create lightweight health check based on query param

This commit is contained in:
Lucas Oliveira 2025-12-03 17:11:51 -03:00
parent a778cd76fa
commit 9b08f1fcee
4 changed files with 198 additions and 86 deletions

View file

@ -4,7 +4,7 @@ import httpx
from starlette.responses import JSONResponse
from utils.logging_config import get_logger
from config.settings import get_openrag_config
from api.provider_validation import validate_provider_setup, _test_ollama_lightweight_health
from api.provider_validation import validate_provider_setup
logger = get_logger(__name__)
@ -16,6 +16,8 @@ async def check_provider_health(request):
Query parameters:
provider (optional): Provider to check ('openai', 'ollama', 'watsonx', 'anthropic').
If not provided, checks the currently configured provider.
test_completion (optional): If 'true', performs full validation with completion/embedding tests (consumes credits).
If 'false' or not provided, performs lightweight validation (no/minimal credits consumed).
Returns:
200: Provider is healthy and validated
@ -26,6 +28,7 @@ async def check_provider_health(request):
# Get optional provider from query params
query_params = dict(request.query_params)
check_provider = query_params.get("provider")
test_completion = query_params.get("test_completion", "false").lower() == "true"
# Get current config
current_config = get_openrag_config()
@ -100,6 +103,7 @@ async def check_provider_health(request):
llm_model=llm_model,
endpoint=endpoint,
project_id=project_id,
test_completion=test_completion,
)
return JSONResponse(
@ -124,23 +128,14 @@ async def check_provider_health(request):
# Validate LLM provider
try:
# For Ollama, use lightweight health check that doesn't block on active requests
if provider == "ollama":
try:
await _test_ollama_lightweight_health(endpoint)
except Exception as lightweight_error:
# If lightweight check fails, Ollama is down or misconfigured
llm_error = str(lightweight_error)
logger.error(f"LLM provider ({provider}) lightweight check failed: {llm_error}")
raise
else:
await validate_provider_setup(
provider=provider,
api_key=api_key,
llm_model=llm_model,
endpoint=endpoint,
project_id=project_id,
)
await validate_provider_setup(
provider=provider,
api_key=api_key,
llm_model=llm_model,
endpoint=endpoint,
project_id=project_id,
test_completion=test_completion,
)
except httpx.TimeoutException as e:
# Timeout means provider is busy, not misconfigured
if provider == "ollama":
@ -155,23 +150,14 @@ async def check_provider_health(request):
# Validate embedding provider
try:
# For Ollama, use lightweight health check first
if embedding_provider == "ollama":
try:
await _test_ollama_lightweight_health(embedding_endpoint)
except Exception as lightweight_error:
# If lightweight check fails, Ollama is down or misconfigured
embedding_error = str(lightweight_error)
logger.error(f"Embedding provider ({embedding_provider}) lightweight check failed: {embedding_error}")
raise
else:
await validate_provider_setup(
provider=embedding_provider,
api_key=embedding_api_key,
embedding_model=embedding_model,
endpoint=embedding_endpoint,
project_id=embedding_project_id,
)
await validate_provider_setup(
provider=embedding_provider,
api_key=embedding_api_key,
embedding_model=embedding_model,
endpoint=embedding_endpoint,
project_id=embedding_project_id,
test_completion=test_completion,
)
except httpx.TimeoutException as e:
# Timeout means provider is busy, not misconfigured
if embedding_provider == "ollama":

