sdk chat endpoint fix
This commit is contained in:
parent
900e5f9795
commit
850c504c55
1 changed files with 31 additions and 184 deletions
|
|
@ -2,144 +2,36 @@
|
|||
Public API v1 Chat endpoint.
|
||||
|
||||
Provides chat functionality with streaming support and conversation history.
|
||||
Uses API key authentication.
|
||||
Uses API key authentication. Routes through Langflow endpoint.
|
||||
"""
|
||||
import json
|
||||
from starlette.requests import Request
|
||||
from starlette.responses import JSONResponse, StreamingResponse
|
||||
from starlette.responses import JSONResponse
|
||||
from utils.logging_config import get_logger
|
||||
from auth_context import set_search_filters, set_search_limit, set_score_threshold, set_auth_context
|
||||
from api.chat import langflow_endpoint
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
async def _transform_stream_to_sse(raw_stream, chat_id_container: dict):
|
||||
"""
|
||||
Transform the raw internal streaming format to clean SSE events.
|
||||
|
||||
Yields SSE events in the format:
|
||||
event: content
|
||||
data: {"type": "content", "delta": "..."}
|
||||
|
||||
event: sources
|
||||
data: {"type": "sources", "sources": [...]}
|
||||
|
||||
event: done
|
||||
data: {"type": "done", "chat_id": "..."}
|
||||
"""
|
||||
full_text = ""
|
||||
sources = []
|
||||
chat_id = None
|
||||
|
||||
async for chunk in raw_stream:
|
||||
try:
|
||||
# Decode the chunk
|
||||
if isinstance(chunk, bytes):
|
||||
chunk_str = chunk.decode("utf-8").strip()
|
||||
else:
|
||||
chunk_str = str(chunk).strip()
|
||||
|
||||
if not chunk_str:
|
||||
continue
|
||||
|
||||
# Parse the JSON chunk
|
||||
chunk_data = json.loads(chunk_str)
|
||||
|
||||
# Extract text delta
|
||||
delta_text = None
|
||||
if "delta" in chunk_data:
|
||||
delta = chunk_data["delta"]
|
||||
if isinstance(delta, dict):
|
||||
delta_text = delta.get("content") or delta.get("text") or ""
|
||||
elif isinstance(delta, str):
|
||||
delta_text = delta
|
||||
|
||||
if "output_text" in chunk_data and chunk_data["output_text"]:
|
||||
delta_text = chunk_data["output_text"]
|
||||
|
||||
# Yield content event if we have text
|
||||
if delta_text:
|
||||
full_text += delta_text
|
||||
event = {"type": "content", "delta": delta_text}
|
||||
yield f"event: content\ndata: {json.dumps(event)}\n\n"
|
||||
|
||||
# Extract chat_id/response_id
|
||||
if "id" in chunk_data and chunk_data["id"]:
|
||||
chat_id = chunk_data["id"]
|
||||
elif "response_id" in chunk_data and chunk_data["response_id"]:
|
||||
chat_id = chunk_data["response_id"]
|
||||
|
||||
# Extract sources from tool call results
|
||||
if "item" in chunk_data and isinstance(chunk_data["item"], dict):
|
||||
item = chunk_data["item"]
|
||||
if item.get("type") in ("retrieval_call", "tool_call", "function_call"):
|
||||
results = item.get("results", [])
|
||||
if results:
|
||||
for result in results:
|
||||
if isinstance(result, dict):
|
||||
source = {
|
||||
"filename": result.get("filename", result.get("title", "Unknown")),
|
||||
"text": result.get("text", result.get("content", "")),
|
||||
"score": result.get("score", 0),
|
||||
"page": result.get("page"),
|
||||
def _transform_v1_request_to_internal(data: dict) -> dict:
|
||||
"""Transform v1 API request format to internal Langflow format."""
|
||||
return {
|
||||
"prompt": data.get("message", ""), # v1 uses "message", internal uses "prompt"
|
||||
"previous_response_id": data.get("chat_id"), # v1 uses "chat_id"
|
||||
"stream": data.get("stream", False),
|
||||
"filters": data.get("filters"),
|
||||
"limit": data.get("limit", 10),
|
||||
"scoreThreshold": data.get("score_threshold", 0), # v1 uses snake_case
|
||||
"filter_id": data.get("filter_id"),
|
||||
}
|
||||
sources.append(source)
|
||||
|
||||
except json.JSONDecodeError:
|
||||
# Not JSON, might be raw text
|
||||
if chunk_str and not chunk_str.startswith("{"):
|
||||
event = {"type": "content", "delta": chunk_str}
|
||||
yield f"event: content\ndata: {json.dumps(event)}\n\n"
|
||||
full_text += chunk_str
|
||||
except Exception as e:
|
||||
logger.warning("Error processing stream chunk", error=str(e))
|
||||
continue
|
||||
|
||||
# Yield sources event if we have any
|
||||
if sources:
|
||||
event = {"type": "sources", "sources": sources}
|
||||
yield f"event: sources\ndata: {json.dumps(event)}\n\n"
|
||||
|
||||
# Yield done event with chat_id
|
||||
event = {"type": "done", "chat_id": chat_id}
|
||||
yield f"event: done\ndata: {json.dumps(event)}\n\n"
|
||||
|
||||
# Store chat_id for caller
|
||||
chat_id_container["chat_id"] = chat_id
|
||||
|
||||
|
||||
async def chat_create_endpoint(request: Request, chat_service, session_manager):
|
||||
"""
|
||||
Send a chat message.
