graphiti/graphiti_core/embedder/gemini.py
Daniel Chalef 9e78890f2e
Gemini support (#324)
* first cut

* Update dependencies and enhance README for optional LLM providers

- Bump aiohttp version from 3.11.14 to 3.11.16
- Update yarl version from 1.18.3 to 1.19.0
- Modify pyproject.toml to include optional extras for Anthropic, Groq, and Google Gemini
- Revise README.md to reflect new optional LLM provider installation instructions and clarify API key requirements

* Remove deprecated packages from poetry.lock and update content hash

- Removed cachetools, google-auth, google-genai, pyasn1, pyasn1-modules, rsa, and websockets from the lock file.
- Added new extras for anthropic, google-genai, and groq.
- Updated content hash to reflect changes.

* Refactor import paths for GeminiClient in README and __init__.py

- Updated import statement in README.md to reflect the new module structure for GeminiClient.
- Removed GeminiClient from the __all__ list in __init__.py as it is no longer directly imported.

* Refactor import paths for GeminiEmbedder in README and __init__.py

- Updated import statement in README.md to reflect the new module structure for GeminiEmbedder.
- Removed GeminiEmbedder and GeminiEmbedderConfig from the __all__ list in __init__.py as they are no longer directly imported.
2025-04-06 09:27:04 -07:00

68 lines
2.1 KiB
Python

"""
Copyright 2024, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from collections.abc import Iterable
from google import genai # type: ignore
from google.genai import types # type: ignore
from pydantic import Field
from .client import EmbedderClient, EmbedderConfig
DEFAULT_EMBEDDING_MODEL = 'embedding-001'
class GeminiEmbedderConfig(EmbedderConfig):
embedding_model: str = Field(default=DEFAULT_EMBEDDING_MODEL)
api_key: str | None = None
class GeminiEmbedder(EmbedderClient):
"""
Google Gemini Embedder Client
"""
def __init__(self, config: GeminiEmbedderConfig | None = None):
if config is None:
config = GeminiEmbedderConfig()
self.config = config
# Configure the Gemini API
self.client = genai.Client(
api_key=config.api_key,
)
async def create(
self, input_data: str | list[str] | Iterable[int] | Iterable[Iterable[int]]
) -> list[float]:
"""
Create embeddings for the given input data using Google's Gemini embedding model.
Args:
input_data: The input data to create embeddings for. Can be a string, list of strings,
or an iterable of integers or iterables of integers.
Returns:
A list of floats representing the embedding vector.
"""
# Generate embeddings
result = await self.client.aio.models.embed_content(
model=self.config.embedding_model or DEFAULT_EMBEDDING_MODEL,
contents=[input_data],
config=types.EmbedContentConfig(output_dimensionality=self.config.embedding_dim),
)
return result.embeddings[0].values