This commit is contained in:
phact 2025-10-11 00:03:58 -04:00
parent af741f3784
commit 88d73625b5
7 changed files with 922 additions and 46 deletions

View file

@ -0,0 +1,876 @@
from __future__ import annotations
import json
import uuid
from typing import Any
from opensearchpy import OpenSearch, helpers
from opensearchpy.exceptions import RequestError
from lfx.base.vectorstores.model import LCVectorStoreComponent, check_cached_vector_store
from lfx.base.vectorstores.vector_store_connection_decorator import vector_store_connection
from lfx.io import BoolInput, DropdownInput, HandleInput, IntInput, MultilineInput, SecretStrInput, StrInput, TableInput
from lfx.log import logger
from lfx.schema.data import Data
@vector_store_connection
class OpenSearchVectorStoreComponent(LCVectorStoreComponent):
"""OpenSearch Vector Store Component with Hybrid Search Capabilities.
This component provides vector storage and retrieval using OpenSearch, combining semantic
similarity search (KNN) with keyword-based search for optimal results. It supports document
ingestion, vector embeddings, and advanced filtering with authentication options.
Features:
- Vector storage with configurable engines (jvector, nmslib, faiss, lucene)
- Hybrid search combining KNN vector similarity and keyword matching
- Flexible authentication (Basic auth, JWT tokens)
- Advanced filtering and aggregations
- Metadata injection during document ingestion
"""
display_name: str = "OpenSearch"
icon: str = "OpenSearch"
description: str = (
"Store and search documents using OpenSearch with hybrid semantic and keyword search capabilities."
)
# Keys we consider baseline
default_keys: list[str] = [
"opensearch_url",
"index_name",
*[i.name for i in LCVectorStoreComponent.inputs], # search_query, add_documents, etc.
"embedding",
"vector_field",
"number_of_results",
"auth_mode",
"username",
"password",
"jwt_token",
"jwt_header",
"bearer_prefix",
"use_ssl",
"verify_certs",
"filter_expression",
"engine",
"space_type",
"ef_construction",
"m",
"docs_metadata",
]
inputs = [
TableInput(
name="docs_metadata",
display_name="Document Metadata",
info=(
"Additional metadata key-value pairs to be added to all ingested documents. "
"Useful for tagging documents with source information, categories, or other custom attributes."
),
table_schema=[
{
"name": "key",
"display_name": "Key",
"type": "str",
"description": "Key name",
},
{
"name": "value",
"display_name": "Value",
"type": "str",
"description": "Value of the metadata",
},
],
value=[],
# advanced=True,
input_types=["Data"]
),
StrInput(
name="opensearch_url",
display_name="OpenSearch URL",
value="http://localhost:9200",
info=(
"The connection URL for your OpenSearch cluster "
"(e.g., http://localhost:9200 for local development or your cloud endpoint)."
),
),
StrInput(
name="index_name",
display_name="Index Name",
value="langflow",
info=(
"The OpenSearch index name where documents will be stored and searched. "
"Will be created automatically if it doesn't exist."
),
),
DropdownInput(
name="engine",
display_name="Vector Engine",
options=["jvector", "nmslib", "faiss", "lucene"],
value="jvector",
info=(
"Vector search engine for similarity calculations. 'jvector' is recommended for most use cases. "
"Note: Amazon OpenSearch Serverless only supports 'nmslib' or 'faiss'."
),
advanced=True,
),
DropdownInput(
name="space_type",
display_name="Distance Metric",
options=["l2", "l1", "cosinesimil", "linf", "innerproduct"],
value="l2",
info=(
"Distance metric for calculating vector similarity. 'l2' (Euclidean) is most common, "
"'cosinesimil' for cosine similarity, 'innerproduct' for dot product."
),
advanced=True,
),
IntInput(
name="ef_construction",
display_name="EF Construction",
value=512,
info=(
"Size of the dynamic candidate list during index construction. "
"Higher values improve recall but increase indexing time and memory usage."
),
advanced=True,
),
IntInput(
name="m",
display_name="M Parameter",
value=16,
info=(
"Number of bidirectional connections for each vector in the HNSW graph. "
"Higher values improve search quality but increase memory usage and indexing time."
),
advanced=True,
),
*LCVectorStoreComponent.inputs, # includes search_query, add_documents, etc.
