Merge pull request #65 from langflow-ai/docs-quickstart
docs: quickstart
This commit is contained in:
commit
0fa80044ce
3 changed files with 396 additions and 0 deletions
390
docs/docs/get-started/quickstart.mdx
Normal file
390
docs/docs/get-started/quickstart.mdx
Normal file
|
|
@ -0,0 +1,390 @@
|
|||
---
|
||||
title: Quickstart
|
||||
slug: /quickstart
|
||||
---
|
||||
|
||||
import Icon from "@site/src/components/icon/icon";
|
||||
import Tabs from '@theme/Tabs';
|
||||
import TabItem from '@theme/TabItem';
|
||||
|
||||
Get started with OpenRAG by loading your knowledge, swapping out your language model, and then chatting with the OpenRAG API.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Install and start OpenRAG
|
||||
|
||||
## Find your way around
|
||||
|
||||
1. In OpenRAG, click <Icon name="MessageSquare" aria-hidden="true"/> **Chat**.
|
||||
2. Ask `What documents are available to you?`
|
||||
The agent responds with a message summarizing the documents that OpenRAG loads by default, which are PDFs about evaluating data quality when using LLMs in health care.
|
||||
3. To confirm the agent is correct, click <Icon name="Library" aria-hidden="true"/> **Knowledge**.
|
||||
The **Knowledge** page lists the documents OpenRAG has ingested into the OpenSearch vector database. Click on a document to display the chunks derived from splitting the default documents into the vector database.
|
||||
|
||||
## Add your own knowledge
|
||||
|
||||
1. To add documents to your knowledge base, click <Icon name="Plus" aria-hidden="true"/> **Add Knowledge**.
|
||||
* Select **Add File** to add a single file from your local machine (mapped with the Docker volume mount).
|
||||
* Select **Process Folder** to process an entire folder of documents from your local machine (mapped with the Docker volume mount).
|
||||
2. Return to the Chat window and ask a question about your loaded data.
|
||||
For example, with a manual about a PC tablet loaded, ask `How do I connect this device to WiFI?`
|
||||
The agent responds with a message indicating it now has your knowledge as context for answering questions.
|
||||
3. Click the <Icon name="Gear" aria-hidden="true"/> **Function Call: search_documents (tool_call)** that is printed in the Playground.
|
||||
These events log the agent's request to the tool and the tool's response, so you have direct visibility into your agent's functionality.
|
||||
If you aren't getting the results you need, you can further tune the knowledge ingestion and agent behavior in the next section.
|
||||
|
||||
## Swap out the language model to modify agent behavior
|
||||
|
||||
To modify the knowledge ingestion or Agent behavior, click <Icon name="Settings" aria-hidden="true"/> **Settings**.
|
||||
|
||||
In this example, you'll try a different LLM to demonstrate how the Agent's response changes.
|
||||
|
||||
1. To edit the Agent's behavior, click **Edit in Langflow**.
|
||||
2. OpenRAG warns you that you're entering Langflow. Click **Proceed**.
|
||||
3. The OpenRAG Open Search Agent flow appears.
|
||||
|
||||

|
||||
|
||||
4. In the **Language Model** component, under **Model Provider**, select **Anthropic**.
|
||||
:::note
|
||||
This guide uses an Anthropic model for demonstration purposes. If you want to use a different provider, change the **Model Provider** and **Model Name** fields, and then provide credentials for your selected provider.
|
||||
:::
|
||||
5. Save your flow with <kbd>Command+S</kbd>.
|
||||
6. In OpenRAG, start a new conversation by clicking the <Icon name="Plus" aria-hidden="true"/> in the **Conversations** tab.
|
||||
7. Ask the same question as before to demonstrate how a different language model changes the results.
|
||||
|
||||
## Integrate OpenRAG into your application
|
||||
|
||||
:::tip
|
||||
Ensure the `openrag-backend` container has port 8000 exposed in your `docker-compose.yml`:
|
||||
|
||||
```yaml
|
||||
openrag-backend:
|
||||
ports:
|
||||
- "8000:8000"
|
||||
```
|
||||
:::
|
||||
|
||||
OpenRAG provides a REST API that you can call from Python, TypeScript, or any HTTP client to chat with your documents.
|
||||
|
||||
These example requests are run assuming OpenRAG is in "no-auth" mode.
|
||||
For complete API documentation, including authentication, request and response parameters, and example requests, see the API documentation.
|
||||
|
||||
### Chat with your documents
|
||||
|
||||
Prompt OpenRAG at the `/chat` API endpoint.
