graphiti/graphiti_core/llm_client/client.py
Daniel Chalef b2ff050e57
Make natural language extraction configurable (#943)
Replace MULTILINGUAL_EXTRACTION_RESPONSES constant with configurable
get_extraction_language_instruction() function to improve determinism
and allow customization.

Changes:
- Replace constant with function in client.py
- Update all LLM client implementations to use new function
- Maintain backward compatibility with same default behavior
- Enable users to override function for custom language requirements

Users can now customize extraction behavior by monkey-patching:
```python
import graphiti_core.llm_client.client as client
client.get_extraction_language_instruction = lambda: "Custom instruction"
```

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-authored-by: Claude <noreply@anthropic.com>
2025-09-30 11:09:03 -04:00

194 lines
6.7 KiB
Python

"""
Copyright 2024, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import hashlib
import json
import logging
import typing
from abc import ABC, abstractmethod
import httpx
from diskcache import Cache
from pydantic import BaseModel
from tenacity import retry, retry_if_exception, stop_after_attempt, wait_random_exponential
from ..prompts.models import Message
from .config import DEFAULT_MAX_TOKENS, LLMConfig, ModelSize
from .errors import RateLimitError
DEFAULT_TEMPERATURE = 0
DEFAULT_CACHE_DIR = './llm_cache'
def get_extraction_language_instruction() -> str:
"""Returns instruction for language extraction behavior.
Override this function to customize language extraction:
- Return empty string to disable multilingual instructions
- Return custom instructions for specific language requirements
Returns:
str: Language instruction to append to system messages
"""
return '\n\nAny extracted information should be returned in the same language as it was written in.'
logger = logging.getLogger(__name__)
def is_server_or_retry_error(exception):
if isinstance(exception, RateLimitError | json.decoder.JSONDecodeError):
return True
return (
isinstance(exception, httpx.HTTPStatusError) and 500 <= exception.response.status_code < 600
)
class LLMClient(ABC):
def __init__(self, config: LLMConfig | None, cache: bool = False):
if config is None:
config = LLMConfig()
self.config = config
self.model = config.model
self.small_model = config.small_model
self.temperature = config.temperature
self.max_tokens = config.max_tokens
self.cache_enabled = cache
self.cache_dir = None
# Only create the cache directory if caching is enabled
if self.cache_enabled:
self.cache_dir = Cache(DEFAULT_CACHE_DIR)
def _clean_input(self, input: str) -> str:
"""Clean input string of invalid unicode and control characters.
Args:
input: Raw input string to be cleaned
Returns:
Cleaned string safe for LLM processing
"""
# Clean any invalid Unicode
cleaned = input.encode('utf-8', errors='ignore').decode('utf-8')
# Remove zero-width characters and other invisible unicode
zero_width = '\u200b\u200c\u200d\ufeff\u2060'
for char in zero_width:
cleaned = cleaned.replace(char, '')
# Remove control characters except newlines, returns, and tabs
cleaned = ''.join(char for char in cleaned if ord(char) >= 32 or char in '\n\r\t')
return cleaned
@retry(
stop=stop_after_attempt(4),
wait=wait_random_exponential(multiplier=10, min=5, max=120),
retry=retry_if_exception(is_server_or_retry_error),
after=lambda retry_state: logger.warning(
f'Retrying {retry_state.fn.__name__ if retry_state.fn else "function"} after {retry_state.attempt_number} attempts...'
)
if retry_state.attempt_number > 1
else None,
reraise=True,
)
async def _generate_response_with_retry(
self,
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int = DEFAULT_MAX_TOKENS,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
try:
return await self._generate_response(messages, response_model, max_tokens, model_size)
except (httpx.HTTPStatusError, RateLimitError) as e:
raise e
@abstractmethod
async def _generate_response(
self,
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int = DEFAULT_MAX_TOKENS,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
pass
def _get_cache_key(self, messages: list[Message]) -> str:
# Create a unique cache key based on the messages and model
message_str = json.dumps([m.model_dump() for m in messages], sort_keys=True)
key_str = f'{self.model}:{message_str}'
return hashlib.md5(key_str.encode()).hexdigest()
async def generate_response(
self,
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int | None = None,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
if max_tokens is None:
max_tokens = self.max_tokens
if response_model is not None:
serialized_model = json.dumps(response_model.model_json_schema())
messages[
-1
].content += (
f'\n\nRespond with a JSON object in the following format:\n\n{serialized_model}'
)
# Add multilingual extraction instructions
messages[0].content += get_extraction_language_instruction()
if self.cache_enabled and self.cache_dir is not None:
cache_key = self._get_cache_key(messages)
cached_response = self.cache_dir.get(cache_key)
if cached_response is not None:
logger.debug(f'Cache hit for {cache_key}')
return cached_response
for message in messages:
message.content = self._clean_input(message.content)
response = await self._generate_response_with_retry(
messages, response_model, max_tokens, model_size
)
if self.cache_enabled and self.cache_dir is not None:
cache_key = self._get_cache_key(messages)
self.cache_dir.set(cache_key, response)
return response
def _get_failed_generation_log(self, messages: list[Message], output: str | None) -> str:
"""
Log the full input messages, the raw output (if any), and the exception for debugging failed generations.
"""
log = ''
log += f'Input messages: {json.dumps([m.model_dump() for m in messages], indent=2)}\n'
if output is not None:
if len(output) > 4000:
log += f'Raw output: {output[:2000]}... (truncated) ...{output[-2000:]}\n'
else:
log += f'Raw output: {output}\n'
else:
log += 'No raw output available'
return log