diff --git a/docs/docs/core-components/knowledge.mdx b/docs/docs/core-components/knowledge.mdx index 5e003880..ff8a3bd5 100644 --- a/docs/docs/core-components/knowledge.mdx +++ b/docs/docs/core-components/knowledge.mdx @@ -11,23 +11,14 @@ import PartialModifyFlows from '@site/docs/_partial-modify-flows.mdx'; OpenRAG uses [OpenSearch](https://docs.opensearch.org/latest/) for its vector-backed knowledge store. OpenSearch provides powerful hybrid search capabilities with enterprise-grade security and multi-tenancy support. -## OpenRAG default configuration - -OpenRAG creates a specialized OpenSearch index called `documents` with the values defined at `src/config/settings.py`. -- **Vector Dimensions**: 1536-dimensional embeddings using OpenAI's `text-embedding-3-small` model. -- **KNN Vector Type**: Uses `knn_vector` field type with `disk_ann` method and `jvector` engine. -- **Distance Metric**: L2 (Euclidean) distance for vector similarity. -- **Performance Optimization**: Configured with `ef_construction: 100` and `m: 16` parameters. - -OpenRAG supports hybrid search, which combines semantic and keyword search. - ## Explore knowledge -To explore your current knowledge, click