From dc724fe8e7ae1d1873ecc0b1e7a8c65fcc740c48 Mon Sep 17 00:00:00 2001 From: April M <36110273+aimurphy@users.noreply.github.com> Date: Thu, 4 Dec 2025 22:28:04 -0800 Subject: [PATCH] clean up tabs --- docs/docs/core-components/agents.mdx | 2 - .../core-components/knowledge-filters.mdx | 2 - docs/docs/core-components/knowledge.mdx | 19 ++----- docs/docs/get-started/docker.mdx | 31 +++++------ docs/docs/get-started/upgrade.mdx | 51 ++++++++++--------- docs/docs/reference/configuration.mdx | 4 -- docs/docs/support/troubleshoot.mdx | 46 +++++++---------- 7 files changed, 62 insertions(+), 93 deletions(-) diff --git a/docs/docs/core-components/agents.mdx b/docs/docs/core-components/agents.mdx index 405dbd42..b1124155 100644 --- a/docs/docs/core-components/agents.mdx +++ b/docs/docs/core-components/agents.mdx @@ -4,8 +4,6 @@ slug: /agents --- import Icon from "@site/src/components/icon/icon"; -import Tabs from '@theme/Tabs'; -import TabItem from '@theme/TabItem'; OpenRAG includes a built-in [Langflow](https://docs.langflow.org/) instance for creating and managing functional application workflows called _flows_. In a flow, the individual workflow steps are represented by [_components_](https://docs.langflow.org/concepts-components) that are connected together to form a complete process. diff --git a/docs/docs/core-components/knowledge-filters.mdx b/docs/docs/core-components/knowledge-filters.mdx index 7821f814..2197b5f7 100644 --- a/docs/docs/core-components/knowledge-filters.mdx +++ b/docs/docs/core-components/knowledge-filters.mdx @@ -4,8 +4,6 @@ slug: /knowledge-filters --- import Icon from "@site/src/components/icon/icon"; -import Tabs from '@theme/Tabs'; -import TabItem from '@theme/TabItem'; OpenRAG's knowledge filters help you organize and manage your [knowledge base](/knowledge) by creating pre-defined views of your documents. diff --git a/docs/docs/core-components/knowledge.mdx b/docs/docs/core-components/knowledge.mdx index 03c030a5..0d4b2f05 100644 --- a/docs/docs/core-components/knowledge.mdx +++ b/docs/docs/core-components/knowledge.mdx @@ -4,8 +4,6 @@ slug: /knowledge --- import Icon from "@site/src/components/icon/icon"; -import Tabs from '@theme/Tabs'; -import TabItem from '@theme/TabItem'; OpenRAG includes a built-in [OpenSearch](https://docs.opensearch.org/latest/) instance that serves as the underlying datastore for your _knowledge_ (documents). This specialized database is used to store and retrieve your documents and the associated vector data (embeddings). @@ -98,23 +96,14 @@ When you [upload documents](/ingestion), Docling processes the files, splits the You can use either Docling Serve or OpenRAG's built-in Docling ingestion pipeline to process documents. - - - -By default, OpenRAG uses [Docling Serve](https://github.com/docling-project/docling-serve). +* **Docling Serve ingestion**: By default, OpenRAG uses [Docling Serve](https://github.com/docling-project/docling-serve). This means that OpenRAG starts a `docling serve` process on your local machine and runs Docling ingestion through an API service. - - +* **Built-in Docling ingestion**: If you want to use OpenRAG's built-in Docling ingestion pipeline instead of the separate Docling Serve service, set `DISABLE_INGEST_WITH_LANGFLOW=true` in your [OpenRAG environment variables](/reference/configuration#document-processing). -If you want to use OpenRAG's built-in Docling ingestion pipeline instead of the separate Docling Serve service, set `DISABLE_INGEST_WITH_LANGFLOW=true` in your [OpenRAG environment variables](/reference/configuration#document-processing). + The built-in pipeline uses the Docling processor directly instead of through the Docling Serve API. -The built-in pipeline uses the Docling processor directly instead of through the Docling Serve API. - -For the underlying functionality, see [`processors.py`](https://github.com/langflow-ai/openrag/blob/main/src/models/processors.py#L58) in the OpenRAG repository. - - - + For the underlying functionality, see [`processors.py`](https://github.com/langflow-ai/openrag/blob/main/src/models/processors.py#L58) in the OpenRAG repository. To modify the Docling ingestion and embedding parameters, click