|
||||
Send a chat message. Routes to internal Langflow endpoint.
|
||||
|
||||
POST /v1/chat
|
||||
|
||||
Request body:
|
||||
{
|
||||
"message": "What is RAG?",
|
||||
"stream": false, // optional, default false
|
||||
"chat_id": "...", // optional, to continue conversation
|
||||
"filters": {...}, // optional
|
||||
"limit": 10, // optional
|
||||
"score_threshold": 0.5 // optional
|
||||
}
|
||||
|
||||
Non-streaming response:
|
||||
{
|
||||
"response": "RAG stands for...",
|
||||
"chat_id": "chat_xyz789",
|
||||
"sources": [...]
|
||||
}
|
||||
|
||||
Streaming response (SSE):
|
||||
event: content
|
||||
data: {"type": "content", "delta": "RAG stands for"}
|
||||
|
||||
event: sources
|
||||
data: {"type": "sources", "sources": [...]}
|
||||
|
||||
event: done
|
||||
data: {"type": "done", "chat_id": "chat_xyz789"}
|
||||
POST /v1/chat - see internal /langflow endpoint for full documentation.
|
||||
Transforms v1 format (message, chat_id, score_threshold) to internal format.
|
||||
"""
|
||||
try:
|
||||
data = await request.json()
|
||||
|
|
@ -156,65 +48,20 @@ async def chat_create_endpoint(request: Request, chat_service, session_manager):
|
|||
status_code=400,
|
||||
)
|
||||
|
||||
stream = data.get("stream", False)
|
||||
chat_id = data.get("chat_id") # For conversation continuation
|
||||
filters = data.get("filters")
|
||||
limit = data.get("limit", 10)
|
||||
score_threshold = data.get("score_threshold", 0)
|
||||
# Transform v1 request to internal format
|
||||
internal_data = _transform_v1_request_to_internal(data)
|
||||
|
||||
user = request.state.user
|
||||
user_id = user.user_id
|
||||
# Create a new request with transformed body for the internal endpoint
|
||||
body = json.dumps(internal_data).encode()
|
||||
|
||||
# Note: API key auth doesn't have JWT, so we pass None
|
||||
jwt_token = None
|
||||
async def receive():
|
||||
return {"type": "http.request", "body": body}
|
||||
|
||||
# Set context variables for search tool
|
||||
if filters:
|
||||
set_search_filters(filters)
|
||||
set_search_limit(limit)
|
||||
set_score_threshold(score_threshold)
|
||||
set_auth_context(user_id, jwt_token)
|
||||
internal_request = Request(request.scope, receive)
|
||||
internal_request.state = request.state # Copy state for auth
|
||||
|
||||
if stream:
|
||||
# Streaming response
|
||||
raw_stream = await chat_service.chat(
|
||||
prompt=message,
|
||||
user_id=user_id,
|
||||
jwt_token=jwt_token,
|
||||
previous_response_id=chat_id,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
chat_id_container = {}
|
||||
|
||||
return StreamingResponse(
|
||||
_transform_stream_to_sse(raw_stream, chat_id_container),
|
||||
media_type="text/event-stream",
|
||||
headers={
|
||||
"Cache-Control": "no-cache",
|
||||
"Connection": "keep-alive",
|
||||
"X-Accel-Buffering": "no",
|
||||
},
|
||||
)
|
||||
else:
|
||||
# Non-streaming response
|
||||
result = await chat_service.chat(
|
||||
prompt=message,
|
||||
user_id=user_id,
|
||||
jwt_token=jwt_token,
|
||||
previous_response_id=chat_id,
|
||||
stream=False,
|
||||
)
|
||||
|
||||
# Transform response to public API format
|
||||
# Internal format: {"response": "...", "response_id": "..."}
|
||||
response_data = {
|
||||
"response": result.get("response", ""),
|
||||
"chat_id": result.get("response_id"),
|
||||
"sources": result.get("sources", []),
|
||||
}
|
||||
|
||||
return JSONResponse(response_data)
|
||||
# Call internal Langflow endpoint
|
||||
return await langflow_endpoint(internal_request, chat_service, session_manager)
|
||||
|
||||
|
||||
async def chat_list_endpoint(request: Request, chat_service, session_manager):
|
||||
|
|
@ -240,8 +87,8 @@ async def chat_list_endpoint(request: Request, chat_service, session_manager):
|
|||
user_id = user.user_id
|
||||
|
||||
try:
|
||||
# Get chat history
|
||||
history = await chat_service.get_chat_history(user_id)
|
||||
# Get Langflow chat history (since v1 routes through Langflow)
|
||||
history = await chat_service.get_langflow_history(user_id)
|
||||
|
||||
# Transform to public API format
|
||||
conversations = []
|
||||
|
|
@ -293,8 +140,8 @@ async def chat_get_endpoint(request: Request, chat_service, session_manager):
|
|||
)
|
||||
|
||||
try:
|
||||
# Get chat history and find the specific conversation
|
||||
history = await chat_service.get_chat_history(user_id)
|
||||
# Get Langflow chat history and find the specific conversation
|
||||
history = await chat_service.get_langflow_history(user_id)
|
||||
|
||||
conversation = None
|
||||
for conv in history.get("conversations", []):
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue