merged in main

This commit is contained in:
Brent O'Neill 2025-09-24 14:30:48 -06:00
commit 5f522bf6a9
10 changed files with 965 additions and 672 deletions

View file

@ -9,7 +9,7 @@ LANGFLOW_SECRET_KEY=
LANGFLOW_CHAT_FLOW_ID=1098eea1-6649-4e1d-aed1-b77249fb8dd0
LANGFLOW_INGEST_FLOW_ID=5488df7c-b93f-4f87-a446-b67028bc0813
# Ingest flow using docling
LANGFLOW_INGEST_FLOW_ID=1402618b-e6d1-4ff2-9a11-d6ce71186915
# LANGFLOW_INGEST_FLOW_ID=1402618b-e6d1-4ff2-9a11-d6ce71186915
NUDGES_FLOW_ID=ebc01d31-1976-46ce-a385-b0240327226c
# Set a strong admin password for OpenSearch; a bcrypt hash is generated at

View file

@ -0,0 +1,390 @@
---
title: Quickstart
slug: /quickstart
---
import Icon from "@site/src/components/icon/icon";
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
Get started with OpenRAG by loading your knowledge, swapping out your language model, and then chatting with the OpenRAG API.
## Prerequisites
- Install and start OpenRAG
## Find your way around
1. In OpenRAG, click <Icon name="MessageSquare" aria-hidden="true"/> **Chat**.
2. Ask `What documents are available to you?`
The agent responds with a message summarizing the documents that OpenRAG loads by default, which are PDFs about evaluating data quality when using LLMs in health care.
3. To confirm the agent is correct, click <Icon name="Library" aria-hidden="true"/> **Knowledge**.
The **Knowledge** page lists the documents OpenRAG has ingested into the OpenSearch vector database. Click on a document to display the chunks derived from splitting the default documents into the vector database.
## Add your own knowledge
1. To add documents to your knowledge base, click <Icon name="Plus" aria-hidden="true"/> **Add Knowledge**.
* Select **Add File** to add a single file from your local machine (mapped with the Docker volume mount).
* Select **Process Folder** to process an entire folder of documents from your local machine (mapped with the Docker volume mount).
2. Return to the Chat window and ask a question about your loaded data.
For example, with a manual about a PC tablet loaded, ask `How do I connect this device to WiFI?`
The agent responds with a message indicating it now has your knowledge as context for answering questions.
3. Click the <Icon name="Gear" aria-hidden="true"/> **Function Call: search_documents (tool_call)** that is printed in the Playground.
These events log the agent's request to the tool and the tool's response, so you have direct visibility into your agent's functionality.
If you aren't getting the results you need, you can further tune the knowledge ingestion and agent behavior in the next section.
## Swap out the language model to modify agent behavior
To modify the knowledge ingestion or Agent behavior, click <Icon name="Settings" aria-hidden="true"/> **Settings**.
In this example, you'll try a different LLM to demonstrate how the Agent's response changes.
1. To edit the Agent's behavior, click **Edit in Langflow**.
2. OpenRAG warns you that you're entering Langflow. Click **Proceed**.
3. The OpenRAG Open Search Agent flow appears.
![OpenRAG Open Search Agent Flow](/img/opensearch-agent-flow.png)
4. In the **Language Model** component, under **Model Provider**, select **Anthropic**.
:::note
This guide uses an Anthropic model for demonstration purposes. If you want to use a different provider, change the **Model Provider** and **Model Name** fields, and then provide credentials for your selected provider.
:::
5. Save your flow with <kbd>Command+S</kbd>.
6. In OpenRAG, start a new conversation by clicking the <Icon name="Plus" aria-hidden="true"/> in the **Conversations** tab.
7. Ask the same question as before to demonstrate how a different language model changes the results.
## Integrate OpenRAG into your application
:::tip
Ensure the `openrag-backend` container has port 8000 exposed in your `docker-compose.yml`:
```yaml
openrag-backend:
ports:
- "8000:8000"
```
:::
OpenRAG provides a REST API that you can call from Python, TypeScript, or any HTTP client to chat with your documents.
These example requests are run assuming OpenRAG is in "no-auth" mode.
For complete API documentation, including authentication, request and response parameters, and example requests, see the API documentation.
### Chat with your documents
Prompt OpenRAG at the `/chat` API endpoint.
<Tabs>
<TabItem value="python" label="Python">