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="python" label="Python">
|
||||
|
||||
```python
|
||||
import requests
|
||||
|
||||
url = "http://localhost:8000/chat"
|
||||
payload = {
|
||||
"prompt": "What documents are available to you?",
|
||||
"previous_response_id": None
|
||||
}
|
||||
|
||||
response = requests.post(url, json=payload)
|
||||
print("OpenRAG Response:", response.json())
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="typescript" label="TypeScript">
|
||||
|
||||
```typescript
|
||||
import fetch from 'node-fetch';
|
||||
|
||||
const response = await fetch("http://localhost:8000/chat", {
|
||||
method: "POST",
|
||||
headers: { "Content-Type": "application/json" },
|
||||
body: JSON.stringify({
|
||||
prompt: "What documents are available to you?",
|
||||
previous_response_id: null
|
||||
})
|
||||
});
|
||||
|
||||
const data = await response.json();
|
||||
console.log("OpenRAG Response:", data);
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="curl" label="curl">
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:8000/chat" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"prompt": "What documents are available to you?",
|
||||
"previous_response_id": null
|
||||
}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
<details closed>
|
||||
<summary>Response</summary>
|
||||
|
||||
```
|
||||
{
|
||||
"response": "I have access to a wide range of documents depending on the context and the tools enabled in this environment. Specifically, I can search for and retrieve documents related to various topics such as technical papers, articles, manuals, guides, knowledge base entries, and other text-based resources. If you specify a particular subject or type of document you're interested in, I can try to locate relevant materials for you. Let me know what you need!",
|
||||
"response_id": "resp_68d3fdbac93081958b8781b97919fe7007f98bd83932fa1a"
|
||||
}
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### Search your documents
|
||||
|
||||
Search your document knowledge base at the `/search` endpoint.
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="python" label="Python">
|
||||
|
||||
```python
|
||||
import requests
|
||||
|
||||
url = "http://localhost:8000/search"
|
||||
payload = {"query": "healthcare data quality", "limit": 5}
|
||||
|
||||
response = requests.post(url, json=payload)
|
||||
results = response.json()
|
||||
|
||||
print("Search Results:")
|
||||
for result in results.get("results", []):
|
||||
print(f"- {result.get('filename')}: {result.get('text', '')[:100]}...")
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="typescript" label="TypeScript">
|
||||
|
||||
```typescript
|
||||
const response = await fetch("http://localhost:8000/search", {
|
||||
method: "POST",
|
||||
headers: { "Content-Type": "application/json" },
|
||||
body: JSON.stringify({
|
||||
query: "healthcare data quality",
|
||||
limit: 5
|
||||
})
|
||||
});
|
||||
|
||||
const results = await response.json();
|
||||
console.log("Search Results:");
|
||||
results.results?.forEach((result, index) => {
|
||||
const filename = result.filename || 'Unknown';
|
||||
const text = result.text?.substring(0, 100) || '';
|
||||
console.log(`${index + 1}. ${filename}: ${text}...`);
|
||||
});
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="curl" label="curl">
|
||||
|
||||
```bash
|
||||
curl -X POST "http://localhost:8000/search" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"query": "healthcare data quality", "limit": 5}'
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
|
||||
<details closed>
|
||||
<summary>Example response</summary>
|
||||
|
||||
```
|
||||
Found 5 results
|
||||
1. 2506.08231v1.pdf: variables with high performance metrics. These variables might also require fewer replication analys...
|
||||
2. 2506.08231v1.pdf: on EHR data and may lack the clinical domain knowledge needed to perform well on the tasks where EHR...
|
||||
3. 2506.08231v1.pdf: Abstract Large language models (LLMs) are increasingly used to extract clinical data from electronic...
|
||||
4. 2506.08231v1.pdf: these multidimensional assessments, the framework not only quantifies accuracy, but can also be appl...
|
||||
5. 2506.08231v1.pdf: observed in only the model metrics, but not the abstractor metrics, it indicates that model errors m...
