Merge branch 'main' into fix/health_check_models

This commit is contained in:
Sebastián Estévez 2025-12-03 19:43:01 -05:00 committed by GitHub
commit b3e6c4d973
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 567 additions and 244 deletions

View file

@ -4,12 +4,11 @@ import copy
import json
import time
import uuid
from typing import Any, List, Optional
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Any
from opensearchpy import OpenSearch, helpers
from opensearchpy.exceptions import RequestError
from opensearchpy.exceptions import OpenSearchException, RequestError
from lfx.base.vectorstores.model import LCVectorStoreComponent, check_cached_vector_store
from lfx.base.vectorstores.vector_store_connection_decorator import vector_store_connection
@ -50,11 +49,12 @@ def get_embedding_field_name(model_name: str) -> str:
Returns:
Field name in format: chunk_embedding_{normalized_model_name}
"""
logger.info(f"chunk_embedding_{normalize_model_name(model_name)}")
return f"chunk_embedding_{normalize_model_name(model_name)}"
@vector_store_connection
class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
class OpenSearchVectorStoreComponentMultimodalMultiEmbedding(LCVectorStoreComponent):
"""OpenSearch Vector Store Component with Multi-Model Hybrid Search Capabilities.
This component provides vector storage and retrieval using OpenSearch, combining semantic
@ -73,9 +73,15 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
- Parallel query embedding generation for all detected models
- Vector storage with configurable engines (jvector, nmslib, faiss, lucene)
- Flexible authentication (Basic auth, JWT tokens)
Model Name Resolution:
- Priority: deployment > model > model_name attributes
- This ensures correct matching between embedding objects and index fields
- When multiple embeddings are provided, specify embedding_model_name to select which one to use
- During search, each detected model in the index is matched to its corresponding embedding object
"""
display_name: str = "OpenSearch (Multi-Model)"
display_name: str = "OpenSearch (Multi-Model Multi-Embedding)"
icon: str = "OpenSearch"
description: str = (
"Store and search documents using OpenSearch with multi-model hybrid semantic and keyword search."
@ -130,7 +136,7 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
},
],
value=[],
input_types=["Data"]
input_types=["Data"],
),
StrInput(
name="opensearch_url",
@ -203,16 +209,19 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
advanced=True,
),
*LCVectorStoreComponent.inputs, # includes search_query, add_documents, etc.
HandleInput(name="embedding", display_name="Embedding", input_types=["Embeddings"]),
HandleInput(name="embedding", display_name="Embedding", input_types=["Embeddings"], is_list=True),
StrInput(
name="embedding_model_name",
display_name="Embedding Model Name",
value="",
info=(
"Name of the embedding model being used (e.g., 'text-embedding-3-small'). "
"Used to create dynamic vector field names and track which model embedded each document. "
"Auto-detected from embedding component if not specified."
"Name of the embedding model to use for ingestion. This selects which embedding from the list "
"will be used to embed documents. Matches on deployment, model, model_id, or model_name. "
"For duplicate deployments, use combined format: 'deployment:model' "
"(e.g., 'text-embedding-ada-002:text-embedding-3-large'). "
"Leave empty to use the first embedding. Error message will show all available identifiers."
),
advanced=False,
),
StrInput(
name="vector_field",
@ -265,20 +274,20 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
name="username",
display_name="Username",
value="admin",
show=False,
show=True,
),
SecretStrInput(
name="password",
display_name="OpenSearch Password",
value="admin",
show=False,
show=True,
),
SecretStrInput(
name="jwt_token",
display_name="JWT Token",
value="JWT",
load_from_db=False,
show=True,
show=False,
info=(
"Valid JSON Web Token for authentication. "
"Will be sent in the Authorization header (with optional 'Bearer ' prefix)."
@ -318,9 +327,16 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
),
]
def _get_embedding_model_name(self) -> str:
def _get_embedding_model_name(self, embedding_obj=None) -> str:
"""Get the embedding model name from component config or embedding object.
Priority: deployment > model > model_id > model_name
This ensures we use the actual model being deployed, not just the configured model.
Supports multiple embedding providers (OpenAI, Watsonx, Cohere, etc.)
