onboarding for nudge test

This commit is contained in:
phact 2025-10-14 01:04:08 -04:00
parent c62eb87a0c
commit 2896ce631e

View file

@ -38,6 +38,27 @@ def dump_docker_logs(container_name_pattern: str = "langflow", tail: int = 100):
print(f"[DEBUG] Failed to fetch docker logs for {container_name_pattern}: {e}")
async def perform_onboarding(client: httpx.AsyncClient, embedding_model: str = "text-embedding-3-small", llm_model: str = "gpt-4o-mini"):
"""Perform onboarding configuration to properly initialize the system.
This should be called after wait_for_service_ready() and before uploading documents.
It configures the embedding model, LLM model, and initializes the OpenSearch index.
"""
onboarding_payload = {
"model_provider": "openai",
"embedding_model": embedding_model,
"llm_model": llm_model,
"endpoint": "https://api.openai.com/v1",
"sample_data": False,
}
onboarding_resp = await client.post("/onboarding", json=onboarding_payload)
if onboarding_resp.status_code not in (200, 204):
raise AssertionError(
f"Onboarding failed: {onboarding_resp.status_code} {onboarding_resp.text}"
)
print(f"[DEBUG] Onboarding completed: embedding_model={embedding_model}, llm_model={llm_model}")
async def wait_for_service_ready(client: httpx.AsyncClient, timeout_s: float = 30.0):
"""Poll existing endpoints until the app and OpenSearch are ready.
@ -393,6 +414,7 @@ async def test_langflow_chat_and_nudges_endpoints():
try:
async with httpx.AsyncClient(transport=transport, base_url="http://testserver") as client:
await wait_for_service_ready(client)
await perform_onboarding(client)
warmup_file = Path("./nudges_seed.md")
warmup_file.write_text(
@ -408,24 +430,10 @@ async def test_langflow_chat_and_nudges_endpoints():
upload_resp = await client.post("/router/upload_ingest", files=files)
assert upload_resp.status_code in (201, 202), upload_resp.text
payload = upload_resp.json()
print(f"[DEBUG] Upload response: {payload}")
task_id = payload.get("task_id")
if task_id:
await _wait_for_task_completion(client, task_id)
# Debug: Check if documents are searchable before calling nudges
search_resp = await client.post("/search", json={"query": "*", "limit": 10})
print(f"[DEBUG] Search status: {search_resp.status_code}")
if search_resp.status_code == 200:
search_data = search_resp.json()
results = search_data.get("results", [])
print(f"[DEBUG] Search found {len(results)} documents")
if results:
for r in results[:3]:
print(f"[DEBUG] - {r.get('filename', 'unknown')}: {r.get('text', '')[:100]}")
else:
print(f"[DEBUG] Search failed: {search_resp.text}")
prompt = "Respond with a brief acknowledgement for the OpenRAG integration test."
langflow_payload = {"prompt": prompt, "limit": 5, "scoreThreshold": 0}
langflow_data = await _wait_for_langflow_chat(client, langflow_payload)
@ -501,19 +509,7 @@ async def test_search_multi_embedding_models(
try:
async with httpx.AsyncClient(transport=transport, base_url="http://testserver") as client:
await wait_for_service_ready(client)
onboarding_payload = {
"model_provider": "openai",
"embedding_model": "text-embedding-3-small",
"llm_model": "gpt-4o-mini",
"endpoint": "https://api.openai.com/v1",
"sample_data": False,
}
onboarding_resp = await client.post("/onboarding", json=onboarding_payload)
if onboarding_resp.status_code not in (200, 204):
raise AssertionError(
f"Onboarding failed: {onboarding_resp.status_code} {onboarding_resp.text}"
)
await perform_onboarding(client)
async def _upload_doc(name: str, text: str) -> None:
file_path = tmp_path / name