' has conflict - used by multiple embeddings")
# For embeddings with model+deployment, create combined identifier
# This helps when deployment is the same but model differs
if deployment and model and deployment != model:
combined_id = f"{deployment}:{model}"
if combined_id not in embedding_by_model:
embedding_by_model[combined_id] = emb_obj
logger.info(f"Created combined identifier '{combined_id}' for embedding object {idx}")
# Log conflicts
if identifier_conflicts:
logger.warning(
f"Found {len(identifier_conflicts)} conflicting identifiers. "
f"Consider using combined format 'deployment:model' or specifying unique model names."
)
for conflict_id, emb_list in identifier_conflicts.items():
logger.warning(f" Conflict on '{conflict_id}': {len(emb_list)} embeddings use this identifier")
logger.info(f"Generating embeddings for {len(available_models)} models in index")
logger.info(f"Available embedding identifiers: {list(embedding_by_model.keys())}")
self.log(f"[SEARCH] Models detected in index: {available_models}")
self.log(f"[SEARCH] Available embedding identifiers: {list(embedding_by_model.keys())}")
# Track matching status for debugging
matched_models = []
unmatched_models = []
for model_name in available_models:
try:
# In a real async environment, these would run in parallel
# For now, they run sequentially
if hasattr(self.embedding, "model"):
setattr(self.embedding, "model", model_name)
if hasattr(self.embedding, "deployment"):
setattr(self.embedding, "deployment", model_name)
if hasattr(self.embedding, "dimensions"):
setattr(self.embedding, "dimensions", None)
vec = self.embedding.embed_query(q)
query_embeddings[model_name] = vec
logger.info(f"Generated embedding for model: {model_name}")
except Exception as e:
logger.error(f"Failed to generate embedding for {model_name}: {e}")
# Check if we have an embedding object for this model
if model_name in embedding_by_model:
# Use the matching embedding object directly
emb_obj = embedding_by_model[model_name]
emb_deployment = getattr(emb_obj, "deployment", None)
emb_model = getattr(emb_obj, "model", None)
emb_model_id = getattr(emb_obj, "model_id", None)
emb_dimensions = getattr(emb_obj, "dimensions", None)
emb_available_models = getattr(emb_obj, "available_models", None)
if hasattr(self.embedding, "model"):
setattr(self.embedding, "model", original_model_attr)
if hasattr(self.embedding, "deployment"):
setattr(self.embedding, "deployment", original_deployment_attr)
if hasattr(self.embedding, "dimensions"):
setattr(self.embedding, "dimensions", original_dimensions_attr)
logger.info(
f"Using embedding object for model '{model_name}': "
f"deployment={emb_deployment}, model={emb_model}, model_id={emb_model_id}, "
f"dimensions={emb_dimensions}"
)
# Check if this is a dedicated instance from available_models dict
if emb_available_models and isinstance(emb_available_models, dict):
logger.info(
f"Model '{model_name}' using dedicated instance from available_models dict "
f"(pre-configured with correct model and dimensions)"
)
# Use the embedding instance directly - no model switching needed!
vec = emb_obj.embed_query(q)
query_embeddings[model_name] = vec
matched_models.append(model_name)
logger.info(f"Generated embedding for model: {model_name} (actual dimensions: {len(vec)})")
self.log(f"[MATCH] Model '{model_name}' - generated {len(vec)}-dim embedding")
else:
# No matching embedding found for this model
unmatched_models.append(model_name)
logger.warning(
f"No matching embedding found for model '{model_name}'. "
f"This model will be skipped. Available identifiers: {list(embedding_by_model.keys())}"
)
self.log(f"[NO MATCH] Model '{model_name}' - available: {list(embedding_by_model.keys())}")
except (RuntimeError, ValueError, ConnectionError, TimeoutError, AttributeError, KeyError) as e:
logger.warning(f"Failed to generate embedding for {model_name}: {e}")
self.log(f"[ERROR] Embedding generation failed for '{model_name}': {e}")
# Log summary of model matching
logger.info(f"Model matching summary: {len(matched_models)} matched, {len(unmatched_models)} unmatched")
self.log(f"[SUMMARY] Model matching: {len(matched_models)} matched, {len(unmatched_models)} unmatched")
if unmatched_models:
self.log(f"[WARN] Unmatched models in index: {unmatched_models}")
if not query_embeddings:
msg = "Failed to generate embeddings for any model"
msg = (
f"Failed to generate embeddings for any model. "
f"Index has models: {available_models}, but no matching embedding objects found. "
f"Available embedding identifiers: {list(embedding_by_model.keys())}"
)
self.log(f"[FAIL] Search failed: {msg}")
raise ValueError(msg)
index_properties = self._get_index_properties(client)
@ -1051,6 +1412,7 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
for model_name, embedding_vector in query_embeddings.items():
field_name = get_embedding_field_name(model_name)
selected_field = field_name
vector_dim = len(embedding_vector)
# Only use the expected dynamic field - no legacy fallback
# This prevents dimension mismatches between models
@ -1059,8 +1421,24 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
f"Skipping model {model_name}: field '{field_name}' is not mapped as knn_vector. "
f"Documents must be indexed with this embedding model before querying."
)
self.log(f"[SKIP] Field '{selected_field}' not a knn_vector - skipping model '{model_name}'")
continue
# Validate vector dimensions match the field dimensions
field_dim = self._get_field_dimension(index_properties, selected_field)
if field_dim is not None and field_dim != vector_dim:
logger.error(
f"Dimension mismatch for model '{model_name}': "
f"Query vector has {vector_dim} dimensions but field '{selected_field}' expects {field_dim}. "
f"Skipping this model to prevent search errors."
)
self.log(f"[DIM MISMATCH] Model '{model_name}': query={vector_dim} vs field={field_dim} - skipping")
continue
logger.info(
f"Adding KNN query for model '{model_name}': field='{selected_field}', "
f"query_dims={vector_dim}, field_dims={field_dim or 'unknown'}"
)
embedding_fields.append(selected_field)
base_query = {
@ -1091,14 +1469,16 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
"This may indicate an empty index or missing field mappings. "
"Returning empty search results."
)
self.log(
f"[WARN] No valid KNN queries could be built. "
f"Query embeddings generated: {list(query_embeddings.keys())}, "
f"but no matching knn_vector fields found in index."
)
return []
# Build exists filter - document must have at least one embedding field
exists_any_embedding = {
"bool": {
"should": [{"exists": {"field": f}} for f in set(embedding_fields)],
"minimum_should_match": 1
}
"bool": {"should": [{"exists": {"field": f}} for f in set(embedding_fields)], "minimum_should_match": 1}
}
# Combine user filters with exists filter
@ -1117,7 +1497,7 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
"dis_max": {
"tie_breaker": 0.0, # Take only the best match, no blending
"boost": 0.7, # 70% weight for semantic search
"queries": knn_queries_with_candidates
"queries": knn_queries_with_candidates,
}
},
{
@ -1158,13 +1538,15 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
body["min_score"] = score_threshold
logger.info(
f"Executing multi-model hybrid search with {len(knn_queries_with_candidates)} embedding models"
f"Executing multi-model hybrid search with {len(knn_queries_with_candidates)} embedding models: "
f"{list(query_embeddings.keys())}"
)
self.log(f"[EXEC] Executing search with {len(knn_queries_with_candidates)} KNN queries, limit={limit}")
self.log(f"[EXEC] Embedding models used: {list(query_embeddings.keys())}")
self.log(f"[EXEC] KNN fields being queried: {embedding_fields}")
try:
resp = client.search(
index=self.index_name, body=body, params={"terminate_after": 0}
)
resp = client.search(index=self.index_name, body=body, params={"terminate_after": 0})
except RequestError as e:
error_message = str(e)
lowered = error_message.lower()
@ -1215,6 +1597,16 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
hits = resp.get("hits", {}).get("hits", [])
logger.info(f"Found {len(hits)} results")
self.log(f"[RESULT] Search complete: {len(hits)} results found")
if len(hits) == 0:
self.log(
f"[EMPTY] Debug info: "
f"models_in_index={available_models}, "
f"matched_models={matched_models}, "
f"knn_fields={embedding_fields}, "
f"filters={len(filter_clauses)} clauses"
)
return [
{
@ -1231,6 +1623,9 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
This is the main interface method that performs the multi-model search using the
configured search_query and returns results in Langflow's Data format.
Always builds the vector store (triggering ingestion if needed), then performs
search only if a query is provided.
Returns:
List of Data objects containing search results with text and metadata
@ -1238,9 +1633,20 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
Exception: If search operation fails
"""
try:
raw = self.search(self.search_query or "")
# Always build/cache the vector store to ensure ingestion happens
logger.info(f"Search query: {self.search_query}")
if self._cached_vector_store is None:
self.build_vector_store()
# Only perform search if query is provided
search_query = (self.search_query or "").strip()
if not search_query:
self.log("No search query provided - ingestion completed, returning empty results")
return []
# Perform search with the provided query
raw = self.search(search_query)
return [Data(text=hit["page_content"], **hit["metadata"]) for hit in raw]
self.log(self.ingest_data)
except Exception as e:
self.log(f"search_documents error: {e}")
raise
@ -1280,9 +1686,6 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
build_config["jwt_header"]["required"] = is_jwt
build_config["bearer_prefix"]["required"] = False
if is_basic:
build_config["jwt_token"]["value"] = ""
return build_config
except (KeyError, ValueError) as e:

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -3,6 +3,7 @@ import {
useQuery,
useQueryClient,
} from "@tanstack/react-query";
import { useChat } from "@/contexts/chat-context";
import { useGetSettingsQuery } from "./useGetSettingsQuery";
export interface ProviderHealthDetails {
@ -24,6 +25,7 @@ export interface ProviderHealthResponse {
export interface ProviderHealthParams {
provider?: "openai" | "ollama" | "watsonx";
test_completion?: boolean;
}
// Track consecutive failures for exponential backoff
@ -38,6 +40,9 @@ export const useProviderHealthQuery = (
) => {
const queryClient = useQueryClient();
// Get chat error state from context (ChatProvider wraps the entire app in layout.tsx)
const { hasChatError, setChatError } = useChat();
const { data: settings = {} } = useGetSettingsQuery();
async function checkProviderHealth(): Promise<ProviderHealthResponse> {
@ -49,6 +54,12 @@ export const useProviderHealthQuery = (
url.searchParams.set("provider", params.provider);
}
// Add test_completion query param if specified or if chat error exists
const testCompletion = params?.test_completion ?? hasChatError;
if (testCompletion) {
url.searchParams.set("test_completion", "true");
}
const response = await fetch(url.toString());
if (response.ok) {
@ -90,7 +101,7 @@ export const useProviderHealthQuery = (
}
}
const queryKey = ["provider", "health"];
const queryKey = ["provider", "health", params?.test_completion];
const failureCountKey = queryKey.join("-");
const queryResult = useQuery(
@ -101,26 +112,32 @@ export const useProviderHealthQuery = (
refetchInterval: (query) => {
const data = query.state.data;
const status = data?.status;
// If healthy, reset failure count and check every 30 seconds
// Also reset chat error flag if we're using test_completion=true and it succeeded
if (status === "healthy") {
failureCountMap.set(failureCountKey, 0);
// If we were checking with test_completion=true due to chat errors, reset the flag
if (hasChatError && setChatError) {
setChatError(false);
}
return 30000;
}
// If backend unavailable, use moderate polling
if (status === "backend-unavailable") {
return 15000;
}
// For unhealthy/error status, use exponential backoff
const currentFailures = failureCountMap.get(failureCountKey) || 0;
failureCountMap.set(failureCountKey, currentFailures + 1);
// Exponential backoff: 5s, 10s, 20s, then 30s
const backoffDelays = [5000, 10000, 20000, 30000];
const delay = backoffDelays[Math.min(currentFailures, backoffDelays.length - 1)];
const delay =
backoffDelays[Math.min(currentFailures, backoffDelays.length - 1)];
return delay;
},
refetchOnWindowFocus: false, // Disabled to reduce unnecessary calls on tab switches

