* Refactor deduplication logic to enhance node resolution and track duplicate pairs (#929) * Simplify deduplication process in bulk_utils by reusing canonical nodes. * Update dedup_helpers to store duplicate pairs during resolution. * Modify node_operations to append duplicate pairs when resolving nodes. * Add tests to verify deduplication behavior and ensure correct state updates. * reveret to concurrent dedup with fanout and then reconcilation * add performance note for deduplication loop in bulk_utils * enhance deduplication logic in bulk_utils to handle missing canonical nodes gracefully * Update graphiti_core/utils/bulk_utils.py Co-authored-by: claude[bot] <209825114+claude[bot]@users.noreply.github.com> * refactor deduplication logic in bulk_utils to use directed union-find for canonical UUID resolution * implement _build_directed_uuid_map for efficient UUID resolution in bulk_utils * document directed union-find lookup in bulk_utils for clarity --------- Co-authored-by: claude[bot] <209825114+claude[bot]@users.noreply.github.com>
345 lines
11 KiB
Python
345 lines
11 KiB
Python
from collections import defaultdict
|
|
from unittest.mock import AsyncMock, MagicMock
|
|
|
|
import pytest
|
|
|
|
from graphiti_core.graphiti_types import GraphitiClients
|
|
from graphiti_core.nodes import EntityNode, EpisodeType, EpisodicNode
|
|
from graphiti_core.search.search_config import SearchResults
|
|
from graphiti_core.utils.datetime_utils import utc_now
|
|
from graphiti_core.utils.maintenance.dedup_helpers import (
|
|
DedupCandidateIndexes,
|
|
DedupResolutionState,
|
|
_build_candidate_indexes,
|
|
_cached_shingles,
|
|
_has_high_entropy,
|
|
_hash_shingle,
|
|
_jaccard_similarity,
|
|
_lsh_bands,
|
|
_minhash_signature,
|
|
_name_entropy,
|
|
_normalize_name_for_fuzzy,
|
|
_normalize_string_exact,
|
|
_resolve_with_similarity,
|
|
_shingles,
|
|
)
|
|
from graphiti_core.utils.maintenance.node_operations import (
|
|
_collect_candidate_nodes,
|
|
_resolve_with_llm,
|
|
resolve_extracted_nodes,
|
|
)
|
|
|
|
|
|
def _make_clients():
|
|
driver = MagicMock()
|
|
embedder = MagicMock()
|
|
cross_encoder = MagicMock()
|
|
llm_client = MagicMock()
|
|
llm_generate = AsyncMock()
|
|
llm_client.generate_response = llm_generate
|
|
|
|
clients = GraphitiClients.model_construct( # bypass validation to allow test doubles
|
|
driver=driver,
|
|
embedder=embedder,
|
|
cross_encoder=cross_encoder,
|
|
llm_client=llm_client,
|
|
ensure_ascii=False,
|
|
)
|
|
|
|
return clients, llm_generate
|
|
|
|
|
|
def _make_episode(group_id: str = 'group'):
|
|
return EpisodicNode(
|
|
name='episode',
|
|
group_id=group_id,
|
|
source=EpisodeType.message,
|
|
source_description='test',
|
|
content='content',
|
|
valid_at=utc_now(),
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_resolve_nodes_exact_match_skips_llm(monkeypatch):
|
|
clients, llm_generate = _make_clients()
|
|
|
|
candidate = EntityNode(name='Joe Michaels', group_id='group', labels=['Entity'])
|
|
extracted = EntityNode(name='Joe Michaels', group_id='group', labels=['Entity'])
|
|
|
|
async def fake_search(*_, **__):
|
|
return SearchResults(nodes=[candidate])
|
|
|
|
monkeypatch.setattr(
|
|
'graphiti_core.utils.maintenance.node_operations.search',
|
|
fake_search,
|
|
)
|
|
monkeypatch.setattr(