Args:
embedding_obj: Specific embedding object to get name from (optional)
Returns:
Embedding model name
@ -331,17 +347,46 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
if hasattr(self, "embedding_model_name") and self.embedding_model_name:
return self.embedding_model_name.strip()
# Try to get from embedding component
# Try to get from provided embedding object
if embedding_obj:
# Priority: deployment > model > model_id > model_name
if hasattr(embedding_obj, "deployment") and embedding_obj.deployment:
return str(embedding_obj.deployment)
if hasattr(embedding_obj, "model") and embedding_obj.model:
return str(embedding_obj.model)
if hasattr(embedding_obj, "model_id") and embedding_obj.model_id:
return str(embedding_obj.model_id)
if hasattr(embedding_obj, "model_name") and embedding_obj.model_name:
return str(embedding_obj.model_name)
# Try to get from embedding component (legacy single embedding)
if hasattr(self, "embedding") and self.embedding:
if hasattr(self.embedding, "model"):
return str(self.embedding.model)
if hasattr(self.embedding, "model_name"):
return str(self.embedding.model_name)
# Handle list of embeddings
if isinstance(self.embedding, list) and len(self.embedding) > 0:
first_emb = self.embedding[0]
if hasattr(first_emb, "deployment") and first_emb.deployment:
return str(first_emb.deployment)
if hasattr(first_emb, "model") and first_emb.model:
return str(first_emb.model)
if hasattr(first_emb, "model_id") and first_emb.model_id:
return str(first_emb.model_id)
if hasattr(first_emb, "model_name") and first_emb.model_name:
return str(first_emb.model_name)
# Handle single embedding
elif not isinstance(self.embedding, list):
if hasattr(self.embedding, "deployment") and self.embedding.deployment:
return str(self.embedding.deployment)
if hasattr(self.embedding, "model") and self.embedding.model:
return str(self.embedding.model)
if hasattr(self.embedding, "model_id") and self.embedding.model_id:
return str(self.embedding.model_id)
if hasattr(self.embedding, "model_name") and self.embedding.model_name:
return str(self.embedding.model_name)
msg = (
"Could not determine embedding model name. "
"Please set the 'embedding_model_name' field or ensure the embedding component "
"has a 'model' or 'model_name' attribute."
"has a 'deployment', 'model', 'model_id', or 'model_name' attribute."
)
raise ValueError(msg)
@ -434,12 +479,8 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
},
},
# Also ensure the embedding_model tracking field exists as keyword
"embedding_model": {
"type": "keyword"
},
"embedding_dimensions": {
"type": "integer"
}
"embedding_model": {"type": "keyword"},
"embedding_dimensions": {"type": "integer"},
}
}
client.indices.put_mapping(index=index_name, body=mapping)
@ -450,9 +491,9 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
properties = self._get_index_properties(client)
if not self._is_knn_vector_field(properties, field_name):
raise ValueError(
f"Field '{field_name}' is not mapped as knn_vector. Current mapping: {properties.get(field_name)}"
)
msg = f"Field '{field_name}' is not mapped as knn_vector. Current mapping: {properties.get(field_name)}"
logger.aerror(msg)
raise ValueError(msg)
def _validate_aoss_with_engines(self, *, is_aoss: bool, engine: str) -> None:
"""Validate engine compatibility with Amazon OpenSearch Serverless (AOSS).
@ -600,8 +641,15 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
@check_cached_vector_store
def build_vector_store(self) -> OpenSearch:
# Return raw OpenSearch client as our "vector store."
self.log(self.ingest_data)
client = self.build_client()
# Check if we're in ingestion-only mode (no search query)
has_search_query = bool((self.search_query or "").strip())
if not has_search_query:
logger.debug("Ingestion-only mode activated: search operations will be skipped")
logger.debug("Starting ingestion mode...")
logger.warning(f"Embedding: {self.embedding}")
self._add_documents_to_vector_store(client=client)
return client
@ -611,33 +659,185 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
This method handles the complete document ingestion pipeline:
- Prepares document data and metadata
- Generates vector embeddings
- Generates vector embeddings using the selected model
- Creates appropriate index mappings with dynamic field names
- Bulk inserts documents with vectors and model tracking
Args:
client: OpenSearch client for performing operations
"""
logger.debug("[INGESTION] _add_documents_to_vector_store called")
# Convert DataFrame to Data if needed using parent's method
self.ingest_data = self._prepare_ingest_data()
logger.debug(
f"[INGESTION] ingest_data type: "
f"{type(self.ingest_data)}, length: {len(self.ingest_data) if self.ingest_data else 0}"
)
logger.debug(
f"[INGESTION] ingest_data content: "
f"{self.ingest_data[:2] if self.ingest_data and len(self.ingest_data) > 0 else 'empty'}"
)
docs = self.ingest_data or []
if not docs:
self.log("No documents to ingest.")
logger.debug("Ingestion complete: No documents provided")
return
# Get embedding model name
embedding_model = self._get_embedding_model_name()
if not self.embedding:
msg = "Embedding handle is required to embed documents."
raise ValueError(msg)
# Normalize embedding to list first
embeddings_list = self.embedding if isinstance(self.embedding, list) else [self.embedding]
# Filter out None values (fail-safe mode) - do this BEFORE checking if empty
embeddings_list = [e for e in embeddings_list if e is not None]
# NOW check if we have any valid embeddings left after filtering
if not embeddings_list:
logger.warning("All embeddings returned None (fail-safe mode enabled). Skipping document ingestion.")
self.log("Embedding returned None (fail-safe mode enabled). Skipping document ingestion.")