View file

@ -51,6 +51,7 @@ function ChatPage() {
]);
const [input, setInput] = useState("");
const { loading, setLoading } = useLoadingStore();
const { setChatError } = useChat();
const [asyncMode, setAsyncMode] = useState(true);
const [expandedFunctionCalls, setExpandedFunctionCalls] = useState<
Set<string>
@ -123,6 +124,8 @@ function ChatPage() {
console.error("Streaming error:", error);
setLoading(false);
setWaitingTooLong(false);
// Set chat error flag to trigger test_completion=true on health checks
setChatError(true);
const errorMessage: Message = {
role: "assistant",
content:
@ -197,6 +200,11 @@ function ChatPage() {
const result = await response.json();
console.log("Upload result:", result);
if (!response.ok) {
// Set chat error flag if upload fails
setChatError(true);
}
if (response.status === 201) {
// New flow: Got task ID, start tracking with centralized system
const taskId = result.task_id || result.id;
@ -255,6 +263,8 @@ function ChatPage() {
}
} catch (error) {
console.error("Upload failed:", error);
// Set chat error flag to trigger test_completion=true on health checks
setChatError(true);
const errorMessage: Message = {
role: "assistant",
content: `❌ Failed to process document. Please try again.`,
@ -858,6 +868,8 @@ function ChatPage() {
}
} else {
console.error("Chat failed:", result.error);
// Set chat error flag to trigger test_completion=true on health checks
setChatError(true);
const errorMessage: Message = {
role: "assistant",
content: "Sorry, I encountered an error. Please try again.",
@ -867,6 +879,8 @@ function ChatPage() {
}
} catch (error) {
console.error("Chat error:", error);
// Set chat error flag to trigger test_completion=true on health checks
setChatError(true);
const errorMessage: Message = {
role: "assistant",
content:

View file

@ -191,7 +191,7 @@ export function OnboardingContent({
return (
<StickToBottom
className="flex h-full flex-1 flex-col"
className="flex h-full flex-1 flex-col [&>div]:scrollbar-hide"
resize="smooth"
initial="instant"
mass={1}

View file

@ -158,6 +158,16 @@ const OnboardingUpload = ({ onComplete }: OnboardingUploadProps) => {
const errorMessage = error instanceof Error ? error.message : "Upload failed";
console.error("Upload failed", errorMessage);
// Dispatch event that chat context can listen to
// This avoids circular dependency issues
if (typeof window !== "undefined") {
window.dispatchEvent(
new CustomEvent("ingestionFailed", {
detail: { source: "onboarding" },
}),
);
}
// Show error toast notification
toast.error("Document upload failed", {
description: errorMessage,

View file

@ -1,81 +0,0 @@
"use client";
import { Suspense, useEffect } from "react";
import { useRouter } from "next/navigation";
import { DoclingHealthBanner } from "@/components/docling-health-banner";
import { ProtectedRoute } from "@/components/protected-route";
import { DotPattern } from "@/components/ui/dot-pattern";
import { cn } from "@/lib/utils";
import { useGetSettingsQuery } from "@/app/api/queries/useGetSettingsQuery";
import OnboardingCard from "./_components/onboarding-card";
function LegacyOnboardingPage() {
const router = useRouter();
const { data: settingsDb, isLoading: isSettingsLoading } =
useGetSettingsQuery();
// Redirect if already completed onboarding
useEffect(() => {
if (!isSettingsLoading && settingsDb && settingsDb.edited) {
router.push("/");
}
}, [isSettingsLoading, settingsDb, router]);
const handleComplete = () => {
router.push("/");
};
return (
<div className="min-h-dvh w-full flex gap-5 flex-col items-center justify-center bg-background relative p-4">
<DotPattern
width={24}
height={24}
cx={1}
cy={1}
cr={1}
className={cn(
"[mask-image:linear-gradient(to_bottom,white,transparent,transparent)]",
"text-input/70",
)}
/>
<DoclingHealthBanner className="absolute top-0 left-0 right-0 w-full z-20" />
<div className="flex flex-col items-center gap-5 min-h-[550px] w-full z-10">
<div className="flex flex-col items-center justify-center gap-4">
<h1 className="text-2xl font-medium font-chivo">
Connect a model provider
</h1>
</div>
<OnboardingCard onComplete={handleComplete} />
</div>
</div>
);
}
function OnboardingRouter() {
const updatedOnboarding = process.env.UPDATED_ONBOARDING === "true";
const router = useRouter();
useEffect(() => {
if (updatedOnboarding) {
router.push("/new-onboarding");
}
}, [updatedOnboarding, router]);
if (updatedOnboarding) {
return null;
}
return <LegacyOnboardingPage />;
}
export default function ProtectedOnboardingPage() {
return (
<ProtectedRoute>
<Suspense fallback={<div>Loading onboarding...</div>}>
<OnboardingRouter />
</Suspense>
</ProtectedRoute>
);
}

View file

@ -238,6 +238,15 @@ export function KnowledgeDropdown() {
await uploadFileUtil(file, replace);
refetchTasks();
} catch (error) {
// Dispatch event that chat context can listen to
// This avoids circular dependency issues
if (typeof window !== "undefined") {
window.dispatchEvent(
new CustomEvent("ingestionFailed", {
detail: { source: "knowledge-dropdown" },
}),
);
}
toast.error("Upload failed", {
description: error instanceof Error ? error.message : "Unknown error",
});