|
|
'graphiti_core.utils.maintenance.node_operations.filter_existing_duplicate_of_edges',
|
|
AsyncMock(return_value=[]),
|
|
)
|
|
|
|
resolved, uuid_map, _ = await resolve_extracted_nodes(
|
|
clients,
|
|
[extracted],
|
|
episode=_make_episode(),
|
|
previous_episodes=[],
|
|
)
|
|
|
|
assert resolved[0].uuid == candidate.uuid
|
|
assert uuid_map[extracted.uuid] == candidate.uuid
|
|
llm_generate.assert_not_awaited()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_resolve_nodes_low_entropy_uses_llm(monkeypatch):
|
|
clients, llm_generate = _make_clients()
|
|
llm_generate.return_value = {
|
|
'entity_resolutions': [
|
|
{
|
|
'id': 0,
|
|
'duplicate_idx': -1,
|
|
'name': 'Joe',
|
|
'duplicates': [],
|
|
}
|
|
]
|
|
}
|
|
|
|
extracted = EntityNode(name='Joe', group_id='group', labels=['Entity'])
|
|
|
|
async def fake_search(*_, **__):
|
|
return SearchResults(nodes=[])
|
|
|
|
monkeypatch.setattr(
|
|
'graphiti_core.utils.maintenance.node_operations.search',
|
|
fake_search,
|
|
)
|
|
monkeypatch.setattr(
|
|
'graphiti_core.utils.maintenance.node_operations.filter_existing_duplicate_of_edges',
|
|
AsyncMock(return_value=[]),
|
|
)
|
|
|
|
resolved, uuid_map, _ = await resolve_extracted_nodes(
|
|
clients,
|
|
[extracted],
|
|
episode=_make_episode(),
|
|
previous_episodes=[],
|
|
)
|
|
|
|
assert resolved[0].uuid == extracted.uuid
|
|
assert uuid_map[extracted.uuid] == extracted.uuid
|
|
llm_generate.assert_awaited()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_resolve_nodes_fuzzy_match(monkeypatch):
|
|
clients, llm_generate = _make_clients()
|
|
|
|
candidate = EntityNode(name='Joe-Michaels', group_id='group', labels=['Entity'])
|
|
extracted = EntityNode(name='Joe Michaels', group_id='group', labels=['Entity'])
|
|
|
|
async def fake_search(*_, **__):
|
|
return SearchResults(nodes=[candidate])
|
|
|
|
monkeypatch.setattr(
|
|
'graphiti_core.utils.maintenance.node_operations.search',
|
|
fake_search,
|
|
)
|
|
monkeypatch.setattr(
|
|
'graphiti_core.utils.maintenance.node_operations.filter_existing_duplicate_of_edges',
|
|
AsyncMock(return_value=[]),
|
|
)
|
|
|
|
resolved, uuid_map, _ = await resolve_extracted_nodes(
|
|
clients,
|
|
[extracted],
|
|
episode=_make_episode(),
|
|
previous_episodes=[],
|
|
)
|
|
|
|
assert resolved[0].uuid == candidate.uuid
|
|
assert uuid_map[extracted.uuid] == candidate.uuid
|
|
llm_generate.assert_not_awaited()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_collect_candidate_nodes_dedupes_and_merges_override(monkeypatch):
|
|
clients, _ = _make_clients()
|
|
|
|
candidate = EntityNode(name='Alice', group_id='group', labels=['Entity'])
|
|
override_duplicate = EntityNode(
|
|
uuid=candidate.uuid,
|
|
name='Alice Alt',
|
|
group_id='group',
|
|
labels=['Entity'],
|
|
)
|
|
extracted = EntityNode(name='Alice', group_id='group', labels=['Entity'])
|
|
|
|
search_mock = AsyncMock(return_value=SearchResults(nodes=[candidate]))
|
|
monkeypatch.setattr(
|
|
'graphiti_core.utils.maintenance.node_operations.search',
|
|
search_mock,
|
|
)
|
|
|
|
result = await _collect_candidate_nodes(
|
|
clients,
|
|
[extracted],
|
|
existing_nodes_override=[override_duplicate],
|
|
)
|
|
|
|
assert len(result) == 1
|
|
assert result[0].uuid == candidate.uuid
|
|
search_mock.assert_awaited()
|
|
|
|
|
|