HandleInput(name="embedding", display_name="Embedding", input_types=["Embeddings"]),
StrInput(
name="vector_field",
display_name="Vector Field Name",
value="chunk_embedding",
advanced=True,
info="Name of the field in OpenSearch documents that stores the vector embeddings for similarity search.",
),
IntInput(
name="number_of_results",
display_name="Default Result Limit",
value=10,
advanced=True,
info=(
"Default maximum number of search results to return when no limit is "
"specified in the filter expression."
),
),
MultilineInput(
name="filter_expression",
display_name="Search Filters (JSON)",
value="",
info=(
"Optional JSON configuration for search filtering, result limits, and score thresholds.\n\n"
"Format 1 - Explicit filters:\n"
'{"filter": [{"term": {"filename":"doc.pdf"}}, '
'{"terms":{"owner":["user1","user2"]}}], "limit": 10, "score_threshold": 1.6}\n\n'
"Format 2 - Context-style mapping:\n"
'{"data_sources":["file.pdf"], "document_types":["application/pdf"], "owners":["user123"]}\n\n'
"Use __IMPOSSIBLE_VALUE__ as placeholder to ignore specific filters."
),
),
# ----- Auth controls (dynamic) -----
DropdownInput(
name="auth_mode",
display_name="Authentication Mode",
value="basic",
options=["basic", "jwt"],
info=(
"Authentication method: 'basic' for username/password authentication, "
"or 'jwt' for JSON Web Token (Bearer) authentication."
),
real_time_refresh=True,
advanced=False,
),
StrInput(
name="username",
display_name="Username",
value="admin",
show=False,
),
SecretStrInput(
name="password",
display_name="OpenSearch Password",
value="admin",
show=False,
),
SecretStrInput(
name="jwt_token",
display_name="JWT Token",
value="JWT",
load_from_db=False,
show=True,
info=(
"Valid JSON Web Token for authentication. "
"Will be sent in the Authorization header (with optional 'Bearer ' prefix)."
),
),
StrInput(
name="jwt_header",
display_name="JWT Header Name",
value="Authorization",
show=False,
advanced=True,
),
BoolInput(
name="bearer_prefix",
display_name="Prefix 'Bearer '",
value=True,
show=False,
advanced=True,
),
# ----- TLS -----
BoolInput(
name="use_ssl",
display_name="Use SSL/TLS",
value=True,
advanced=True,
info="Enable SSL/TLS encryption for secure connections to OpenSearch.",
),
BoolInput(
name="verify_certs",
display_name="Verify SSL Certificates",
value=False,
advanced=True,
info=(
"Verify SSL certificates when connecting. "
"Disable for self-signed certificates in development environments."
),
),
]
# ---------- helper functions for index management ----------
def _default_text_mapping(
self,
dim: int,
engine: str = "jvector",
space_type: str = "l2",
ef_search: int = 512,
ef_construction: int = 100,
m: int = 16,
vector_field: str = "vector_field",
) -> dict[str, Any]:
"""Create the default OpenSearch index mapping for vector search.
This method generates the index configuration with k-NN settings optimized
for approximate nearest neighbor search using the specified vector engine.
Args:
dim: Dimensionality of the vector embeddings
engine: Vector search engine (jvector, nmslib, faiss, lucene)
space_type: Distance metric for similarity calculation
ef_search: Size of dynamic list used during search
ef_construction: Size of dynamic list used during index construction
m: Number of bidirectional links for each vector
vector_field: Name of the field storing vector embeddings
Returns:
Dictionary containing OpenSearch index mapping configuration
"""
return {
"settings": {"index": {"knn": True, "knn.algo_param.ef_search": ef_search}},
"mappings": {
"properties": {
vector_field: {
"type": "knn_vector",
"dimension": dim,
"method": {
"name": "disk_ann",
"space_type": space_type,
"engine": engine,
"parameters": {"ef_construction": ef_construction, "m": m},
},
},
"embedding_dimensions": {
"type": "integer"
}
}
},
}
def _ensure_vector_field_mapping(
self,
client: OpenSearch,
index_name: str,
vector_field: str,
dim: int,
engine: str,
space_type: str,
ef_construction: int,
m: int,
) -> None:
"""Ensure the target vector field exists with the correct mapping."""
try:
mapping = {
"properties": {
vector_field: {
"type": "knn_vector",
"dimension": dim,
"method": {
"name": "disk_ann",
"space_type": space_type,
"engine": engine,
"parameters": {"ef_construction": ef_construction, "m": m},
},
},
"embedding_dimensions": {
"type": "integer"
}
}
}
client.indices.put_mapping(index=index_name, body=mapping)
logger.info(
"Added/updated vector field mapping for %s in index %s",
vector_field,
index_name,
)
except Exception as exc:
logger.warning(
"Could not ensure vector field mapping for %s: %s",
vector_field,
exc,
)
def _validate_aoss_with_engines(self, *, is_aoss: bool, engine: str) -> None:
"""Validate engine compatibility with Amazon OpenSearch Serverless (AOSS).
Amazon OpenSearch Serverless has restrictions on which vector engines
can be used. This method ensures the selected engine is compatible.
Args:
is_aoss: Whether the connection is to Amazon OpenSearch Serverless
engine: The selected vector search engine
Raises:
ValueError: If AOSS is used with an incompatible engine
"""
if is_aoss and engine not in {"nmslib", "faiss"}:
msg = "Amazon OpenSearch Service Serverless only supports `nmslib` or `faiss` engines"
raise ValueError(msg)
def _is_aoss_enabled(self, http_auth: Any) -> bool:
"""Determine if Amazon OpenSearch Serverless (AOSS) is being used.
Args:
http_auth: The HTTP authentication object
Returns:
True if AOSS is enabled, False otherwise
"""
return http_auth is not None and hasattr(http_auth, "service") and http_auth.service == "aoss"
def _bulk_ingest_embeddings(
self,
client: OpenSearch,
index_name: str,
embeddings: list[list[float]],
texts: list[str],
metadatas: list[dict] | None = None,
ids: list[str] | None = None,
vector_field: str = "vector_field",
text_field: str = "text",
mapping: dict | None = None,
max_chunk_bytes: int | None = 1 * 1024 * 1024,
*,
is_aoss: bool = False,
) -> list[str]:
"""Efficiently ingest multiple documents with embeddings into OpenSearch.
This method uses bulk operations to insert documents with their vector
embeddings and metadata into the specified OpenSearch index.
Args:
client: OpenSearch client instance
index_name: Target index for document storage
embeddings: List of vector embeddings for each document
texts: List of document texts
metadatas: Optional metadata dictionaries for each document
ids: Optional document IDs (UUIDs generated if not provided)
vector_field: Field name for storing vector embeddings
text_field: Field name for storing document text
mapping: Optional index mapping configuration
max_chunk_bytes: Maximum size per bulk request chunk
is_aoss: Whether using Amazon OpenSearch Serverless
Returns:
List of document IDs that were successfully ingested
"""
if not mapping:
mapping = {}
requests = []
return_ids = []
vector_dimensions = len(embeddings[0]) if embeddings else None
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
if vector_dimensions is not None and "embedding_dimensions" not in metadata:
metadata = {**metadata, "embedding_dimensions": vector_dimensions}
_id = ids[i] if ids else str(uuid.uuid4())
request = {
"_op_type": "index",
"_index": index_name,
vector_field: embeddings[i],
text_field: text,
**metadata,
}
if is_aoss:
request["id"] = _id
else:
request["_id"] = _id
requests.append(request)
return_ids.append(_id)
if metadatas:
self.log(f"Sample metadata: {metadatas[0] if metadatas else {}}")
helpers.bulk(client, requests, max_chunk_bytes=max_chunk_bytes)
return return_ids
# ---------- auth / client ----------
def _build_auth_kwargs(self) -> dict[str, Any]:
"""Build authentication configuration for OpenSearch client.
Constructs the appropriate authentication parameters based on the
selected auth mode (basic username/password or JWT token).
Returns:
Dictionary containing authentication configuration
Raises:
ValueError: If required authentication parameters are missing
"""
mode = (self.auth_mode or "basic").strip().lower()
if mode == "jwt":
token = (self.jwt_token or "").strip()
if not token:
msg = "Auth Mode is 'jwt' but no jwt_token was provided."
raise ValueError(msg)
header_name = (self.jwt_header or "Authorization").strip()
header_value = f"Bearer {token}" if self.bearer_prefix else token
return {"headers": {header_name: header_value}}
user = (self.username or "").strip()
pwd = (self.password or "").strip()
if not user or not pwd:
msg = "Auth Mode is 'basic' but username/password are missing."
raise ValueError(msg)
return {"http_auth": (user, pwd)}
def build_client(self) -> OpenSearch:
"""Create and configure an OpenSearch client instance.
Returns:
Configured OpenSearch client ready for operations
"""
auth_kwargs = self._build_auth_kwargs()
return OpenSearch(
hosts=[self.opensearch_url],
use_ssl=self.use_ssl,
verify_certs=self.verify_certs,
ssl_assert_hostname=False,
ssl_show_warn=False,
**auth_kwargs,
)
@check_cached_vector_store
def build_vector_store(self) -> OpenSearch:
# Return raw OpenSearch client as our “vector store.”
self.log(self.ingest_data)
client = self.build_client()
self._add_documents_to_vector_store(client=client)
return client
# ---------- ingest ----------
def _add_documents_to_vector_store(self, client: OpenSearch) -> None:
"""Process and ingest documents into the OpenSearch vector store.
This method handles the complete document ingestion pipeline:
- Prepares document data and metadata
- Generates vector embeddings
- Creates appropriate index mappings
- Bulk inserts documents with vectors
Args:
client: OpenSearch client for performing operations
"""
# Convert DataFrame to Data if needed using parent's method
self.ingest_data = self._prepare_ingest_data()
docs = self.ingest_data or []
if not docs:
self.log("No documents to ingest.")
return
# Extract texts and metadata from documents
texts = []
metadatas = []
# Process docs_metadata table input into a dict
additional_metadata = {}
if hasattr(self, "docs_metadata") and self.docs_metadata:
logger.info(f"[LF] Docs metadata {self.docs_metadata}")
if isinstance(self.docs_metadata[-1], Data):
logger.info(f"[LF] Docs metadata is a Data object {self.docs_metadata}")
self.docs_metadata = self.docs_metadata[-1].data
logger.info(f"[LF] Docs metadata is a Data object {self.docs_metadata}")
additional_metadata.update(self.docs_metadata)
else:
for item in self.docs_metadata:
if isinstance(item, dict) and "key" in item and "value" in item:
additional_metadata[item["key"]] = item["value"]
logger.info(f"[LF] Additional metadata {additional_metadata}")
for doc_obj in docs:
data_copy = json.loads(doc_obj.model_dump_json())
text = data_copy.pop(doc_obj.text_key, doc_obj.default_value)
texts.append(text)
# Merge additional metadata from table input
data_copy.update(additional_metadata)
metadatas.append(data_copy)
self.log(metadatas)
if not self.embedding:
msg = "Embedding handle is required to embed documents."
raise ValueError(msg)
# Generate embeddings using a thread pool for concurrency
def embed_chunk(chunk_text: str) -> list[float]:
return self.embedding.embed_documents([chunk_text])[0]
try:
max_workers = min(max(len(texts), 1), 8)
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = {executor.submit(embed_chunk, chunk): idx for idx, chunk in enumerate(texts)}
vectors = [None] * len(texts)
for future in as_completed(futures):
idx = futures[future]
vectors[idx] = future.result()
except Exception as exc:
logger.warning(
"Threaded embedding generation failed, falling back to synchronous mode: %s",
exc,
)
vectors = self.embedding.embed_documents(texts)
if not vectors:
self.log("No vectors generated from documents.")
return
# Get vector dimension for mapping
dim = len(vectors[0]) if vectors else 768 # default fallback
# Check for AOSS
auth_kwargs = self._build_auth_kwargs()
is_aoss = self._is_aoss_enabled(auth_kwargs.get("http_auth"))
# Validate engine with AOSS
engine = getattr(self, "engine", "jvector")
self._validate_aoss_with_engines(is_aoss=is_aoss, engine=engine)
# Create mapping with proper KNN settings
space_type = getattr(self, "space_type", "l2")
ef_construction = getattr(self, "ef_construction", 512)
m = getattr(self, "m", 16)
mapping = self._default_text_mapping(
dim=dim,
engine=engine,
space_type=space_type,
ef_construction=ef_construction,
m=m,
vector_field=self.vector_field,
)
try:
if not client.indices.exists(index=self.index_name):
self.log(f"Creating index '{self.index_name}' with base mapping")
client.indices.create(index=self.index_name, body=mapping)
except RequestError as creation_error:
if getattr(creation_error, "error", "") != "resource_already_exists_exception":
logger.warning(
"Failed to create index %s: %s",
self.index_name,
creation_error,
)
self._ensure_vector_field_mapping(
client=client,
index_name=self.index_name,
vector_field=self.vector_field,
dim=dim,
engine=engine,
space_type=space_type,
ef_construction=ef_construction,
m=m,
)
self.log(f"Indexing {len(texts)} documents into '{self.index_name}' with proper KNN mapping...")