View file

@ -6,6 +6,7 @@ import { useProviderHealthQuery } from "@/app/api/queries/useProviderHealthQuery
import type { ModelProvider } from "@/app/settings/_helpers/model-helpers";
import { Banner, BannerIcon, BannerTitle } from "@/components/ui/banner";
import { cn } from "@/lib/utils";
import { useChat } from "@/contexts/chat-context";
import { Button } from "./ui/button";
interface ProviderHealthBannerProps {
@ -14,13 +15,16 @@ interface ProviderHealthBannerProps {
// Custom hook to check provider health status
export function useProviderHealth() {
const { hasChatError } = useChat();
const {
data: health,
isLoading,
isFetching,
error,
isError,
} = useProviderHealthQuery();
} = useProviderHealthQuery({
test_completion: hasChatError, // Use test_completion=true when chat errors occur
});
const isHealthy = health?.status === "healthy" && !isError;
// Only consider unhealthy if backend is up but provider validation failed

View file

@ -79,6 +79,8 @@ interface ChatContextType {
conversationFilter: KnowledgeFilter | null;
// responseId: undefined = use currentConversationId, null = don't save to localStorage
setConversationFilter: (filter: KnowledgeFilter | null, responseId?: string | null) => void;
hasChatError: boolean;
setChatError: (hasError: boolean) => void;
}
const ChatContext = createContext<ChatContextType | undefined>(undefined);
@ -108,6 +110,19 @@ export function ChatProvider({ children }: ChatProviderProps) {
const [conversationLoaded, setConversationLoaded] = useState(false);
const [conversationFilter, setConversationFilterState] =
useState<KnowledgeFilter | null>(null);
const [hasChatError, setChatError] = useState(false);
// Listen for ingestion failures and set chat error flag
useEffect(() => {
const handleIngestionFailed = () => {
setChatError(true);
};
window.addEventListener("ingestionFailed", handleIngestionFailed);
return () => {
window.removeEventListener("ingestionFailed", handleIngestionFailed);
};
}, []);
// Debounce refresh requests to prevent excessive reloads
const refreshTimeoutRef = useRef<NodeJS.Timeout | null>(null);
@ -358,6 +373,8 @@ export function ChatProvider({ children }: ChatProviderProps) {
setConversationLoaded,
conversationFilter,
setConversationFilter,
hasChatError,
setChatError,
}),
[
endpoint,
@ -378,6 +395,7 @@ export function ChatProvider({ children }: ChatProviderProps) {
conversationLoaded,
conversationFilter,
setConversationFilter,
hasChatError,
],
);

View file

@ -323,6 +323,20 @@ export function TaskProvider({ children }: { children: React.ReactNode }) {
currentTask.error || "Unknown error"
}`,
});
// Set chat error flag to trigger test_completion=true on health checks
// Only for ingestion-related tasks (tasks with files are ingestion tasks)
if (currentTask.files && Object.keys(currentTask.files).length > 0) {
// Dispatch event that chat context can listen to
// This avoids circular dependency issues
if (typeof window !== "undefined") {
window.dispatchEvent(
new CustomEvent("ingestionFailed", {
detail: { taskId: currentTask.task_id },
}),
);
}
}
}
}
});

View file

@ -14,9 +14,6 @@ const nextConfig: NextConfig = {
eslint: {
ignoreDuringBuilds: true,
},
env: {
UPDATED_ONBOARDING: process.env.UPDATED_ONBOARDING,
},
};
export default nextConfig;

View file

@ -1,10 +1,11 @@
"""Provider health check endpoint."""
import asyncio
import httpx
from starlette.responses import JSONResponse
from utils.logging_config import get_logger
from config.settings import get_openrag_config
from api.provider_validation import validate_provider_setup, _test_ollama_lightweight_health
from api.provider_validation import validate_provider_setup
logger = get_logger(__name__)
@ -16,6 +17,8 @@ async def check_provider_health(request):
Query parameters:
provider (optional): Provider to check ('openai', 'ollama', 'watsonx', 'anthropic').
If not provided, checks the currently configured provider.
test_completion (optional): If 'true', performs full validation with completion/embedding tests (consumes credits).
If 'false' or not provided, performs lightweight validation (no/minimal credits consumed).
Returns:
200: Provider is healthy and validated
@ -26,6 +29,7 @@ async def check_provider_health(request):
# Get optional provider from query params
query_params = dict(request.query_params)
check_provider = query_params.get("provider")
test_completion = query_params.get("test_completion", "false").lower() == "true"
# Get current config
current_config = get_openrag_config()
@ -100,6 +104,7 @@ async def check_provider_health(request):
llm_model=llm_model,
endpoint=endpoint,
project_id=project_id,
test_completion=test_completion,
)
return JSONResponse(
@ -124,23 +129,14 @@ async def check_provider_health(request):
# Validate LLM provider
try:
# For Ollama, use lightweight health check that doesn't block on active requests
if provider == "ollama":
try:
await _test_ollama_lightweight_health(endpoint)
except Exception as lightweight_error:
# If lightweight check fails, Ollama is down or misconfigured
llm_error = str(lightweight_error)
logger.error(f"LLM provider ({provider}) lightweight check failed: {llm_error}")
raise
else:
await validate_provider_setup(
provider=provider,
api_key=api_key,
llm_model=llm_model,
endpoint=endpoint,
project_id=project_id,
)
await validate_provider_setup(
provider=provider,
api_key=api_key,
llm_model=llm_model,
endpoint=endpoint,
project_id=project_id,
test_completion=test_completion,
)
except httpx.TimeoutException as e:
# Timeout means provider is busy, not misconfigured
if provider == "ollama":
@ -154,24 +150,25 @@ async def check_provider_health(request):
logger.error(f"LLM provider ({provider}) validation failed: {llm_error}")
# Validate embedding provider
# For WatsonX with test_completion=True, wait 2 seconds between completion and embedding tests
if (
test_completion
and provider == "watsonx"
and embedding_provider == "watsonx"
and llm_error is None
):
logger.info("Waiting 2 seconds before WatsonX embedding test (after completion test)")
await asyncio.sleep(2)
try:
# For Ollama, use lightweight health check first
if embedding_provider == "ollama":
try:
await _test_ollama_lightweight_health(embedding_endpoint)
except Exception as lightweight_error:
# If lightweight check fails, Ollama is down or misconfigured
embedding_error = str(lightweight_error)
logger.error(f"Embedding provider ({embedding_provider}) lightweight check failed: {embedding_error}")
raise
else:
await validate_provider_setup(
provider=embedding_provider,
api_key=embedding_api_key,
embedding_model=embedding_model,
endpoint=embedding_endpoint,
project_id=embedding_project_id,
)
await validate_provider_setup(
provider=embedding_provider,
api_key=embedding_api_key,
embedding_model=embedding_model,
endpoint=embedding_endpoint,
project_id=embedding_project_id,
test_completion=test_completion,
)
except httpx.TimeoutException as e:
# Timeout means provider is busy, not misconfigured
if embedding_provider == "ollama":

