graphiti/graphiti_core/utils/maintenance/node_operations.py
Preston Rasmussen a26b25dc06
Add episode refactor (#399)
* partial refactor

* get relevant nodes refactor

* load edges updates

* refactor triplets

* not there yet

* node search update

* working refactor

* updates

* mypy

* mypy
2025-04-26 00:24:23 -04:00

485 lines
16 KiB
Python

"""
Copyright 2024, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import logging
from contextlib import suppress
from time import time
from typing import Any
import pydantic
from pydantic import BaseModel
from graphiti_core.graphiti_types import GraphitiClients
from graphiti_core.helpers import MAX_REFLEXION_ITERATIONS, semaphore_gather
from graphiti_core.llm_client import LLMClient
from graphiti_core.nodes import EntityNode, EpisodeType, EpisodicNode
from graphiti_core.prompts import prompt_library
from graphiti_core.prompts.dedupe_nodes import NodeDuplicate
from graphiti_core.prompts.extract_nodes import EntityClassification, ExtractedNodes, MissedEntities
from graphiti_core.prompts.summarize_nodes import Summary
from graphiti_core.search.search_filters import SearchFilters
from graphiti_core.search.search_utils import get_relevant_nodes
from graphiti_core.utils.datetime_utils import utc_now
logger = logging.getLogger(__name__)
async def extract_message_nodes(
llm_client: LLMClient,
episode: EpisodicNode,
previous_episodes: list[EpisodicNode],
custom_prompt='',
) -> list[str]:
# Prepare context for LLM
context = {
'episode_content': episode.content,
'episode_timestamp': episode.valid_at.isoformat(),
'previous_episodes': [ep.content for ep in previous_episodes],
'custom_prompt': custom_prompt,
}
llm_response = await llm_client.generate_response(
prompt_library.extract_nodes.extract_message(context), response_model=ExtractedNodes
)
extracted_node_names = llm_response.get('extracted_node_names', [])
return extracted_node_names
async def extract_text_nodes(
llm_client: LLMClient,
episode: EpisodicNode,
previous_episodes: list[EpisodicNode],
custom_prompt='',
) -> list[str]:
# Prepare context for LLM
context = {
'episode_content': episode.content,
'episode_timestamp': episode.valid_at.isoformat(),
'previous_episodes': [ep.content for ep in previous_episodes],
'custom_prompt': custom_prompt,
}
llm_response = await llm_client.generate_response(
prompt_library.extract_nodes.extract_text(context), ExtractedNodes
)
extracted_node_names = llm_response.get('extracted_node_names', [])
return extracted_node_names
async def extract_json_nodes(
llm_client: LLMClient, episode: EpisodicNode, custom_prompt=''
) -> list[str]:
# Prepare context for LLM
context = {
'episode_content': episode.content,
'episode_timestamp': episode.valid_at.isoformat(),
'source_description': episode.source_description,
'custom_prompt': custom_prompt,
}
llm_response = await llm_client.generate_response(
prompt_library.extract_nodes.extract_json(context), ExtractedNodes
)
extracted_node_names = llm_response.get('extracted_node_names', [])
return extracted_node_names
async def extract_nodes_reflexion(
llm_client: LLMClient,
episode: EpisodicNode,
previous_episodes: list[EpisodicNode],
node_names: list[str],
) -> list[str]:
# Prepare context for LLM
context = {
'episode_content': episode.content,
'previous_episodes': [ep.content for ep in previous_episodes],
'extracted_entities': node_names,
}
llm_response = await llm_client.generate_response(
prompt_library.extract_nodes.reflexion(context), MissedEntities
)
missed_entities = llm_response.get('missed_entities', [])
return missed_entities
async def extract_nodes(
clients: GraphitiClients,
episode: EpisodicNode,
previous_episodes: list[EpisodicNode],
entity_types: dict[str, BaseModel] | None = None,
) -> list[EntityNode]:
start = time()
llm_client = clients.llm_client
embedder = clients.embedder
extracted_node_names: list[str] = []
custom_prompt = ''
entities_missed = True
reflexion_iterations = 0
while entities_missed and reflexion_iterations < MAX_REFLEXION_ITERATIONS:
if episode.source == EpisodeType.message:
extracted_node_names = await extract_message_nodes(
llm_client, episode, previous_episodes, custom_prompt
)
elif episode.source == EpisodeType.text:
extracted_node_names = await extract_text_nodes(
llm_client, episode, previous_episodes, custom_prompt
)
elif episode.source == EpisodeType.json:
extracted_node_names = await extract_json_nodes(llm_client, episode, custom_prompt)
if reflexion_iterations < MAX_REFLEXION_ITERATIONS:
missing_entities = await extract_nodes_reflexion(
llm_client, episode, previous_episodes, extracted_node_names