# Use the LangChain-style bulk ingestion
return_ids = self._bulk_ingest_embeddings(
client=client,
index_name=self.index_name,
embeddings=vectors,
texts=texts,
metadatas=metadatas,
vector_field=self.vector_field,
text_field="text",
mapping=mapping,
is_aoss=is_aoss,
)
self.log(metadatas)
self.log(f"Successfully indexed {len(return_ids)} documents.")
# ---------- helpers for filters ----------
def _is_placeholder_term(self, term_obj: dict) -> bool:
# term_obj like {"filename": "__IMPOSSIBLE_VALUE__"}
return any(v == "__IMPOSSIBLE_VALUE__" for v in term_obj.values())
def _coerce_filter_clauses(self, filter_obj: dict | None) -> list[dict]:
"""Convert filter expressions into OpenSearch-compatible filter clauses.
This method accepts two filter formats and converts them to standardized
OpenSearch query clauses:
Format A - Explicit filters:
{"filter": [{"term": {"field": "value"}}, {"terms": {"field": ["val1", "val2"]}}],
"limit": 10, "score_threshold": 1.5}
Format B - Context-style mapping:
{"data_sources": ["file1.pdf"], "document_types": ["pdf"], "owners": ["user1"]}
Args:
filter_obj: Filter configuration dictionary or None
Returns:
List of OpenSearch filter clauses (term/terms objects)
Placeholder values with "__IMPOSSIBLE_VALUE__" are ignored
"""
if not filter_obj:
return []
# If it is a string, try to parse it once
if isinstance(filter_obj, str):
try:
filter_obj = json.loads(filter_obj)
except json.JSONDecodeError:
# Not valid JSON - treat as no filters
return []
# Case A: already an explicit list/dict under "filter"
if "filter" in filter_obj:
raw = filter_obj["filter"]
if isinstance(raw, dict):
raw = [raw]
explicit_clauses: list[dict] = []
for f in raw or []:
if "term" in f and isinstance(f["term"], dict) and not self._is_placeholder_term(f["term"]):
explicit_clauses.append(f)
elif "terms" in f and isinstance(f["terms"], dict):
field, vals = next(iter(f["terms"].items()))
if isinstance(vals, list) and len(vals) > 0:
explicit_clauses.append(f)
return explicit_clauses
# Case B: convert context-style maps into clauses
field_mapping = {
"data_sources": "filename",
"document_types": "mimetype",
"owners": "owner",
}
context_clauses: list[dict] = []
for k, values in filter_obj.items():
if not isinstance(values, list):
continue
field = field_mapping.get(k, k)
if len(values) == 0:
# Match-nothing placeholder (kept to mirror your tool semantics)
context_clauses.append({"term": {field: "__IMPOSSIBLE_VALUE__"}})
elif len(values) == 1:
if values[0] != "__IMPOSSIBLE_VALUE__":
context_clauses.append({"term": {field: values[0]}})
else:
context_clauses.append({"terms": {field: values}})
return context_clauses
# ---------- search (single hybrid path matching your tool) ----------
def search(self, query: str | None = None) -> list[dict[str, Any]]:
"""Perform hybrid search combining vector similarity and keyword matching.