return
logger.debug(f"[INGESTION] Valid embeddings after filtering: {len(embeddings_list)}")
self.log(f"Available embedding models: {len(embeddings_list)}")
# Select the embedding to use for ingestion
selected_embedding = None
embedding_model = None
# If embedding_model_name is specified, find matching embedding
if hasattr(self, "embedding_model_name") and self.embedding_model_name and self.embedding_model_name.strip():
target_model_name = self.embedding_model_name.strip()
self.log(f"Looking for embedding model: {target_model_name}")
for emb_obj in embeddings_list:
# Check all possible model identifiers (deployment, model, model_id, model_name)
# Also check available_models list from EmbeddingsWithModels
possible_names = []
deployment = getattr(emb_obj, "deployment", None)
model = getattr(emb_obj, "model", None)
model_id = getattr(emb_obj, "model_id", None)
model_name = getattr(emb_obj, "model_name", None)
available_models_attr = getattr(emb_obj, "available_models", None)
if deployment:
possible_names.append(str(deployment))
if model:
possible_names.append(str(model))
if model_id:
possible_names.append(str(model_id))
if model_name:
possible_names.append(str(model_name))
# Also add combined identifier
if deployment and model and deployment != model:
possible_names.append(f"{deployment}:{model}")
# Add all models from available_models dict
if available_models_attr and isinstance(available_models_attr, dict):
possible_names.extend(
str(model_key).strip()
for model_key in available_models_attr
if model_key and str(model_key).strip()
)
# Match if target matches any of the possible names
if target_model_name in possible_names:
# Check if target is in available_models dict - use dedicated instance
if (
available_models_attr
and isinstance(available_models_attr, dict)
and target_model_name in available_models_attr
):
# Use the dedicated embedding instance from the dict
selected_embedding = available_models_attr[target_model_name]
embedding_model = target_model_name
self.log(f"Found dedicated embedding instance for '{embedding_model}' in available_models dict")
else:
# Traditional identifier match
selected_embedding = emb_obj
embedding_model = self._get_embedding_model_name(emb_obj)
self.log(f"Found matching embedding model: {embedding_model} (matched on: {target_model_name})")
break
if not selected_embedding:
# Build detailed list of available embeddings with all their identifiers
available_info = []
for idx, emb in enumerate(embeddings_list):
emb_type = type(emb).__name__
identifiers = []
deployment = getattr(emb, "deployment", None)
model = getattr(emb, "model", None)
model_id = getattr(emb, "model_id", None)
model_name = getattr(emb, "model_name", None)
available_models_attr = getattr(emb, "available_models", None)
if deployment:
identifiers.append(f"deployment='{deployment}'")
if model:
identifiers.append(f"model='{model}'")
if model_id:
identifiers.append(f"model_id='{model_id}'")
if model_name:
identifiers.append(f"model_name='{model_name}'")
# Add combined identifier as an option
if deployment and model and deployment != model:
identifiers.append(f"combined='{deployment}:{model}'")
# Add available_models dict if present
if available_models_attr and isinstance(available_models_attr, dict):
identifiers.append(f"available_models={list(available_models_attr.keys())}")
available_info.append(
f" [{idx}] {emb_type}: {', '.join(identifiers) if identifiers else 'No identifiers'}"
)
msg = (
f"Embedding model '{target_model_name}' not found in available embeddings.\n\n"
f"Available embeddings:\n" + "\n".join(available_info) + "\n\n"
"Please set 'embedding_model_name' to one of the identifier values shown above "
"(use the value after the '=' sign, without quotes).\n"
"For duplicate deployments, use the 'combined' format.\n"
"Or leave it empty to use the first embedding."
)
raise ValueError(msg)
else:
# Use first embedding if no model name specified
selected_embedding = embeddings_list[0]
embedding_model = self._get_embedding_model_name(selected_embedding)
self.log(f"No embedding_model_name specified, using first embedding: {embedding_model}")
dynamic_field_name = get_embedding_field_name(embedding_model)
self.log(f"Using embedding model: {embedding_model}")
logger.info(f"Selected embedding model for ingestion: '{embedding_model}'")
self.log(f"Using embedding model for ingestion: {embedding_model}")
self.log(f"Dynamic vector field: {dynamic_field_name}")
# Log embedding details for debugging
if hasattr(selected_embedding, "deployment"):
logger.info(f"Embedding deployment: {selected_embedding.deployment}")
if hasattr(selected_embedding, "model"):
logger.info(f"Embedding model: {selected_embedding.model}")
if hasattr(selected_embedding, "model_id"):
logger.info(f"Embedding model_id: {selected_embedding.model_id}")
if hasattr(selected_embedding, "dimensions"):
logger.info(f"Embedding dimensions: {selected_embedding.dimensions}")
if hasattr(selected_embedding, "available_models"):
logger.info(f"Embedding available_models: {selected_embedding.available_models}")
# No model switching needed - each model in available_models has its own dedicated instance
# The selected_embedding is already configured correctly for the target model
logger.info(f"Using embedding instance for '{embedding_model}' - pre-configured and ready to use")
# Extract texts and metadata from documents
texts = []
metadatas = []
# Process docs_metadata table input into a dict
additional_metadata = {}
logger.debug(f"[LF] Docs metadata {self.docs_metadata}")
if hasattr(self, "docs_metadata") and self.docs_metadata:
logger.info(f"[LF] Docs metadata {self.docs_metadata}")
if isinstance(self.docs_metadata[-1], Data):
@ -664,23 +864,27 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
metadatas.append(data_copy)
self.log(metadatas)
if not self.embedding:
msg = "Embedding handle is required to embed documents."
