Added onboarding rollback on backend

This commit is contained in:
Lucas Oliveira 2025-12-05 15:49:13 -03:00
parent 1f528c2935
commit 6cc011d36e
3 changed files with 152 additions and 5 deletions

View file

@ -897,7 +897,7 @@ async def onboarding(request, flows_service, session_manager=None):
)
# Validate provider setup before initializing OpenSearch index
# Use lightweight validation (test_completion=False) to avoid consuming credits during onboarding
# Use full validation with completion tests (test_completion=True) to ensure provider health during onboarding
try:
from api.provider_validation import validate_provider_setup
@ -906,14 +906,14 @@ async def onboarding(request, flows_service, session_manager=None):
llm_provider = current_config.agent.llm_provider.lower()
llm_provider_config = current_config.get_llm_provider_config()
logger.info(f"Validating LLM provider setup for {llm_provider} (lightweight)")
logger.info(f"Validating LLM provider setup for {llm_provider} (full validation with completion test)")
await validate_provider_setup(
provider=llm_provider,
api_key=getattr(llm_provider_config, "api_key", None),
llm_model=current_config.agent.llm_model,
endpoint=getattr(llm_provider_config, "endpoint", None),
project_id=getattr(llm_provider_config, "project_id", None),
test_completion=False, # Lightweight validation - no credits consumed
test_completion=True, # Full validation with completion test - ensures provider health
)
logger.info(f"LLM provider setup validation completed successfully for {llm_provider}")
@ -922,14 +922,14 @@ async def onboarding(request, flows_service, session_manager=None):
embedding_provider = current_config.knowledge.embedding_provider.lower()
embedding_provider_config = current_config.get_embedding_provider_config()
logger.info(f"Validating embedding provider setup for {embedding_provider} (lightweight)")
logger.info(f"Validating embedding provider setup for {embedding_provider} (full validation with completion test)")
await validate_provider_setup(
provider=embedding_provider,
api_key=getattr(embedding_provider_config, "api_key", None),
embedding_model=current_config.knowledge.embedding_model,
endpoint=getattr(embedding_provider_config, "endpoint", None),
project_id=getattr(embedding_provider_config, "project_id", None),
test_completion=False, # Lightweight validation - no credits consumed
test_completion=True, # Full validation with completion test - ensures provider health
)
logger.info(f"Embedding provider setup validation completed successfully for {embedding_provider}")
except Exception as e:
@ -1403,6 +1403,139 @@ async def reapply_all_settings(session_manager = None):
raise
async def rollback_onboarding(request, session_manager, task_service):
"""Rollback onboarding configuration when sample data files fail.
This will:
1. Cancel all active tasks
2. Delete successfully ingested knowledge documents
3. Reset configuration to allow re-onboarding
"""
try:
# Get current configuration
current_config = get_openrag_config()
# Only allow rollback if config was marked as edited (onboarding completed)
if not current_config.edited:
return JSONResponse(
{"error": "No onboarding configuration to rollback"}, status_code=400
)
user = request.state.user
jwt_token = session_manager.get_effective_jwt_token(user.user_id, request.state.jwt_token)
logger.info("Rolling back onboarding configuration due to file failures")
# Get all tasks for the user
all_tasks = task_service.get_all_tasks(user.user_id)
cancelled_tasks = []
deleted_files = []
# Cancel all active tasks and collect successfully ingested files
for task_data in all_tasks:
task_id = task_data.get("task_id")
task_status = task_data.get("status")
# Cancel active tasks (pending, running, processing)
if task_status in ["pending", "running", "processing"]:
try:
success = await task_service.cancel_task(user.user_id, task_id)
if success:
cancelled_tasks.append(task_id)
logger.info(f"Cancelled task {task_id}")
except Exception as e:
logger.error(f"Failed to cancel task {task_id}: {str(e)}")
# For completed tasks, find successfully ingested files and delete them
elif task_status == "completed":
files = task_data.get("files", {})
if isinstance(files, dict):
for file_path, file_info in files.items():
# Check if file was successfully ingested
if isinstance(file_info, dict):
file_status = file_info.get("status")
filename = file_info.get("filename") or file_path.split("/")[-1]
if file_status == "completed" and filename:
try:
# Get user's OpenSearch client
opensearch_client = session_manager.get_user_opensearch_client(
user.user_id, jwt_token
)
# Delete documents by filename
from utils.opensearch_queries import build_filename_delete_body
from config.settings import INDEX_NAME
delete_query = build_filename_delete_body(filename)
result = await opensearch_client.delete_by_query(
index=INDEX_NAME,
body=delete_query,
conflicts="proceed"
)
deleted_count = result.get("deleted", 0)
if deleted_count > 0:
deleted_files.append(filename)
logger.info(f"Deleted {deleted_count} chunks for filename {filename}")
except Exception as e:
logger.error(f"Failed to delete documents for {filename}: {str(e)}")
# Clear embedding provider and model settings
current_config.knowledge.embedding_provider = "openai" # Reset to default
current_config.knowledge.embedding_model = ""
# Mark config as not edited so user can go through onboarding again
current_config.edited = False
# Save the rolled back configuration manually to avoid save_config_file setting edited=True
try:
import yaml
config_file = config_manager.config_file
# Ensure directory exists
config_file.parent.mkdir(parents=True, exist_ok=True)
# Save config with edited=False
with open(config_file, "w") as f:
yaml.dump(current_config.to_dict(), f, default_flow_style=False, indent=2)
# Update cached config
config_manager._config = current_config
logger.info("Successfully saved rolled back configuration with edited=False")
except Exception as e:
logger.error(f"Failed to save rolled back configuration: {e}")
return JSONResponse(
{"error": "Failed to save rolled back configuration"}, status_code=500
)
logger.info(
f"Successfully rolled back onboarding configuration. "
f"Cancelled {len(cancelled_tasks)} tasks, deleted {len(deleted_files)} files"
)
await TelemetryClient.send_event(
Category.ONBOARDING,
MessageId.ORB_ONBOARD_ROLLBACK
)
return JSONResponse(
{
"message": "Onboarding configuration rolled back successfully",
"cancelled_tasks": len(cancelled_tasks),
"deleted_files": len(deleted_files),
}
)
except Exception as e:
logger.error("Failed to rollback onboarding configuration", error=str(e))
return JSONResponse(
{"error": f"Failed to rollback onboarding: {str(e)}"}, status_code=500
)
async def update_docling_preset(request, session_manager):
"""Update docling settings in the ingest flow - deprecated endpoint, use /settings instead"""
try:

View file

@ -1179,6 +1179,18 @@ async def create_app():
),
methods=["POST"],
),
# Onboarding rollback endpoint
Route(
"/onboarding/rollback",
require_auth(services["session_manager"])(
partial(
settings.rollback_onboarding,
session_manager=services["session_manager"],
task_service=services["task_service"],
)
),
methods=["POST"],
),
# Docling preset update endpoint
Route(
"/settings/docling-preset",

View file

@ -199,3 +199,5 @@ class MessageId:
ORB_ONBOARD_SAMPLE_DATA = "ORB_ONBOARD_SAMPLE_DATA"
# Message: Configuration marked as edited
ORB_ONBOARD_CONFIG_EDITED = "ORB_ONBOARD_CONFIG_EDITED"
# Message: Onboarding rolled back due to all files failing
ORB_ONBOARD_ROLLBACK = "ORB_ONBOARD_ROLLBACK"