```python
import requests
url = "http://localhost:8000/chat"
payload = {
"prompt": "What documents are available to you?",
"previous_response_id": None
}
response = requests.post(url, json=payload)
print("OpenRAG Response:", response.json())
```
</TabItem>
<TabItem value="typescript" label="TypeScript">
```typescript
import fetch from 'node-fetch';
const response = await fetch("http://localhost:8000/chat", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({
prompt: "What documents are available to you?",
previous_response_id: null
})
});
const data = await response.json();
console.log("OpenRAG Response:", data);
```
</TabItem>
<TabItem value="curl" label="curl">
```bash
curl -X POST "http://localhost:8000/chat" \
-H "Content-Type: application/json" \
-d '{
"prompt": "What documents are available to you?",
"previous_response_id": null
}'
```
</TabItem>
</Tabs>
<details closed>
<summary>Response</summary>
```
{
"response": "I have access to a wide range of documents depending on the context and the tools enabled in this environment. Specifically, I can search for and retrieve documents related to various topics such as technical papers, articles, manuals, guides, knowledge base entries, and other text-based resources. If you specify a particular subject or type of document you're interested in, I can try to locate relevant materials for you. Let me know what you need!",
"response_id": "resp_68d3fdbac93081958b8781b97919fe7007f98bd83932fa1a"
}
```
</details>
### Search your documents
Search your document knowledge base at the `/search` endpoint.
<Tabs>
<TabItem value="python" label="Python">
```python
import requests
url = "http://localhost:8000/search"
payload = {"query": "healthcare data quality", "limit": 5}
response = requests.post(url, json=payload)
results = response.json()
print("Search Results:")
for result in results.get("results", []):
print(f"- {result.get('filename')}: {result.get('text', '')[:100]}...")
```
</TabItem>
<TabItem value="typescript" label="TypeScript">
```typescript
const response = await fetch("http://localhost:8000/search", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({
query: "healthcare data quality",
limit: 5
})
});
const results = await response.json();
console.log("Search Results:");
results.results?.forEach((result, index) => {
const filename = result.filename || 'Unknown';
const text = result.text?.substring(0, 100) || '';
console.log(`${index + 1}. ${filename}: ${text}...`);
});
```
</TabItem>
<TabItem value="curl" label="curl">
```bash
curl -X POST "http://localhost:8000/search" \
-H "Content-Type: application/json" \
-d '{"query": "healthcare data quality", "limit": 5}'
```
</TabItem>
</Tabs>
<details closed>
<summary>Example response</summary>
```
Found 5 results
1. 2506.08231v1.pdf: variables with high performance metrics. These variables might also require fewer replication analys...
2. 2506.08231v1.pdf: on EHR data and may lack the clinical domain knowledge needed to perform well on the tasks where EHR...
3. 2506.08231v1.pdf: Abstract Large language models (LLMs) are increasingly used to extract clinical data from electronic...
4. 2506.08231v1.pdf: these multidimensional assessments, the framework not only quantifies accuracy, but can also be appl...
5. 2506.08231v1.pdf: observed in only the model metrics, but not the abstractor metrics, it indicates that model errors m...
```
</details>
### Use chat and search together
Create a complete chat application that combines an interactive terminal chat with session continuity and search functionality.
<Tabs>
<TabItem value="python" label="Python">
```python
import requests
# Configuration
OPENRAG_BASE_URL = "http://localhost:8000"
CHAT_URL = f"{OPENRAG_BASE_URL}/chat"
SEARCH_URL = f"{OPENRAG_BASE_URL}/search"
DEFAULT_SEARCH_LIMIT = 5
def chat_with_openrag(message, previous_response_id=None):
try:
response = requests.post(CHAT_URL, json={
"prompt": message,
"previous_response_id": previous_response_id
})
response.raise_for_status()
data = response.json()
return data.get("response"), data.get("response_id")
except Exception as e:
return f"Error: {str(e)}", None
def search_documents(query, limit=DEFAULT_SEARCH_LIMIT):
try:
response = requests.post(SEARCH_URL, json={
"query": query,
"limit": limit
})
response.raise_for_status()
data = response.json()
return data.get("results", [])
