* Use OpenAI structured output API for response validation Replace prompt-based schema injection with native json_schema response format. This improves token efficiency and reliability by having OpenAI enforce the schema directly instead of embedding it in the prompt message. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * Add type ignore for response_format to fix pyright error * Increase OpenAIGenericClient max_tokens to 16K and update docs - Set default max_tokens to 16384 (16K) for OpenAIGenericClient to better support local models - Add documentation note clarifying OpenAIGenericClient should be used for Ollama and LM Studio - Previous default was 8192 (8K) * Refactor max_tokens override to use constructor parameter pattern - Add max_tokens parameter to __init__ with 16K default - Override self.max_tokens after super().__init__() instead of mutating config - Consistent with OpenAIBaseClient and AnthropicClient patterns - Avoids unintended config mutation side effects --------- Co-authored-by: Claude <noreply@anthropic.com> |
||
|---|---|---|
| .. | ||
| __init__.py | ||
| anthropic_client.py | ||
| azure_openai_client.py | ||
| client.py | ||
| config.py | ||
| errors.py | ||
| gemini_client.py | ||
| groq_client.py | ||
| openai_base_client.py | ||
| openai_client.py | ||
| openai_generic_client.py | ||
| utils.py | ||