This method executes a sophisticated search that combines:
- K-nearest neighbor (KNN) vector similarity search (70% weight)
- Multi-field keyword search with fuzzy matching (30% weight)
- Optional filtering and score thresholds
- Aggregations for faceted search results
Args:
query: Search query string (used for both vector embedding and keyword search)
Returns:
List of search results with page_content, metadata, and relevance scores
Raises:
ValueError: If embedding component is not provided or filter JSON is invalid
"""
logger.info(self.ingest_data)
client = self.build_client()
q = (query or "").strip()
# Parse optional filter expression (can be either A or B shape; see _coerce_filter_clauses)
filter_obj = None
if getattr(self, "filter_expression", "") and self.filter_expression.strip():
try:
filter_obj = json.loads(self.filter_expression)
except json.JSONDecodeError as e:
msg = f"Invalid filter_expression JSON: {e}"
raise ValueError(msg) from e
if not self.embedding:
msg = "Embedding is required to run hybrid search (KNN + keyword)."
raise ValueError(msg)
# Embed the query
vec = self.embedding.embed_query(q)
# Build filter clauses (accept both shapes)
filter_clauses = self._coerce_filter_clauses(filter_obj)
# Respect the tool's limit/threshold defaults
limit = (filter_obj or {}).get("limit", self.number_of_results)
score_threshold = (filter_obj or {}).get("score_threshold", 0)
# Build the same hybrid body as your SearchService
body = {
"query": {
"bool": {
"should": [
{
"knn": {
self.vector_field: {
"vector": vec,
"k": 10, # fixed to match the tool
"boost": 0.7,
}
}
},
{
"multi_match": {
"query": q,
"fields": ["text^2", "filename^1.5"],
"type": "best_fields",
"fuzziness": "AUTO",
"boost": 0.3,
}
},
],
"minimum_should_match": 1,
}
},
"aggs": {
"data_sources": {"terms": {"field": "filename", "size": 20}},
"document_types": {"terms": {"field": "mimetype", "size": 10}},
"owners": {"terms": {"field": "owner", "size": 10}},
},
"_source": [
"filename",
"mimetype",
"page",
"text",
"source_url",
"owner",
"embedding_dimensions",
"allowed_users",
"allowed_groups",
],
"size": limit,
}
if filter_clauses:
body["query"]["bool"]["filter"] = filter_clauses
if isinstance(score_threshold, (int, float)) and score_threshold > 0:
# top-level min_score (matches your tool)
body["min_score"] = score_threshold
resp = client.search(index=self.index_name, body=body)
hits = resp.get("hits", {}).get("hits", [])
return [
{
"page_content": hit["_source"].get("text", ""),
"metadata": {k: v for k, v in hit["_source"].items() if k != "text"},
"score": hit.get("_score"),
}
for hit in hits
]
def search_documents(self) -> list[Data]:
"""Search documents and return results as Data objects.
This is the main interface method that performs the search using the
configured search_query and returns results in Langflow's Data format.
Returns:
List of Data objects containing search results with text and metadata
Raises:
Exception: If search operation fails
"""
try:
raw = self.search(self.search_query or "")
return [Data(text=hit["page_content"], **hit["metadata"]) for hit in raw]
self.log(self.ingest_data)
except Exception as e:
self.log(f"search_documents error: {e}")
raise
# -------- dynamic UI handling (auth switch) --------
async def update_build_config(self, build_config: dict, field_value: str, field_name: str | None = None) -> dict:
"""Dynamically update component configuration based on field changes.
This method handles real-time UI updates, particularly for authentication
mode changes that show/hide relevant input fields.
Args:
build_config: Current component configuration
field_value: New value for the changed field
field_name: Name of the field that changed
Returns:
Updated build configuration with appropriate field visibility
"""
try:
if field_name == "auth_mode":
mode = (field_value or "basic").strip().lower()
is_basic = mode == "basic"
is_jwt = mode == "jwt"
build_config["username"]["show"] = is_basic
build_config["password"]["show"] = is_basic
build_config["jwt_token"]["show"] = is_jwt
build_config["jwt_header"]["show"] = is_jwt
build_config["bearer_prefix"]["show"] = is_jwt
build_config["username"]["required"] = is_basic
build_config["password"]["required"] = is_basic
build_config["jwt_token"]["required"] = is_jwt
build_config["jwt_header"]["required"] = is_jwt
build_config["bearer_prefix"]["required"] = False
if is_basic:
build_config["jwt_token"]["value"] = ""
return build_config
except (KeyError, ValueError) as e:
self.log(f"update_build_config error: {e}")
return build_config

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -167,7 +167,7 @@ def main() -> None:
if args.output:
args.output.write_text(code, encoding="utf-8")
else:
print(code)
print(code, end="")
if __name__ == "__main__":