)
entities_missed = len(missing_entities) != 0
custom_prompt = 'The following entities were missed in a previous extraction: '
for entity in missing_entities:
custom_prompt += f'\n{entity},'
reflexion_iterations += 1
node_classification_context = {
'episode_content': episode.content,
'previous_episodes': [ep.content for ep in previous_episodes],
'extracted_entities': extracted_node_names,
'entity_types': {
type_name: values.model_json_schema().get('description')
for type_name, values in entity_types.items()
}
if entity_types is not None
else {},
}
node_classifications: dict[str, str | None] = {}
if entity_types is not None:
try:
llm_response = await llm_client.generate_response(
prompt_library.extract_nodes.classify_nodes(node_classification_context),
response_model=EntityClassification,
)
entity_classifications = llm_response.get('entity_classifications', [])
node_classifications.update(
{
entity_classification.get('name'): entity_classification.get('entity_type')
for entity_classification in entity_classifications
}
)
# catch classification errors and continue if we can't classify
except Exception as e:
logger.exception(e)
end = time()
logger.debug(f'Extracted new nodes: {extracted_node_names} in {(end - start) * 1000} ms')
# Convert the extracted data into EntityNode objects
extracted_nodes = []
for name in extracted_node_names:
entity_type = node_classifications.get(name)
if entity_types is not None and entity_type not in entity_types:
entity_type = None
labels = (
['Entity']
if entity_type is None or entity_type == 'None' or entity_type == 'null'
else ['Entity', entity_type]
)
new_node = EntityNode(
name=name,
group_id=episode.group_id,
labels=labels,
summary='',
created_at=utc_now(),
)
extracted_nodes.append(new_node)
logger.debug(f'Created new node: {new_node.name} (UUID: {new_node.uuid})')
await semaphore_gather(*[node.generate_name_embedding(embedder) for node in extracted_nodes])
logger.debug(f'Extracted nodes: {[(n.name, n.uuid) for n in extracted_nodes]}')
return extracted_nodes
async def dedupe_extracted_nodes(
llm_client: LLMClient,
extracted_nodes: list[EntityNode],
existing_nodes: list[EntityNode],
) -> tuple[list[EntityNode], dict[str, str]]:
start = time()
# build existing node map
node_map: dict[str, EntityNode] = {}
for node in existing_nodes:
node_map[node.uuid] = node
# Prepare context for LLM
existing_nodes_context = [
{'uuid': node.uuid, 'name': node.name, 'summary': node.summary} for node in existing_nodes
]
extracted_nodes_context = [
{'uuid': node.uuid, 'name': node.name, 'summary': node.summary} for node in extracted_nodes
]
context = {
'existing_nodes': existing_nodes_context,
'extracted_nodes': extracted_nodes_context,
}
llm_response = await llm_client.generate_response(prompt_library.dedupe_nodes.node(context))
duplicate_data = llm_response.get('duplicates', [])
end = time()
logger.debug(f'Deduplicated nodes: {duplicate_data} in {(end - start) * 1000} ms')
uuid_map: dict[str, str] = {}
for duplicate in duplicate_data:
uuid_value = duplicate['duplicate_of']
uuid_map[duplicate['uuid']] = uuid_value
nodes: list[EntityNode] = []
for node in extracted_nodes:
if node.uuid in uuid_map:
existing_uuid = uuid_map[node.uuid]
existing_node = node_map[existing_uuid]
nodes.append(existing_node)
else:
nodes.append(node)
return nodes, uuid_map
async def resolve_extracted_nodes(
clients: GraphitiClients,
extracted_nodes: list[EntityNode],
episode: EpisodicNode | None = None,
previous_episodes: list[EpisodicNode] | None = None,
entity_types: dict[str, BaseModel] | None = None,
) -> tuple[list[EntityNode], dict[str, str]]:
llm_client = clients.llm_client
driver = clients.driver
# Find relevant nodes already in the graph
existing_nodes_lists: list[list[EntityNode]] = await get_relevant_nodes(
driver, extracted_nodes, SearchFilters(), 0.8
)
uuid_map: dict[str, str] = {}
resolved_nodes: list[EntityNode] = []
results: list[tuple[EntityNode, dict[str, str]]] = list(
await semaphore_gather(
*[
resolve_extracted_node(
llm_client,
extracted_node,
existing_nodes,
episode,
previous_episodes,
entity_types,
)
for extracted_node, existing_nodes in zip(
extracted_nodes, existing_nodes_lists, strict=False
)
]
)
)
for result in results:
uuid_map.update(result[1])
resolved_nodes.append(result[0])
logger.debug(f'Resolved nodes: {[(n.name, n.uuid) for n in resolved_nodes]}')
return resolved_nodes, uuid_map
async def resolve_extracted_node(
llm_client: LLMClient,
extracted_node: EntityNode,
existing_nodes: list[EntityNode],
episode: EpisodicNode | None = None,
previous_episodes: list[EpisodicNode] | None = None,