except Exception as e:
return []
# Interactive chat with session continuity and search
previous_response_id = None
while True:
question = input("Your question (or 'search <query>' to search): ").strip()
if question.lower() in ['quit', 'exit', 'q']:
break
if not question:
continue
if question.lower().startswith('search '):
query = question[7:].strip()
print("Searching documents...")
results = search_documents(query)
print(f"\nFound {len(results)} results:")
for i, result in enumerate(results, 1):
filename = result.get('filename', 'Unknown')
text = result.get('text', '')[:100]
print(f"{i}. {filename}: {text}...")
print()
else:
print("OpenRAG is thinking...")
result, response_id = chat_with_openrag(question, previous_response_id)
print(f"OpenRAG: {result}\n")
previous_response_id = response_id
```
</TabItem>
<TabItem value="typescript" label="TypeScript">
```ts
import fetch from 'node-fetch';
// Configuration
const OPENRAG_BASE_URL = "http://localhost:8000";
const CHAT_URL = `${OPENRAG_BASE_URL}/chat`;
const SEARCH_URL = `${OPENRAG_BASE_URL}/search`;
const DEFAULT_SEARCH_LIMIT = 5;
async function chatWithOpenRAG(message: string, previousResponseId?: string | null) {
try {
const response = await fetch(CHAT_URL, {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({
prompt: message,
previous_response_id: previousResponseId
})
});
const data = await response.json();
return [data.response || "No response received", data.response_id || null];
} catch (error) {
return [`Error: ${error}`, null];
}
}
async function searchDocuments(query: string, limit: number = DEFAULT_SEARCH_LIMIT) {
try {
const response = await fetch(SEARCH_URL, {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ query, limit })
});
const data = await response.json();
return data.results || [];
} catch (error) {
return [];
}
}
// Interactive chat with session continuity and search
let previousResponseId = null;
const readline = require('readline');
const rl = readline.createInterface({ input: process.stdin, output: process.stdout });
const askQuestion = () => {
rl.question("Your question (or 'search <query>' to search): ", async (question) => {
if (question.toLowerCase() === 'quit' || question.toLowerCase() === 'exit' || question.toLowerCase() === 'q') {
console.log("Goodbye!");
rl.close();
return;
}
if (!question.trim()) {
askQuestion();
return;
}
if (question.toLowerCase().startsWith('search ')) {
const query = question.substring(7).trim();
console.log("Searching documents...");
const results = await searchDocuments(query);
console.log(`\nFound ${results.length} results:`);
results.forEach((result, i) => {
const filename = result.filename || 'Unknown';
const text = result.text?.substring(0, 100) || '';
console.log(`${i + 1}. ${filename}: ${text}...`);
});
console.log();
} else {
console.log("OpenRAG is thinking...");
const [result, responseId] = await chatWithOpenRAG(question, previousResponseId);
console.log(`\nOpenRAG: ${result}\n`);
previousResponseId = responseId;
}
askQuestion();
});
};
console.log("OpenRAG Chat Interface");
console.log("Ask questions about your documents. Type 'quit' to exit.");
console.log("Use 'search <query>' to search documents directly.\n");
askQuestion();
```
</TabItem>
</Tabs>
<details closed>
<summary>Example response</summary>
```
Your question (or 'search <query>' to search): search healthcare
Searching documents...
Found 5 results:
1. 2506.08231v1.pdf: variables with high performance metrics. These variables might also require fewer replication analys...
2. 2506.08231v1.pdf: on EHR data and may lack the clinical domain knowledge needed to perform well on the tasks where EHR...
3. 2506.08231v1.pdf: Abstract Large language models (LLMs) are increasingly used to extract clinical data from electronic...
4. 2506.08231v1.pdf: Acknowledgements Darren Johnson for support in publication planning and management. The authors used...
5. 2506.08231v1.pdf: Ensuring Reliability of Curated EHR-Derived Data: The Validation of Accuracy for LLM/ML-Extracted In...
Your question (or 'search <query>' to search): what's the weather today?
OpenRAG is thinking...
OpenRAG: I don't have access to real-time weather data. Could you please provide me with your location? Then I can help you find the weather information.
Your question (or 'search <query>' to search): newark nj
OpenRAG is thinking...
```
</details>
## Next steps
TBD