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
### Use chat and search together
|
||||
|
||||
Create a complete chat application that combines an interactive terminal chat with session continuity and search functionality.
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="python" label="Python">
|
||||
|
||||
```python
|
||||
import requests
|
||||
|
||||
# Configuration
|
||||
OPENRAG_BASE_URL = "http://localhost:8000"
|
||||
CHAT_URL = f"{OPENRAG_BASE_URL}/chat"
|
||||
SEARCH_URL = f"{OPENRAG_BASE_URL}/search"
|
||||
DEFAULT_SEARCH_LIMIT = 5
|
||||
|
||||
def chat_with_openrag(message, previous_response_id=None):
|
||||
try:
|
||||
response = requests.post(CHAT_URL, json={
|
||||
"prompt": message,
|
||||
"previous_response_id": previous_response_id
|
||||
})
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
return data.get("response"), data.get("response_id")
|
||||
except Exception as e:
|
||||
return f"Error: {str(e)}", None
|
||||
|
||||
def search_documents(query, limit=DEFAULT_SEARCH_LIMIT):
|
||||
try:
|
||||
response = requests.post(SEARCH_URL, json={
|
||||
"query": query,
|
||||
"limit": limit
|
||||
})
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
return data.get("results", [])
|
||||
except Exception as e:
|
||||
return []
|
||||
|
||||
# Interactive chat with session continuity and search
|
||||
previous_response_id = None
|
||||
while True:
|
||||
question = input("Your question (or 'search <query>' to search): ").strip()
|
||||
if question.lower() in ['quit', 'exit', 'q']:
|
||||
break
|
||||
if not question:
|
||||
continue
|
||||
|
||||
if question.lower().startswith('search '):
|
||||
query = question[7:].strip()
|
||||
print("Searching documents...")
|
||||
results = search_documents(query)
|
||||
print(f"\nFound {len(results)} results:")
|
||||
for i, result in enumerate(results, 1):
|
||||
filename = result.get('filename', 'Unknown')
|
||||
text = result.get('text', '')[:100]
|
||||
print(f"{i}. {filename}: {text}...")
|
||||
print()
|
||||
else:
|
||||
print("OpenRAG is thinking...")
|
||||
result, response_id = chat_with_openrag(question, previous_response_id)
|
||||
print(f"OpenRAG: {result}\n")
|
||||
previous_response_id = response_id
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
<TabItem value="typescript" label="TypeScript">
|
||||
|
||||
```ts
|
||||
import fetch from 'node-fetch';
|
||||
|
||||
// Configuration
|
||||
const OPENRAG_BASE_URL = "http://localhost:8000";
|
||||
const CHAT_URL = `${OPENRAG_BASE_URL}/chat`;
|
||||
const SEARCH_URL = `${OPENRAG_BASE_URL}/search`;
|
||||
const DEFAULT_SEARCH_LIMIT = 5;
|
||||
|
||||
async function chatWithOpenRAG(message: string, previousResponseId?: string | null) {
|
||||
try {
|
||||
const response = await fetch(CHAT_URL, {
|
||||
method: "POST",
|
||||
headers: { "Content-Type": "application/json" },
|
||||
body: JSON.stringify({
|
||||
prompt: message,
|
||||
previous_response_id: previousResponseId
|
||||
})
|
||||
});
|
||||
const data = await response.json();
|
||||
return [data.response || "No response received", data.response_id || null];
|
||||
} catch (error) {
|
||||
return [`Error: ${error}`, null];
|
||||
}
|
||||
}
|
||||
|
||||
async function searchDocuments(query: string, limit: number = DEFAULT_SEARCH_LIMIT) {
|
||||
try {
|
||||
const response = await fetch(SEARCH_URL, {
|
||||
method: "POST",
|
||||
headers: { "Content-Type": "application/json" },
|
||||
body: JSON.stringify({ query, limit })
|
||||
});
|
||||
const data = await response.json();
|
||||
return data.results || [];
|
||||
} catch (error) {
|
||||
return [];
|
||||
}
|
||||
}