entity_types: dict[str, BaseModel] | None = None,
) -> tuple[EntityNode, dict[str, str]]:
start = time()
# Prepare context for LLM
existing_nodes_context = [
{**{'uuid': node.uuid, 'name': node.name, 'summary': node.summary}, **node.attributes}
for node in existing_nodes
]
extracted_node_context = {
'uuid': extracted_node.uuid,
'name': extracted_node.name,
'summary': extracted_node.summary,
}
context = {
'existing_nodes': existing_nodes_context,
'extracted_nodes': extracted_node_context,
'episode_content': episode.content if episode is not None else '',
'previous_episodes': [ep.content for ep in previous_episodes]
if previous_episodes is not None
else [],
}
summary_context: dict[str, Any] = {
'node_name': extracted_node.name,
'node_summary': extracted_node.summary,
'episode_content': episode.content if episode is not None else '',
'previous_episodes': [ep.content for ep in previous_episodes]
if previous_episodes is not None
else [],
}
attributes: list[dict[str, str]] = []
entity_type_classes: tuple[BaseModel, ...] = tuple()
if entity_types is not None: # type: ignore
entity_type_classes = entity_type_classes + tuple(
filter(
lambda x: x is not None, # type: ignore
[entity_types.get(entity_type) for entity_type in extracted_node.labels], # type: ignore
)
)
for entity_type in entity_type_classes:
for field_name, field_info in entity_type.model_fields.items():
attributes.append(
{
'attribute_name': field_name,
'attribute_description': field_info.description or '',
}
)
summary_context['attributes'] = attributes
entity_attributes_model = pydantic.create_model( # type: ignore
'EntityAttributes',
__base__=entity_type_classes + (Summary,), # type: ignore
)
llm_response, node_attributes_response = await semaphore_gather(
llm_client.generate_response(
prompt_library.dedupe_nodes.node(context), response_model=NodeDuplicate
),
llm_client.generate_response(
prompt_library.summarize_nodes.summarize_context(summary_context),
response_model=entity_attributes_model,
),
)
extracted_node.summary = node_attributes_response.get('summary', '')
node_attributes = {
key: value if (value != 'None' or key == 'summary') else None
for key, value in node_attributes_response.items()
}
with suppress(KeyError):
del node_attributes['summary']
extracted_node.attributes.update(node_attributes)
is_duplicate: bool = llm_response.get('is_duplicate', False)
uuid: str | None = llm_response.get('uuid', None)
name = llm_response.get('name', '')
node = extracted_node
uuid_map: dict[str, str] = {}
if is_duplicate:
for existing_node in existing_nodes:
if existing_node.uuid != uuid:
continue
summary_response = await llm_client.generate_response(
prompt_library.summarize_nodes.summarize_pair(
{'node_summaries': [extracted_node.summary, existing_node.summary]}
),
response_model=Summary,
)
node = existing_node
node.name = name
node.summary = summary_response.get('summary', '')
new_attributes = extracted_node.attributes
existing_attributes = existing_node.attributes
for attribute_name, attribute_value in existing_attributes.items():
if new_attributes.get(attribute_name) is None:
new_attributes[attribute_name] = attribute_value
node.attributes = new_attributes
node.labels = list(set(existing_node.labels + extracted_node.labels))
uuid_map[extracted_node.uuid] = existing_node.uuid
end = time()
logger.debug(
f'Resolved node: {extracted_node.name} is {node.name}, in {(end - start) * 1000} ms'
)
return node, uuid_map
async def dedupe_node_list(
llm_client: LLMClient,
nodes: list[EntityNode],
) -> tuple[list[EntityNode], dict[str, str]]:
start = time()
# build node map
node_map = {}
for node in nodes:
node_map[node.uuid] = node
# Prepare context for LLM
nodes_context = [
{'uuid': node.uuid, 'name': node.name, 'summary': node.summary}.update(node.attributes)
for node in nodes
]
context = {
'nodes': nodes_context,
}
llm_response = await llm_client.generate_response(
prompt_library.dedupe_nodes.node_list(context)
)
nodes_data = llm_response.get('nodes', [])
end = time()
logger.debug(f'Deduplicated nodes: {nodes_data} in {(end - start) * 1000} ms')
# Get full node data
unique_nodes = []
uuid_map: dict[str, str] = {}
for node_data in nodes_data:
node_instance: EntityNode | None = node_map.get(node_data['uuids'][0])
if node_instance is None:
logger.warning(f'Node {node_data["uuids"][0]} not found in node map')
continue
node_instance.summary = node_data['summary']
unique_nodes.append(node_instance)
for uuid in node_data['uuids'][1:]:
uuid_value = node_map[node_data['uuids'][0]].uuid
uuid_map[uuid] = uuid_value
return unique_nodes, uuid_map