raise ValueError(msg)
# Generate embeddings (threaded for concurrency) with retries
def embed_chunk(chunk_text: str) -> list[float]:
return self.embedding.embed_documents([chunk_text])[0]
return selected_embedding.embed_documents([chunk_text])[0]
vectors: Optional[List[List[float]]] = None
last_exception: Optional[Exception] = None
vectors: list[list[float]] | None = None
last_exception: Exception | None = None
delay = 1.0
attempts = 0
max_attempts = 3
while attempts < 3:
while attempts < max_attempts:
attempts += 1
try:
max_workers = min(max(len(texts), 1), 8)
# Restrict concurrency for IBM/Watsonx models to avoid rate limits
is_ibm = (embedding_model and "ibm" in str(embedding_model).lower()) or (
selected_embedding and "watsonx" in type(selected_embedding).__name__.lower()
)
logger.debug(f"Is IBM: {is_ibm}")
max_workers = 1 if is_ibm else min(max(len(texts), 1), 8)
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = {executor.submit(embed_chunk, chunk): idx for idx, chunk in enumerate(texts)}
vectors = [None] * len(texts)
@ -690,16 +894,17 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
break
except Exception as exc:
last_exception = exc
if attempts >= 3:
if attempts >= max_attempts:
logger.error(
"Embedding generation failed after retries",
f"Embedding generation failed for model {embedding_model} after retries",
error=str(exc),
)
raise
logger.warning(
"Threaded embedding generation failed (attempt %s/%s), retrying in %.1fs",
"Threaded embedding generation failed for model %s (attempt %s/%s), retrying in %.1fs",
embedding_model,
attempts,
3,
max_attempts,
delay,
)
time.sleep(delay)
@ -707,11 +912,13 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
if vectors is None:
raise RuntimeError(
f"Embedding generation failed: {last_exception}" if last_exception else "Embedding generation failed"
f"Embedding generation failed for {embedding_model}: {last_exception}"
if last_exception
else f"Embedding generation failed for {embedding_model}"
)
if not vectors:
self.log("No vectors generated from documents.")
self.log(f"No vectors generated from documents for model {embedding_model}.")
return
# Get vector dimension for mapping
@ -746,9 +953,7 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
client.indices.create(index=self.index_name, body=mapping)
except RequestError as creation_error:
if creation_error.error != "resource_already_exists_exception":
logger.warning(
f"Failed to create index '{self.index_name}': {creation_error}"
)
logger.warning(f"Failed to create index '{self.index_name}': {creation_error}")
# Ensure the dynamic field exists in the index
self._ensure_embedding_field_mapping(
@ -763,6 +968,8 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
)
self.log(f"Indexing {len(texts)} documents into '{self.index_name}' with model '{embedding_model}'...")
logger.info(f"Will store embeddings in field: {dynamic_field_name}")
logger.info(f"Will tag documents with embedding_model: {embedding_model}")
# Use the bulk ingestion with model tracking
return_ids = self._bulk_ingest_embeddings(
@ -779,6 +986,9 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
)
self.log(metadatas)
logger.info(
f"Ingestion complete: Successfully indexed {len(return_ids)} documents with model '{embedding_model}'"
)
self.log(f"Successfully indexed {len(return_ids)} documents with model {embedding_model}.")
# ---------- helpers for filters ----------
@ -853,7 +1063,7 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
context_clauses.append({"terms": {field: values}})
return context_clauses
def _detect_available_models(self, client: OpenSearch, filter_clauses: list[dict] = None) -> list[str]:
def _detect_available_models(self, client: OpenSearch, filter_clauses: list[dict] | None = None) -> list[str]:
"""Detect which embedding models have documents in the index.
Uses aggregation to find all unique embedding_model values, optionally
@ -867,26 +1077,13 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
List of embedding model names found in the index
"""
try:
agg_query = {
"size": 0,
"aggs": {
"embedding_models": {
"terms": {
"field": "embedding_model",
"size": 10
}
}
}
}
agg_query = {"size": 0, "aggs": {"embedding_models": {"terms": {"field": "embedding_model", "size": 10}}}}
# Apply filters to model detection if any exist
if filter_clauses:
agg_query["query"] = {
"bool": {
"filter": filter_clauses
}
}
agg_query["query"] = {"bool": {"filter": filter_clauses}}
logger.debug(f"Model detection query: {agg_query}")
result = client.search(
index=self.index_name,
body=agg_query,
@ -895,21 +1092,33 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
buckets = result.get("aggregations", {}).get("embedding_models", {}).get("buckets", [])
models = [b["key"] for b in buckets if b["key"]]
# Log detailed bucket info for debugging
logger.info(
f"Detected embedding models in corpus: {models}"
+ (f" (with {len(filter_clauses)} filters)" if filter_clauses else "")
)
return models
except Exception as e:
if not models:
total_hits = result.get("hits", {}).get("total", {})
total_count = total_hits.get("value", 0) if isinstance(total_hits, dict) else total_hits
logger.warning(
f"No embedding_model values found in index '{self.index_name}'. "
f"Total docs in index: {total_count}. "
f"This may indicate documents were indexed without the embedding_model field."
)
except (OpenSearchException, KeyError, ValueError) as e:
logger.warning(f"Failed to detect embedding models: {e}")
# Fallback to current model
return [self._get_embedding_model_name()]
fallback_model = self._get_embedding_model_name()
logger.info(f"Using fallback model: {fallback_model}")
return [fallback_model]
else:
return models
def _get_index_properties(self, client: OpenSearch) -> dict[str, Any] | None:
"""Retrieve flattened mapping properties for the current index."""
try:
mapping = client.indices.get_mapping(index=self.index_name)
except Exception as e:
except OpenSearchException as e:
logger.warning(
f"Failed to fetch mapping for index '{self.index_name}': {e}. Proceeding without mapping metadata."
)
@ -927,9 +1136,7 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
if not field_name:
return False
if properties is None:
logger.warning(
f"Mapping metadata unavailable; assuming field '{field_name}' is usable."
)
logger.warning(f"Mapping metadata unavailable; assuming field '{field_name}' is usable.")
return True
field_def = properties.get(field_name)
if not isinstance(field_def, dict):
@ -938,10 +1145,35 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
return True
nested_props = field_def.get("properties")
if isinstance(nested_props, dict) and nested_props.get("type") == "knn_vector":
return True
return bool(isinstance(nested_props, dict) and nested_props.get("type") == "knn_vector")
return False
def _get_field_dimension(self, properties: dict[str, Any] | None, field_name: str) -> int | None:
"""Get the dimension of a knn_vector field from the index mapping.
Args:
properties: Index properties from mapping
field_name: Name of the vector field
Returns:
Dimension of the field, or None if not found
"""
if not field_name or properties is None:
return None
field_def = properties.get(field_name)
if not isinstance(field_def, dict):
return None
# Check direct knn_vector field
if field_def.get("type") == "knn_vector":
return field_def.get("dimension")
# Check nested properties
nested_props = field_def.get("properties")
if isinstance(nested_props, dict) and nested_props.get("type") == "knn_vector":
return nested_props.get("dimension")
return None
# ---------- search (multi-model hybrid) ----------
def search(self, query: str | None = None) -> list[dict[str, Any]]:
@ -985,6 +1217,11 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
msg = "Embedding is required to run hybrid search (KNN + keyword)."
raise ValueError(msg)
# Check if embedding is None (fail-safe mode)
if self.embedding is None or (isinstance(self.embedding, list) and all(e is None for e in self.embedding)):
logger.error("Embedding returned None (fail-safe mode enabled). Cannot perform search.")
return []
# Build filter clauses first so we can use them in model detection
filter_clauses = self._coerce_filter_clauses(filter_obj)
@ -995,42 +1232,166 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
logger.warning("No embedding models found in index, using current model")
available_models = [self._get_embedding_model_name()]
# Generate embeddings for ALL detected models in parallel
# Generate embeddings for ALL detected models
query_embeddings = {}
# Note: Langflow is synchronous, so we can't use true async here
# But we log the intent for parallel processing
logger.info(f"Generating embeddings for {len(available_models)} models")
# Normalize embedding to list
embeddings_list = self.embedding if isinstance(self.embedding, list) else [self.embedding]
# Filter out None values (fail-safe mode)
embeddings_list = [e for e in embeddings_list if e is not None]
original_model_attr = getattr(self.embedding, "model", None)
original_deployment_attr = getattr(self.embedding, "deployment", None)
original_dimensions_attr = getattr(self.embedding, "dimensions", None)
if not embeddings_list:
logger.error(
"No valid embeddings available after filtering None values (fail-safe mode). Cannot perform search."