View file

@ -1,6 +1,6 @@
---
title: What is OpenRAG?
slug: /what-is-openrag
slug: /
---
OpenRAG is an open-source package for building agentic RAG systems.

View file

@ -71,7 +71,7 @@ const config = {
logo: {
alt: 'OpenRAG Logo',
src: 'img/logo.svg',
href: 'what-is-openrag',
href: '/',
},
items: [
{
@ -89,7 +89,7 @@ const config = {
items: [
{
label: 'Getting Started',
to: 'what-is-openrag',
to: '/',
},
],
},

View file

@ -25,6 +25,12 @@ const sidebars = {
id: "get-started/what-is-openrag",
label: "Introduction"
},
{
type: "doc",
id: "get-started/quickstart",
label: "Quickstart"
},
{
type: "doc",
id: "get-started/docker",

Binary file not shown.

After

Width:  |  Height:  |  Size: 951 KiB

File diff suppressed because one or more lines are too long

View file

@ -1,5 +1,6 @@
"use client";
<<<<<<< HEAD
import * as React from "react";
import * as SelectPrimitive from "@radix-ui/react-select";
import {
@ -9,6 +10,11 @@ import {
ChevronUp,
LockIcon,
} from "lucide-react";
=======
import * as React from "react"
import * as SelectPrimitive from "@radix-ui/react-select"
import { Check, ChevronDown, ChevronUp, Lock } from "lucide-react"
>>>>>>> main
import { cn } from "@/lib/utils";