|
||||
|
||||
// Interactive chat with session continuity and search
|
||||
let previousResponseId = null;
|
||||
const readline = require('readline');
|
||||
const rl = readline.createInterface({ input: process.stdin, output: process.stdout });
|
||||
|
||||
const askQuestion = () => {
|
||||
rl.question("Your question (or 'search <query>' to search): ", async (question) => {
|
||||
if (question.toLowerCase() === 'quit' || question.toLowerCase() === 'exit' || question.toLowerCase() === 'q') {
|
||||
console.log("Goodbye!");
|
||||
rl.close();
|
||||
return;
|
||||
}
|
||||
if (!question.trim()) {
|
||||
askQuestion();
|
||||
return;
|
||||
}
|
||||
|
||||
if (question.toLowerCase().startsWith('search ')) {
|
||||
const query = question.substring(7).trim();
|
||||
console.log("Searching documents...");
|
||||
const results = await searchDocuments(query);
|
||||
console.log(`\nFound ${results.length} results:`);
|
||||
results.forEach((result, i) => {
|
||||
const filename = result.filename || 'Unknown';
|
||||
const text = result.text?.substring(0, 100) || '';
|
||||
console.log(`${i + 1}. ${filename}: ${text}...`);
|
||||
});
|
||||
console.log();
|
||||
} else {
|
||||
console.log("OpenRAG is thinking...");
|
||||
const [result, responseId] = await chatWithOpenRAG(question, previousResponseId);
|
||||
console.log(`\nOpenRAG: ${result}\n`);
|
||||
previousResponseId = responseId;
|
||||
}
|
||||
askQuestion();
|
||||
});
|
||||
};
|
||||
|
||||
console.log("OpenRAG Chat Interface");
|
||||
console.log("Ask questions about your documents. Type 'quit' to exit.");
|
||||
console.log("Use 'search <query>' to search documents directly.\n");
|
||||
askQuestion();
|
||||
```
|
||||
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
<details closed>
|
||||
<summary>Example response</summary>
|
||||
|
||||
```
|
||||
Your question (or 'search <query>' to search): search healthcare
|
||||
Searching documents...
|
||||
|
||||
Found 5 results:
|
||||
1. 2506.08231v1.pdf: variables with high performance metrics. These variables might also require fewer replication analys...
|
||||
2. 2506.08231v1.pdf: on EHR data and may lack the clinical domain knowledge needed to perform well on the tasks where EHR...
|
||||
3. 2506.08231v1.pdf: Abstract Large language models (LLMs) are increasingly used to extract clinical data from electronic...
|
||||
4. 2506.08231v1.pdf: Acknowledgements Darren Johnson for support in publication planning and management. The authors used...
|
||||
5. 2506.08231v1.pdf: Ensuring Reliability of Curated EHR-Derived Data: The Validation of Accuracy for LLM/ML-Extracted In...
|
||||
|
||||
Your question (or 'search <query>' to search): what's the weather today?
|
||||
OpenRAG is thinking...
|
||||
OpenRAG: I don't have access to real-time weather data. Could you please provide me with your location? Then I can help you find the weather information.
|
||||
|
||||
Your question (or 'search <query>' to search): newark nj
|
||||
OpenRAG is thinking...
|
||||
```
|
||||
|
||||
</details>
|
||||
## Next steps
|
||||
|
||||
TBD
|
||||
|
|
@ -25,6 +25,12 @@ const sidebars = {
|
|||
id: "get-started/what-is-openrag",
|
||||
label: "Introduction"
|
||||
},
|
||||
{
|
||||
type: "doc",
|
||||
id: "get-started/quickstart",
|
||||
label: "Quickstart"
|
||||
},
|
||||
|
||||
{
|
||||
type: "doc",
|
||||
id: "get-started/docker",
|
||||
|
|
|
|||
BIN
docs/static/img/opensearch-agent-flow.png
vendored
Normal file
BIN
docs/static/img/opensearch-agent-flow.png
vendored
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 951 KiB |
Loading…
Add table
Reference in a new issue