View file

@ -14,17 +14,20 @@ async def validate_provider_setup(
llm_model: str = None,
endpoint: str = None,
project_id: str = None,
test_completion: bool = False,
) -> None:
"""
Validate provider setup by testing completion with tool calling and embedding.
Args:
provider: Provider name ('openai', 'watsonx', 'ollama')
provider: Provider name ('openai', 'watsonx', 'ollama', 'anthropic')
api_key: API key for the provider (optional for ollama)
embedding_model: Embedding model to test
llm_model: LLM model to test
endpoint: Provider endpoint (required for ollama and watsonx)
project_id: Project ID (required for watsonx)
test_completion: If True, performs full validation with completion/embedding tests (consumes credits).
If False, performs lightweight validation (no credits consumed). Default: False.
Raises:
Exception: If validation fails with message "Setup failed, please try again or select a different provider."
@ -32,29 +35,37 @@ async def validate_provider_setup(
provider_lower = provider.lower()
try:
logger.info(f"Starting validation for provider: {provider_lower}")
logger.info(f"Starting validation for provider: {provider_lower} (test_completion={test_completion})")
if embedding_model:
# Test embedding
await test_embedding(
if test_completion:
# Full validation with completion/embedding tests (consumes credits)
if embedding_model:
# Test embedding
await test_embedding(
provider=provider_lower,
api_key=api_key,
embedding_model=embedding_model,
endpoint=endpoint,
project_id=project_id,
)
elif llm_model:
# Test completion with tool calling
await test_completion_with_tools(
provider=provider_lower,
api_key=api_key,
llm_model=llm_model,
endpoint=endpoint,
project_id=project_id,
)
else:
# Lightweight validation (no credits consumed)
await test_lightweight_health(
provider=provider_lower,
api_key=api_key,
embedding_model=embedding_model,
endpoint=endpoint,
project_id=project_id,
)
elif llm_model:
# Test completion with tool calling
await test_completion_with_tools(
provider=provider_lower,
api_key=api_key,
llm_model=llm_model,
endpoint=endpoint,
project_id=project_id,
)
logger.info(f"Validation successful for provider: {provider_lower}")
except Exception as e:
@ -62,6 +73,26 @@ async def validate_provider_setup(
raise Exception("Setup failed, please try again or select a different provider.")
async def test_lightweight_health(
provider: str,
api_key: str = None,
endpoint: str = None,
project_id: str = None,
) -> None:
"""Test provider health with lightweight check (no credits consumed)."""
if provider == "openai":
await _test_openai_lightweight_health(api_key)
elif provider == "watsonx":
await _test_watsonx_lightweight_health(api_key, endpoint, project_id)
elif provider == "ollama":
await _test_ollama_lightweight_health(endpoint)
elif provider == "anthropic":
await _test_anthropic_lightweight_health(api_key)
else:
raise ValueError(f"Unknown provider: {provider}")
async def test_completion_with_tools(
provider: str,
api_key: str = None,
@ -103,6 +134,40 @@ async def test_embedding(
# OpenAI validation functions
async def _test_openai_lightweight_health(api_key: str) -> None:
"""Test OpenAI API key validity with lightweight check.
Only checks if the API key is valid without consuming credits.
Uses the /v1/models endpoint which doesn't consume credits.
"""
try:
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
async with httpx.AsyncClient() as client:
# Use /v1/models endpoint which validates the key without consuming credits
response = await client.get(
"https://api.openai.com/v1/models",
headers=headers,
timeout=10.0, # Short timeout for lightweight check
)
if response.status_code != 200:
logger.error(f"OpenAI lightweight health check failed: {response.status_code}")
raise Exception(f"OpenAI API key validation failed: {response.status_code}")
logger.info("OpenAI lightweight health check passed")
except httpx.TimeoutException:
logger.error("OpenAI lightweight health check timed out")
raise Exception("OpenAI API request timed out")
except Exception as e:
logger.error(f"OpenAI lightweight health check failed: {str(e)}")
raise
async def _test_openai_completion_with_tools(api_key: str, llm_model: str) -> None:
"""Test OpenAI completion with tool calling."""
try:
@ -213,6 +278,45 @@ async def _test_openai_embedding(api_key: str, embedding_model: str) -> None:
# IBM Watson validation functions
async def _test_watsonx_lightweight_health(
api_key: str, endpoint: str, project_id: str
) -> None:
"""Test WatsonX API key validity with lightweight check.
Only checks if the API key is valid by getting a bearer token.
Does not consume credits by avoiding model inference requests.
"""
try:
# Get bearer token from IBM IAM - this validates the API key without consuming credits
async with httpx.AsyncClient() as client:
token_response = await client.post(
"https://iam.cloud.ibm.com/identity/token",
headers={"Content-Type": "application/x-www-form-urlencoded"},
data={
"grant_type": "urn:ibm:params:oauth:grant-type:apikey",
"apikey": api_key,
},
timeout=10.0, # Short timeout for lightweight check
)
if token_response.status_code != 200:
logger.error(f"IBM IAM token request failed: {token_response.status_code}")
raise Exception("Failed to authenticate with IBM Watson - invalid API key")
bearer_token = token_response.json().get("access_token")
if not bearer_token:
raise Exception("No access token received from IBM")
logger.info("WatsonX lightweight health check passed - API key is valid")
except httpx.TimeoutException:
logger.error("WatsonX lightweight health check timed out")
raise Exception("WatsonX API request timed out")
except Exception as e:
logger.error(f"WatsonX lightweight health check failed: {str(e)}")
raise
async def _test_watsonx_completion_with_tools(
api_key: str, llm_model: str, endpoint: str, project_id: str
) -> None:
@ -483,6 +587,48 @@ async def _test_ollama_embedding(embedding_model: str, endpoint: str) -> None:
# Anthropic validation functions
async def _test_anthropic_lightweight_health(api_key: str) -> None:
"""Test Anthropic API key validity with lightweight check.
Only checks if the API key is valid without consuming credits.
Uses a minimal messages request with max_tokens=1 to validate the key.
"""
try:
headers = {
"x-api-key": api_key,
"anthropic-version": "2023-06-01",
"Content-Type": "application/json",
}
# Minimal validation request - uses cheapest model with minimal tokens
payload = {
"model": "claude-3-5-haiku-latest", # Cheapest model
"max_tokens": 1, # Minimum tokens to validate key
"messages": [{"role": "user", "content": "test"}],
}
async with httpx.AsyncClient() as client:
response = await client.post(
"https://api.anthropic.com/v1/messages",
headers=headers,
json=payload,
timeout=10.0, # Short timeout for lightweight check
)
if response.status_code != 200:
logger.error(f"Anthropic lightweight health check failed: {response.status_code}")
raise Exception(f"Anthropic API key validation failed: {response.status_code}")
logger.info("Anthropic lightweight health check passed")
except httpx.TimeoutException:
logger.error("Anthropic lightweight health check timed out")
raise Exception("Anthropic API request timed out")
except Exception as e:
logger.error(f"Anthropic lightweight health check failed: {str(e)}")
raise
async def _test_anthropic_completion_with_tools(api_key: str, llm_model: str) -> None:
"""Test Anthropic completion with tool calling."""
try:

View file

@ -897,6 +897,7 @@ async def onboarding(request, flows_service, session_manager=None):
)
# Validate provider setup before initializing OpenSearch index
# Use lightweight validation (test_completion=False) to avoid consuming credits during onboarding
try:
from api.provider_validation import validate_provider_setup
@ -905,13 +906,14 @@ async def onboarding(request, flows_service, session_manager=None):
llm_provider = current_config.agent.llm_provider.lower()
llm_provider_config = current_config.get_llm_provider_config()
logger.info(f"Validating LLM provider setup for {llm_provider}")
logger.info(f"Validating LLM provider setup for {llm_provider} (lightweight)")
await validate_provider_setup(
provider=llm_provider,
api_key=getattr(llm_provider_config, "api_key", None),
llm_model=current_config.agent.llm_model,
endpoint=getattr(llm_provider_config, "endpoint", None),
project_id=getattr(llm_provider_config, "project_id", None),
test_completion=False, # Lightweight validation - no credits consumed
)
logger.info(f"LLM provider setup validation completed successfully for {llm_provider}")
@ -920,13 +922,14 @@ async def onboarding(request, flows_service, session_manager=None):
embedding_provider = current_config.knowledge.embedding_provider.lower()
embedding_provider_config = current_config.get_embedding_provider_config()
logger.info(f"Validating embedding provider setup for {embedding_provider}")
logger.info(f"Validating embedding provider setup for {embedding_provider} (lightweight)")
await validate_provider_setup(
provider=embedding_provider,
api_key=getattr(embedding_provider_config, "api_key", None),
embedding_model=current_config.knowledge.embedding_model,
endpoint=getattr(embedding_provider_config, "endpoint", None),
project_id=getattr(embedding_provider_config, "project_id", None),
test_completion=False, # Lightweight validation - no credits consumed
)
logger.info(f"Embedding provider setup validation completed successfully for {embedding_provider}")
except Exception as e:

View file

@ -50,7 +50,7 @@ class ModelsService:
self.session_manager = None
async def get_openai_models(self, api_key: str) -> Dict[str, List[Dict[str, str]]]:
"""Fetch available models from OpenAI API"""
"""Fetch available models from OpenAI API with lightweight validation"""
try:
headers = {
"Authorization": f"Bearer {api_key}",
@ -58,6 +58,8 @@ class ModelsService:
}
async with httpx.AsyncClient() as client:
# Lightweight validation: just check if API key is valid
# This doesn't consume credits, only validates the key
response = await client.get(
"https://api.openai.com/v1/models", headers=headers, timeout=10.0
)
@ -101,6 +103,7 @@ class ModelsService:
key=lambda x: (not x.get("default", False), x["value"])
)
logger.info("OpenAI API key validated successfully without consuming credits")
return {
"language_models": language_models,
"embedding_models": embedding_models,
@ -389,38 +392,12 @@ class ModelsService:
}
)
# Validate credentials with the first available LLM model
if language_models:
first_llm_model = language_models[0]["value"]
async with httpx.AsyncClient() as client:
validation_url = f"{watson_endpoint}/ml/v1/text/generation"
validation_params = {"version": "2024-09-16"}
validation_payload = {
"input": "test",
"model_id": first_llm_model,
"project_id": project_id,
"parameters": {
"max_new_tokens": 1,
},
}
validation_response = await client.post(
validation_url,
headers=headers,
params=validation_params,
json=validation_payload,
timeout=10.0,
)
if validation_response.status_code != 200:
raise Exception(
f"Invalid credentials or endpoint: {validation_response.status_code} - {validation_response.text}"
)
logger.info(f"IBM Watson credentials validated successfully using model: {first_llm_model}")
# Lightweight validation: API key is already validated by successfully getting bearer token
# No need to make a generation request that consumes credits
if bearer_token:
logger.info("IBM Watson API key validated successfully without consuming credits")
else:
logger.warning("No language models available to validate credentials")
logger.warning("No bearer token available - API key validation may have failed")
if not language_models and not embedding_models:
raise Exception("No IBM models retrieved from API")