View file

@ -182,6 +182,7 @@ async def update_settings(request, session_manager):
"chunk_size",
"chunk_overlap",
"doclingPresets",
"embedding_model",
}
# Check for invalid fields
@ -202,11 +203,53 @@ async def update_settings(request, session_manager):
current_config.agent.llm_model = body["llm_model"]
config_updated = True
# Also update the chat flow with the new model
try:
flows_service = _get_flows_service()
await flows_service.update_chat_flow_model(body["llm_model"])
logger.info(f"Successfully updated chat flow model to '{body['llm_model']}'")
except Exception as e:
logger.error(f"Failed to update chat flow model: {str(e)}")
# Don't fail the entire settings update if flow update fails
# The config will still be saved
if "system_prompt" in body:
current_config.agent.system_prompt = body["system_prompt"]
config_updated = True
# Also update the chat flow with the new system prompt
try:
flows_service = _get_flows_service()
await flows_service.update_chat_flow_system_prompt(body["system_prompt"])
logger.info(f"Successfully updated chat flow system prompt")
except Exception as e:
logger.error(f"Failed to update chat flow system prompt: {str(e)}")
# Don't fail the entire settings update if flow update fails
# The config will still be saved
# Update knowledge settings
if "embedding_model" in body:
if (
not isinstance(body["embedding_model"], str)
or not body["embedding_model"].strip()
):
return JSONResponse(
{"error": "embedding_model must be a non-empty string"},
status_code=400,
)
current_config.knowledge.embedding_model = body["embedding_model"].strip()
config_updated = True
# Also update the ingest flow with the new embedding model
try:
flows_service = _get_flows_service()
await flows_service.update_ingest_flow_embedding_model(body["embedding_model"].strip())
logger.info(f"Successfully updated ingest flow embedding model to '{body['embedding_model'].strip()}'")
except Exception as e:
logger.error(f"Failed to update ingest flow embedding model: {str(e)}")
# Don't fail the entire settings update if flow update fails
# The config will still be saved
if "doclingPresets" in body:
preset_configs = get_docling_preset_configs()
valid_presets = list(preset_configs.keys())
@ -222,7 +265,8 @@ async def update_settings(request, session_manager):
# Also update the flow with the new docling preset
try:
await _update_flow_docling_preset(body["doclingPresets"], preset_configs[body["doclingPresets"]])
flows_service = _get_flows_service()
await flows_service.update_flow_docling_preset(body["doclingPresets"], preset_configs[body["doclingPresets"]])
logger.info(f"Successfully updated docling preset in flow to '{body['doclingPresets']}'")
except Exception as e:
logger.error(f"Failed to update docling preset in flow: {str(e)}")
@ -237,6 +281,16 @@ async def update_settings(request, session_manager):
current_config.knowledge.chunk_size = body["chunk_size"]
config_updated = True
# Also update the ingest flow with the new chunk size
try:
flows_service = _get_flows_service()
await flows_service.update_ingest_flow_chunk_size(body["chunk_size"])
logger.info(f"Successfully updated ingest flow chunk size to {body['chunk_size']}")
except Exception as e:
logger.error(f"Failed to update ingest flow chunk size: {str(e)}")
# Don't fail the entire settings update if flow update fails
# The config will still be saved
if "chunk_overlap" in body:
if not isinstance(body["chunk_overlap"], int) or body["chunk_overlap"] < 0:
return JSONResponse(
@ -246,6 +300,16 @@ async def update_settings(request, session_manager):
current_config.knowledge.chunk_overlap = body["chunk_overlap"]
config_updated = True
# Also update the ingest flow with the new chunk overlap
try:
flows_service = _get_flows_service()
await flows_service.update_ingest_flow_chunk_overlap(body["chunk_overlap"])
logger.info(f"Successfully updated ingest flow chunk overlap to {body['chunk_overlap']}")
except Exception as e:
logger.error(f"Failed to update ingest flow chunk overlap: {str(e)}")
# Don't fail the entire settings update if flow update fails
# The config will still be saved
if not config_updated:
return JSONResponse(
{"error": "No valid fields provided for update"}, status_code=400
@ -524,48 +588,12 @@ async def onboarding(request, flows_service):
)
async def _update_flow_docling_preset(preset: str, preset_config: dict):
"""Helper function to update docling preset in the ingest flow"""
if not LANGFLOW_INGEST_FLOW_ID:
raise ValueError("LANGFLOW_INGEST_FLOW_ID is not configured")
# Get the current flow data from Langflow
response = await clients.langflow_request(
"GET", f"/api/v1/flows/{LANGFLOW_INGEST_FLOW_ID}"
)
if response.status_code != 200:
raise Exception(f"Failed to get ingest flow: HTTP {response.status_code} - {response.text}")
flow_data = response.json()
# Find the target node in the flow using environment variable
nodes = flow_data.get("data", {}).get("nodes", [])
target_node = None
target_node_index = None
for i, node in enumerate(nodes):
if node.get("id") == DOCLING_COMPONENT_ID:
target_node = node
target_node_index = i
break
if target_node is None:
raise Exception(f"Docling component '{DOCLING_COMPONENT_ID}' not found in ingest flow")
# Update the docling_serve_opts value directly in the existing node
if (target_node.get("data", {}).get("node", {}).get("template", {}).get("docling_serve_opts")):
flow_data["data"]["nodes"][target_node_index]["data"]["node"]["template"]["docling_serve_opts"]["value"] = preset_config
else:
raise Exception(f"docling_serve_opts field not found in node '{DOCLING_COMPONENT_ID}'")
# Update the flow via PATCH request
patch_response = await clients.langflow_request(
"PATCH", f"/api/v1/flows/{LANGFLOW_INGEST_FLOW_ID}", json=flow_data
)
if patch_response.status_code != 200:
raise Exception(f"Failed to update ingest flow: HTTP {patch_response.status_code} - {patch_response.text}")
def _get_flows_service():
"""Helper function to get flows service instance"""
from services.flows_service import FlowsService
return FlowsService()
async def update_docling_preset(request, session_manager):
@ -595,7 +623,8 @@ async def update_docling_preset(request, session_manager):
preset_config = preset_configs[preset]
# Use the helper function to update the flow
await _update_flow_docling_preset(preset, preset_config)
flows_service = _get_flows_service()
await flows_service.update_flow_docling_preset(preset, preset_config)
logger.info(f"Successfully updated docling preset to '{preset}' in ingest flow")

View file

@ -400,6 +400,128 @@ class FlowsService:
return node
return None
def _find_node_in_flow(self, flow_data, node_id=None, display_name=None):
"""
Helper function to find a node in flow data by ID or display name.
Returns tuple of (node, node_index) or (None, None) if not found.
"""
nodes = flow_data.get("data", {}).get("nodes", [])
for i, node in enumerate(nodes):
node_data = node.get("data", {})
node_template = node_data.get("node", {})
# Check by ID if provided
if node_id and node_data.get("id") == node_id:
return node, i
# Check by display_name if provided
if display_name and node_template.get("display_name") == display_name:
return node, i
return None, None
async def _update_flow_field(self, flow_id: str, field_name: str, field_value: str, node_display_name: str = None, node_id: str = None):
"""
Generic helper function to update any field in any Langflow component.
Args:
flow_id: The ID of the flow to update
field_name: The name of the field to update (e.g., 'model_name', 'system_message', 'docling_serve_opts')
field_value: The new value to set
node_display_name: The display name to search for (optional)
node_id: The node ID to search for (optional, used as fallback or primary)
"""
if not flow_id:
raise ValueError("flow_id is required")
# Get the current flow data from Langflow
response = await clients.langflow_request(
"GET", f"/api/v1/flows/{flow_id}"
)
if response.status_code != 200:
raise Exception(f"Failed to get flow: HTTP {response.status_code} - {response.text}")
flow_data = response.json()
# Find the target component by display name first, then by ID as fallback
target_node, target_node_index = None, None
if node_display_name:
target_node, target_node_index = self._find_node_in_flow(flow_data, display_name=node_display_name)
if target_node is None and node_id:
target_node, target_node_index = self._find_node_in_flow(flow_data, node_id=node_id)
if target_node is None:
identifier = node_display_name or node_id
raise Exception(f"Component '{identifier}' not found in flow {flow_id}")
# Update the field value directly in the existing node
template = target_node.get("data", {}).get("node", {}).get("template", {})
if template.get(field_name):
flow_data["data"]["nodes"][target_node_index]["data"]["node"]["template"][field_name]["value"] = field_value
else:
identifier = node_display_name or node_id
raise Exception(f"{field_name} field not found in {identifier} component")
# Update the flow via PATCH request
patch_response = await clients.langflow_request(
"PATCH", f"/api/v1/flows/{flow_id}", json=flow_data
)
if patch_response.status_code != 200:
raise Exception(f"Failed to update flow: HTTP {patch_response.status_code} - {patch_response.text}")
async def update_chat_flow_model(self, model_name: str):
"""Helper function to update the model in the chat flow"""
if not LANGFLOW_CHAT_FLOW_ID:
raise ValueError("LANGFLOW_CHAT_FLOW_ID is not configured")
await self._update_flow_field(LANGFLOW_CHAT_FLOW_ID, "model_name", model_name,
node_display_name="Language Model",
node_id="LanguageModelComponent-0YME7")
async def update_chat_flow_system_prompt(self, system_prompt: str):
"""Helper function to update the system prompt in the chat flow"""
if not LANGFLOW_CHAT_FLOW_ID:
raise ValueError("LANGFLOW_CHAT_FLOW_ID is not configured")
await self._update_flow_field(LANGFLOW_CHAT_FLOW_ID, "system_message", system_prompt,
node_display_name="Language Model",
node_id="LanguageModelComponent-0YME7")
async def update_flow_docling_preset(self, preset: str, preset_config: dict):
"""Helper function to update docling preset in the ingest flow"""
if not LANGFLOW_INGEST_FLOW_ID:
raise ValueError("LANGFLOW_INGEST_FLOW_ID is not configured")
from config.settings import DOCLING_COMPONENT_ID
await self._update_flow_field(LANGFLOW_INGEST_FLOW_ID, "docling_serve_opts", preset_config,
node_id=DOCLING_COMPONENT_ID)
async def update_ingest_flow_chunk_size(self, chunk_size: int):
"""Helper function to update chunk size in the ingest flow"""
if not LANGFLOW_INGEST_FLOW_ID:
raise ValueError("LANGFLOW_INGEST_FLOW_ID is not configured")
await self._update_flow_field(LANGFLOW_INGEST_FLOW_ID, "chunk_size", chunk_size,
node_display_name="Split Text",
node_id="SplitText-3ZI5B")
async def update_ingest_flow_chunk_overlap(self, chunk_overlap: int):
"""Helper function to update chunk overlap in the ingest flow"""
if not LANGFLOW_INGEST_FLOW_ID:
raise ValueError("LANGFLOW_INGEST_FLOW_ID is not configured")
await self._update_flow_field(LANGFLOW_INGEST_FLOW_ID, "chunk_overlap", chunk_overlap,
node_display_name="Split Text",
node_id="SplitText-3ZI5B")
async def update_ingest_flow_embedding_model(self, embedding_model: str):
"""Helper function to update embedding model in the ingest flow"""
if not LANGFLOW_INGEST_FLOW_ID:
raise ValueError("LANGFLOW_INGEST_FLOW_ID is not configured")
await self._update_flow_field(LANGFLOW_INGEST_FLOW_ID, "model", embedding_model,
node_display_name="Embedding Model",
node_id="EmbeddingModel-eZ6bT")
def _replace_node_in_flow(self, flow_data, old_id, new_node):
"""Replace a node in the flow data"""
nodes = flow_data.get("data", {}).get("nodes", [])