)
return []
# Create a comprehensive map of model names to embedding objects
# Check all possible identifiers (deployment, model, model_id, model_name)
# Also leverage available_models list from EmbeddingsWithModels
# Handle duplicate identifiers by creating combined keys
embedding_by_model = {}
identifier_conflicts = {} # Track which identifiers have conflicts
for idx, emb_obj in enumerate(embeddings_list):
# Get all possible identifiers for this embedding
identifiers = []
deployment = getattr(emb_obj, "deployment", None)
model = getattr(emb_obj, "model", None)
model_id = getattr(emb_obj, "model_id", None)
model_name = getattr(emb_obj, "model_name", None)
dimensions = getattr(emb_obj, "dimensions", None)
available_models_attr = getattr(emb_obj, "available_models", None)
logger.info(
f"Embedding object {idx}: deployment={deployment}, model={model}, "
f"model_id={model_id}, model_name={model_name}, dimensions={dimensions}, "
f"available_models={available_models_attr}"
)
# If this embedding has available_models dict, map all models to their dedicated instances
if available_models_attr and isinstance(available_models_attr, dict):
logger.info(
f"Embedding object {idx} provides {len(available_models_attr)} models via available_models dict"
)
for model_name_key, dedicated_embedding in available_models_attr.items():
if model_name_key and str(model_name_key).strip():
model_str = str(model_name_key).strip()
if model_str not in embedding_by_model:
# Use the dedicated embedding instance from the dict
embedding_by_model[model_str] = dedicated_embedding
logger.info(f"Mapped available model '{model_str}' to dedicated embedding instance")
else:
# Conflict detected - track it
if model_str not in identifier_conflicts:
identifier_conflicts[model_str] = [embedding_by_model[model_str]]
identifier_conflicts[model_str].append(dedicated_embedding)
logger.warning(f"Available model '{model_str}' has conflict - used by multiple embeddings")
# Also map traditional identifiers (for backward compatibility)
if deployment:
identifiers.append(str(deployment))
if model:
identifiers.append(str(model))
if model_id:
identifiers.append(str(model_id))
if model_name:
identifiers.append(str(model_name))
# Map all identifiers to this embedding object
for identifier in identifiers:
if identifier not in embedding_by_model:
embedding_by_model[identifier] = emb_obj
logger.info(f"Mapped identifier '{identifier}' to embedding object {idx}")
else:
# Conflict detected - track it
if identifier not in identifier_conflicts:
identifier_conflicts[identifier] = [embedding_by_model[identifier]]
identifier_conflicts[identifier].append(emb_obj)
logger.warning(f"Identifier '{identifier}' has conflict - used by multiple embeddings")
# For embeddings with model+deployment, create combined identifier
# This helps when deployment is the same but model differs
if deployment and model and deployment != model:
combined_id = f"{deployment}:{model}"
if combined_id not in embedding_by_model:
embedding_by_model[combined_id] = emb_obj
logger.info(f"Created combined identifier '{combined_id}' for embedding object {idx}")
# Log conflicts
if identifier_conflicts:
logger.warning(
f"Found {len(identifier_conflicts)} conflicting identifiers. "
f"Consider using combined format 'deployment:model' or specifying unique model names."
)
for conflict_id, emb_list in identifier_conflicts.items():
logger.warning(f" Conflict on '{conflict_id}': {len(emb_list)} embeddings use this identifier")
logger.info(f"Generating embeddings for {len(available_models)} models in index")
logger.info(f"Available embedding identifiers: {list(embedding_by_model.keys())}")
self.log(f"[SEARCH] Models detected in index: {available_models}")
self.log(f"[SEARCH] Available embedding identifiers: {list(embedding_by_model.keys())}")
# Track matching status for debugging
matched_models = []
unmatched_models = []
for model_name in available_models:
try:
# In a real async environment, these would run in parallel
# For now, they run sequentially
if hasattr(self.embedding, "model"):
setattr(self.embedding, "model", model_name)
if hasattr(self.embedding, "deployment"):
setattr(self.embedding, "deployment", model_name)
if hasattr(self.embedding, "dimensions"):
setattr(self.embedding, "dimensions", None)
vec = self.embedding.embed_query(q)
query_embeddings[model_name] = vec
logger.info(f"Generated embedding for model: {model_name}")
except Exception as e:
logger.error(f"Failed to generate embedding for {model_name}: {e}")
# Check if we have an embedding object for this model
if model_name in embedding_by_model:
# Use the matching embedding object directly
emb_obj = embedding_by_model[model_name]
emb_deployment = getattr(emb_obj, "deployment", None)
emb_model = getattr(emb_obj, "model", None)
emb_model_id = getattr(emb_obj, "model_id", None)
emb_dimensions = getattr(emb_obj, "dimensions", None)
emb_available_models = getattr(emb_obj, "available_models", None)
if hasattr(self.embedding, "model"):
setattr(self.embedding, "model", original_model_attr)
if hasattr(self.embedding, "deployment"):
setattr(self.embedding, "deployment", original_deployment_attr)
if hasattr(self.embedding, "dimensions"):
setattr(self.embedding, "dimensions", original_dimensions_attr)
logger.info(
f"Using embedding object for model '{model_name}': "
f"deployment={emb_deployment}, model={emb_model}, model_id={emb_model_id}, "
f"dimensions={emb_dimensions}"
)
# Check if this is a dedicated instance from available_models dict
if emb_available_models and isinstance(emb_available_models, dict):
logger.info(
f"Model '{model_name}' using dedicated instance from available_models dict "
f"(pre-configured with correct model and dimensions)"
)
# Use the embedding instance directly - no model switching needed!
vec = emb_obj.embed_query(q)
query_embeddings[model_name] = vec
matched_models.append(model_name)
logger.info(f"Generated embedding for model: {model_name} (actual dimensions: {len(vec)})")
self.log(f"[MATCH] Model '{model_name}' - generated {len(vec)}-dim embedding")
else:
# No matching embedding found for this model
unmatched_models.append(model_name)
logger.warning(
f"No matching embedding found for model '{model_name}'. "
f"This model will be skipped. Available identifiers: {list(embedding_by_model.keys())}"
)
self.log(f"[NO MATCH] Model '{model_name}' - available: {list(embedding_by_model.keys())}")
except (RuntimeError, ValueError, ConnectionError, TimeoutError, AttributeError, KeyError) as e:
logger.warning(f"Failed to generate embedding for {model_name}: {e}")
self.log(f"[ERROR] Embedding generation failed for '{model_name}': {e}")
# Log summary of model matching
logger.info(f"Model matching summary: {len(matched_models)} matched, {len(unmatched_models)} unmatched")
self.log(f"[SUMMARY] Model matching: {len(matched_models)} matched, {len(unmatched_models)} unmatched")
if unmatched_models:
self.log(f"[WARN] Unmatched models in index: {unmatched_models}")
if not query_embeddings:
msg = "Failed to generate embeddings for any model"
msg = (
f"Failed to generate embeddings for any model. "
f"Index has models: {available_models}, but no matching embedding objects found. "
f"Available embedding identifiers: {list(embedding_by_model.keys())}"
)
self.log(f"[FAIL] Search failed: {msg}")
raise ValueError(msg)
index_properties = self._get_index_properties(client)
@ -1051,6 +1412,7 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
for model_name, embedding_vector in query_embeddings.items():
field_name = get_embedding_field_name(model_name)
selected_field = field_name
vector_dim = len(embedding_vector)
# Only use the expected dynamic field - no legacy fallback
# This prevents dimension mismatches between models
@ -1059,8 +1421,24 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
f"Skipping model {model_name}: field '{field_name}' is not mapped as knn_vector. "
f"Documents must be indexed with this embedding model before querying."
)
self.log(f"[SKIP] Field '{selected_field}' not a knn_vector - skipping model '{model_name}'")
continue
# Validate vector dimensions match the field dimensions
field_dim = self._get_field_dimension(index_properties, selected_field)
if field_dim is not None and field_dim != vector_dim:
logger.error(
f"Dimension mismatch for model '{model_name}': "
f"Query vector has {vector_dim} dimensions but field '{selected_field}' expects {field_dim}. "
f"Skipping this model to prevent search errors."
)
self.log(f"[DIM MISMATCH] Model '{model_name}': query={vector_dim} vs field={field_dim} - skipping")
continue
logger.info(
f"Adding KNN query for model '{model_name}': field='{selected_field}', "
f"query_dims={vector_dim}, field_dims={field_dim or 'unknown'}"
)
embedding_fields.append(selected_field)
base_query = {
@ -1091,14 +1469,16 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
"This may indicate an empty index or missing field mappings. "
"Returning empty search results."
)
self.log(
f"[WARN] No valid KNN queries could be built. "
f"Query embeddings generated: {list(query_embeddings.keys())}, "
f"but no matching knn_vector fields found in index."
)
return []
# Build exists filter - document must have at least one embedding field
exists_any_embedding = {
"bool": {
"should": [{"exists": {"field": f}} for f in set(embedding_fields)],
"minimum_should_match": 1
}
"bool": {"should": [{"exists": {"field": f}} for f in set(embedding_fields)], "minimum_should_match": 1}
}
# Combine user filters with exists filter
@ -1117,7 +1497,7 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
"dis_max": {
"tie_breaker": 0.0, # Take only the best match, no blending
"boost": 0.7, # 70% weight for semantic search
"queries": knn_queries_with_candidates
"queries": knn_queries_with_candidates,
}
},
{
@ -1158,13 +1538,15 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
body["min_score"] = score_threshold
logger.info(
f"Executing multi-model hybrid search with {len(knn_queries_with_candidates)} embedding models"
f"Executing multi-model hybrid search with {len(knn_queries_with_candidates)} embedding models: "
f"{list(query_embeddings.keys())}"
)
self.log(f"[EXEC] Executing search with {len(knn_queries_with_candidates)} KNN queries, limit={limit}")
self.log(f"[EXEC] Embedding models used: {list(query_embeddings.keys())}")
self.log(f"[EXEC] KNN fields being queried: {embedding_fields}")
try:
resp = client.search(
index=self.index_name, body=body, params={"terminate_after": 0}
)
resp = client.search(index=self.index_name, body=body, params={"terminate_after": 0})
except RequestError as e:
error_message = str(e)
lowered = error_message.lower()
@ -1215,6 +1597,16 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
hits = resp.get("hits", {}).get("hits", [])
logger.info(f"Found {len(hits)} results")
self.log(f"[RESULT] Search complete: {len(hits)} results found")
if len(hits) == 0:
self.log(
f"[EMPTY] Debug info: "
f"models_in_index={available_models}, "
f"matched_models={matched_models}, "
f"knn_fields={embedding_fields}, "
f"filters={len(filter_clauses)} clauses"
)
return [
{
@ -1231,6 +1623,9 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
This is the main interface method that performs the multi-model search using the
configured search_query and returns results in Langflow's Data format.
Always builds the vector store (triggering ingestion if needed), then performs
search only if a query is provided.
Returns:
List of Data objects containing search results with text and metadata
@ -1238,9 +1633,20 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
Exception: If search operation fails
"""
try:
raw = self.search(self.search_query or "")
# Always build/cache the vector store to ensure ingestion happens
logger.info(f"Search query: {self.search_query}")
if self._cached_vector_store is None:
self.build_vector_store()
# Only perform search if query is provided
search_query = (self.search_query or "").strip()
if not search_query:
self.log("No search query provided - ingestion completed, returning empty results")
return []
# Perform search with the provided query
raw = self.search(search_query)
return [Data(text=hit["page_content"], **hit["metadata"]) for hit in raw]
self.log(self.ingest_data)
except Exception as e:
self.log(f"search_documents error: {e}")
raise
@ -1280,9 +1686,6 @@ class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
build_config["jwt_header"]["required"] = is_jwt
build_config["bearer_prefix"]["required"] = False
if is_basic:
build_config["jwt_token"]["value"] = ""
return build_config
except (KeyError, ValueError) as e:

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -191,7 +191,7 @@ export function OnboardingContent({
return (
<StickToBottom
className="flex h-full flex-1 flex-col"
className="flex h-full flex-1 flex-col [&>div]:scrollbar-hide"
resize="smooth"
initial="instant"
mass={1}

View file

@ -1,81 +0,0 @@
"use client";
import { Suspense, useEffect } from "react";
import { useRouter } from "next/navigation";
import { DoclingHealthBanner } from "@/components/docling-health-banner";
import { ProtectedRoute } from "@/components/protected-route";
import { DotPattern } from "@/components/ui/dot-pattern";
import { cn } from "@/lib/utils";
import { useGetSettingsQuery } from "@/app/api/queries/useGetSettingsQuery";
import OnboardingCard from "./_components/onboarding-card";
function LegacyOnboardingPage() {
const router = useRouter();
const { data: settingsDb, isLoading: isSettingsLoading } =
useGetSettingsQuery();
// Redirect if already completed onboarding
useEffect(() => {
if (!isSettingsLoading && settingsDb && settingsDb.edited) {
router.push("/");
}
}, [isSettingsLoading, settingsDb, router]);
const handleComplete = () => {
router.push("/");
};
return (
<div className="min-h-dvh w-full flex gap-5 flex-col items-center justify-center bg-background relative p-4">
<DotPattern
width={24}
height={24}
cx={1}
cy={1}
cr={1}
className={cn(
"[mask-image:linear-gradient(to_bottom,white,transparent,transparent)]",
"text-input/70",
)}
/>
<DoclingHealthBanner className="absolute top-0 left-0 right-0 w-full z-20" />
<div className="flex flex-col items-center gap-5 min-h-[550px] w-full z-10">
<div className="flex flex-col items-center justify-center gap-4">
<h1 className="text-2xl font-medium font-chivo">
Connect a model provider
</h1>
</div>
<OnboardingCard onComplete={handleComplete} />
</div>
</div>
);
}
function OnboardingRouter() {
const updatedOnboarding = process.env.UPDATED_ONBOARDING === "true";
const router = useRouter();
useEffect(() => {
if (updatedOnboarding) {
router.push("/new-onboarding");
}
}, [updatedOnboarding, router]);
if (updatedOnboarding) {
return null;
}
return <LegacyOnboardingPage />;
}
export default function ProtectedOnboardingPage() {
return (
<ProtectedRoute>
<Suspense fallback={<div>Loading onboarding...</div>}>
<OnboardingRouter />
</Suspense>
</ProtectedRoute>
);
}

View file

@ -14,9 +14,6 @@ const nextConfig: NextConfig = {
eslint: {
ignoreDuringBuilds: true,
},
env: {
UPDATED_ONBOARDING: process.env.UPDATED_ONBOARDING,
},
};
export default nextConfig;