View file

@ -14,17 +14,20 @@ async def validate_provider_setup(
llm_model: str = None,
endpoint: str = None,
project_id: str = None,
test_completion: bool = False,
) -> None:
"""
Validate provider setup by testing completion with tool calling and embedding.
Args:
provider: Provider name ('openai', 'watsonx', 'ollama')
provider: Provider name ('openai', 'watsonx', 'ollama', 'anthropic')
api_key: API key for the provider (optional for ollama)
embedding_model: Embedding model to test
llm_model: LLM model to test
endpoint: Provider endpoint (required for ollama and watsonx)
project_id: Project ID (required for watsonx)
test_completion: If True, performs full validation with completion/embedding tests (consumes credits).
If False, performs lightweight validation (no credits consumed). Default: False.
Raises:
Exception: If validation fails with message "Setup failed, please try again or select a different provider."
@ -32,29 +35,37 @@ async def validate_provider_setup(
provider_lower = provider.lower()
try:
logger.info(f"Starting validation for provider: {provider_lower}")
logger.info(f"Starting validation for provider: {provider_lower} (test_completion={test_completion})")
if embedding_model:
# Test embedding
await test_embedding(
if test_completion:
# Full validation with completion/embedding tests (consumes credits)
if embedding_model:
# Test embedding
await test_embedding(
provider=provider_lower,
api_key=api_key,
embedding_model=embedding_model,
endpoint=endpoint,
project_id=project_id,
)
elif llm_model:
# Test completion with tool calling
await test_completion_with_tools(
provider=provider_lower,
api_key=api_key,
llm_model=llm_model,
endpoint=endpoint,
project_id=project_id,
)
else:
# Lightweight validation (no credits consumed)
await test_lightweight_health(
provider=provider_lower,
api_key=api_key,
embedding_model=embedding_model,
endpoint=endpoint,
project_id=project_id,
)
elif llm_model:
# Test completion with tool calling
await test_completion_with_tools(
provider=provider_lower,
api_key=api_key,
llm_model=llm_model,
endpoint=endpoint,
project_id=project_id,
)
logger.info(f"Validation successful for provider: {provider_lower}")
except Exception as e:
@ -62,6 +73,26 @@ async def validate_provider_setup(
raise Exception("Setup failed, please try again or select a different provider.")
async def test_lightweight_health(
provider: str,
api_key: str = None,
endpoint: str = None,
project_id: str = None,
) -> None:
"""Test provider health with lightweight check (no credits consumed)."""
if provider == "openai":
await _test_openai_lightweight_health(api_key)
elif provider == "watsonx":
await _test_watsonx_lightweight_health(api_key, endpoint, project_id)
elif provider == "ollama":
await _test_ollama_lightweight_health(endpoint)
elif provider == "anthropic":
await _test_anthropic_lightweight_health(api_key)
else:
raise ValueError(f"Unknown provider: {provider}")
async def test_completion_with_tools(
provider: str,
api_key: str = None,
@ -103,6 +134,40 @@ async def test_embedding(
# OpenAI validation functions
async def _test_openai_lightweight_health(api_key: str) -> None:
"""Test OpenAI API key validity with lightweight check.
Only checks if the API key is valid without consuming credits.
Uses the /v1/models endpoint which doesn't consume credits.
"""
try:
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
async with httpx.AsyncClient() as client:
# Use /v1/models endpoint which validates the key without consuming credits
response = await client.get(
"https://api.openai.com/v1/models",
headers=headers,
timeout=10.0, # Short timeout for lightweight check
)
if response.status_code != 200:
logger.error(f"OpenAI lightweight health check failed: {response.status_code}")
raise Exception(f"OpenAI API key validation failed: {response.status_code}")
logger.info("OpenAI lightweight health check passed")
except httpx.TimeoutException:
logger.error("OpenAI lightweight health check timed out")
raise Exception("OpenAI API request timed out")
except Exception as e:
logger.error(f"OpenAI lightweight health check failed: {str(e)}")
raise
async def _test_openai_completion_with_tools(api_key: str, llm_model: str) -> None:
"""Test OpenAI completion with tool calling."""
try:
@ -213,6 +278,45 @@ async def _test_openai_embedding(api_key: str, embedding_model: str) -> None:
# IBM Watson validation functions
async def _test_watsonx_lightweight_health(
api_key: str, endpoint: str, project_id: str
) -> None:
"""Test WatsonX API key validity with lightweight check.
Only checks if the API key is valid by getting a bearer token.
Does not consume credits by avoiding model inference requests.
"""
try:
# Get bearer token from IBM IAM - this validates the API key without consuming credits
async with httpx.AsyncClient() as client:
token_response = await client.post(
"https://iam.cloud.ibm.com/identity/token",
headers={"Content-Type": "application/x-www-form-urlencoded"},
data={
"grant_type": "urn:ibm:params:oauth:grant-type:apikey",
"apikey": api_key,
},
timeout=10.0, # Short timeout for lightweight check
)
if token_response.status_code != 200:
logger.error(f"IBM IAM token request failed: {token_response.status_code}")
raise Exception("Failed to authenticate with IBM Watson - invalid API key")
bearer_token = token_response.json().get("access_token")
if not bearer_token:
raise Exception("No access token received from IBM")
logger.info("WatsonX lightweight health check passed - API key is valid")
except httpx.TimeoutException:
logger.error("WatsonX lightweight health check timed out")
raise Exception("WatsonX API request timed out")
except Exception as e:
logger.error(f"WatsonX lightweight health check failed: {str(e)}")
raise
async def _test_watsonx_completion_with_tools(
api_key: str, llm_model: str, endpoint: str, project_id: str
) -> None:
@ -483,6 +587,48 @@ async def _test_ollama_embedding(embedding_model: str, endpoint: str) -> None:
# Anthropic validation functions
async def _test_anthropic_lightweight_health(api_key: str) -> None:
"""Test Anthropic API key validity with lightweight check.
Only checks if the API key is valid without consuming credits.
Uses a minimal messages request with max_tokens=1 to validate the key.
"""
try:
headers = {
"x-api-key": api_key,
"anthropic-version": "2023-06-01",
"Content-Type": "application/json",
}
# Minimal validation request - uses cheapest model with minimal tokens
payload = {
"model": "claude-3-5-haiku-latest", # Cheapest model
"max_tokens": 1, # Minimum tokens to validate key
"messages": [{"role": "user", "content": "test"}],
}
async with httpx.AsyncClient() as client:
response = await client.post(
"https://api.anthropic.com/v1/messages",
headers=headers,
json=payload,
timeout=10.0, # Short timeout for lightweight check
)
if response.status_code != 200:
logger.error(f"Anthropic lightweight health check failed: {response.status_code}")
raise Exception(f"Anthropic API key validation failed: {response.status_code}")
logger.info("Anthropic lightweight health check passed")
except httpx.TimeoutException:
logger.error("Anthropic lightweight health check timed out")
raise Exception("Anthropic API request timed out")
except Exception as e:
logger.error(f"Anthropic lightweight health check failed: {str(e)}")
raise
async def _test_anthropic_completion_with_tools(api_key: str, llm_model: str) -> None:
"""Test Anthropic completion with tool calling."""
try:

View file

@ -897,6 +897,7 @@ async def onboarding(request, flows_service, session_manager=None):
)
# Validate provider setup before initializing OpenSearch index
# Use lightweight validation (test_completion=False) to avoid consuming credits during onboarding
try:
from api.provider_validation import validate_provider_setup
@ -905,13 +906,14 @@ async def onboarding(request, flows_service, session_manager=None):
llm_provider = current_config.agent.llm_provider.lower()
llm_provider_config = current_config.get_llm_provider_config()
logger.info(f"Validating LLM provider setup for {llm_provider}")
logger.info(f"Validating LLM provider setup for {llm_provider} (lightweight)")
await validate_provider_setup(
provider=llm_provider,
api_key=getattr(llm_provider_config, "api_key", None),
llm_model=current_config.agent.llm_model,
endpoint=getattr(llm_provider_config, "endpoint", None),
project_id=getattr(llm_provider_config, "project_id", None),
test_completion=False, # Lightweight validation - no credits consumed
)
logger.info(f"LLM provider setup validation completed successfully for {llm_provider}")
@ -920,13 +922,14 @@ async def onboarding(request, flows_service, session_manager=None):
embedding_provider = current_config.knowledge.embedding_provider.lower()
embedding_provider_config = current_config.get_embedding_provider_config()
logger.info(f"Validating embedding provider setup for {embedding_provider}")
logger.info(f"Validating embedding provider setup for {embedding_provider} (lightweight)")
await validate_provider_setup(
provider=embedding_provider,
api_key=getattr(embedding_provider_config, "api_key", None),
embedding_model=current_config.knowledge.embedding_model,
endpoint=getattr(embedding_provider_config, "endpoint", None),
project_id=getattr(embedding_provider_config, "project_id", None),
test_completion=False, # Lightweight validation - no credits consumed
)
logger.info(f"Embedding provider setup validation completed successfully for {embedding_provider}")
except Exception as e:

View file

@ -50,7 +50,7 @@ class ModelsService:
self.session_manager = None
async def get_openai_models(self, api_key: str) -> Dict[str, List[Dict[str, str]]]:
"""Fetch available models from OpenAI API"""
"""Fetch available models from OpenAI API with lightweight validation"""
try:
headers = {
"Authorization": f"Bearer {api_key}",
@ -58,6 +58,8 @@ class ModelsService:
}
async with httpx.AsyncClient() as client:
# Lightweight validation: just check if API key is valid
# This doesn't consume credits, only validates the key
response = await client.get(
"https://api.openai.com/v1/models", headers=headers, timeout=10.0
)
@ -101,6 +103,7 @@ class ModelsService:
key=lambda x: (not x.get("default", False), x["value"])
)
logger.info("OpenAI API key validated successfully without consuming credits")
return {
"language_models": language_models,
"embedding_models": embedding_models,
@ -389,38 +392,12 @@ class ModelsService:
}
)
# Validate credentials with the first available LLM model
if language_models:
first_llm_model = language_models[0]["value"]
async with httpx.AsyncClient() as client:
validation_url = f"{watson_endpoint}/ml/v1/text/generation"
validation_params = {"version": "2024-09-16"}
validation_payload = {
"input": "test",
"model_id": first_llm_model,
"project_id": project_id,
"parameters": {
"max_new_tokens": 1,
},
}
validation_response = await client.post(
validation_url,
headers=headers,
params=validation_params,
json=validation_payload,
timeout=10.0,
)
if validation_response.status_code != 200:
raise Exception(
f"Invalid credentials or endpoint: {validation_response.status_code} - {validation_response.text}"
)
logger.info(f"IBM Watson credentials validated successfully using model: {first_llm_model}")
# Lightweight validation: API key is already validated by successfully getting bearer token
# No need to make a generation request that consumes credits
if bearer_token:
logger.info("IBM Watson API key validated successfully without consuming credits")
else:
logger.warning("No language models available to validate credentials")
logger.warning("No bearer token available - API key validation may have failed")
if not language_models and not embedding_models:
raise Exception("No IBM models retrieved from API")