def test_build_candidate_indexes_populates_structures():
|
|
candidate = EntityNode(name='Bob Dylan', group_id='group', labels=['Entity'])
|
|
|
|
indexes = _build_candidate_indexes([candidate])
|
|
|
|
normalized_key = candidate.name.lower()
|
|
assert indexes.normalized_existing[normalized_key][0].uuid == candidate.uuid
|
|
assert indexes.nodes_by_uuid[candidate.uuid] is candidate
|
|
assert candidate.uuid in indexes.shingles_by_candidate
|
|
assert any(candidate.uuid in bucket for bucket in indexes.lsh_buckets.values())
|
|
|
|
|
|
def test_normalize_helpers():
|
|
assert _normalize_string_exact(' Alice Smith ') == 'alice smith'
|
|
assert _normalize_name_for_fuzzy('Alice-Smith!') == 'alice smith'
|
|
|
|
|
|
def test_name_entropy_variants():
|
|
assert _name_entropy('alice') > _name_entropy('aaaaa')
|
|
assert _name_entropy('') == 0.0
|
|
|
|
|
|
def test_has_high_entropy_rules():
|
|
assert _has_high_entropy('meaningful name') is True
|
|
assert _has_high_entropy('aa') is False
|
|
|
|
|
|
def test_shingles_and_cache():
|
|
raw = 'alice'
|
|
shingle_set = _shingles(raw)
|
|
assert shingle_set == {'ali', 'lic', 'ice'}
|
|
assert _cached_shingles(raw) == shingle_set
|
|
assert _cached_shingles(raw) is _cached_shingles(raw)
|
|
|
|
|
|
def test_hash_minhash_and_lsh():
|
|
shingles = {'abc', 'bcd', 'cde'}
|
|
signature = _minhash_signature(shingles)
|
|
assert len(signature) == 32
|
|
bands = _lsh_bands(signature)
|
|
assert all(len(band) == 4 for band in bands)
|
|
hashed = {_hash_shingle(s, 0) for s in shingles}
|
|
assert len(hashed) == len(shingles)
|
|
|
|
|
|
def test_jaccard_similarity_edges():
|
|
a = {'a', 'b'}
|
|
b = {'a', 'c'}
|
|
assert _jaccard_similarity(a, b) == pytest.approx(1 / 3)
|
|
assert _jaccard_similarity(set(), set()) == 1.0
|
|
assert _jaccard_similarity(a, set()) == 0.0
|
|
|
|
|
|
def test_resolve_with_similarity_exact_match_updates_state():
|
|
candidate = EntityNode(name='Charlie Parker', group_id='group', labels=['Entity'])
|
|
extracted = EntityNode(name='Charlie Parker', group_id='group', labels=['Entity'])
|
|
|
|
indexes = _build_candidate_indexes([candidate])
|
|
state = DedupResolutionState(resolved_nodes=[None], uuid_map={}, unresolved_indices=[])
|
|
|
|
_resolve_with_similarity([extracted], indexes, state)
|
|
|
|
assert state.resolved_nodes[0].uuid == candidate.uuid
|
|
assert state.uuid_map[extracted.uuid] == candidate.uuid
|
|
assert state.unresolved_indices == []
|
|
assert state.duplicate_pairs == [(extracted, candidate)]
|
|
|
|
|
|
def test_resolve_with_similarity_low_entropy_defers_resolution():
|
|
extracted = EntityNode(name='Bob', group_id='group', labels=['Entity'])
|
|
indexes = DedupCandidateIndexes(
|
|
existing_nodes=[],
|
|
nodes_by_uuid={},
|
|
normalized_existing=defaultdict(list),
|
|
shingles_by_candidate={},
|
|
lsh_buckets=defaultdict(list),
|
|
)
|
|
state = DedupResolutionState(resolved_nodes=[None], uuid_map={}, unresolved_indices=[])
|
|
|
|
_resolve_with_similarity([extracted], indexes, state)
|
|
|
|
assert state.resolved_nodes[0] is None
|
|
assert state.unresolved_indices == [0]
|
|
assert state.duplicate_pairs == []
|
|
|
|
|
|
def test_resolve_with_similarity_multiple_exact_matches_defers_to_llm():
|
|
candidate1 = EntityNode(name='Johnny Appleseed', group_id='group', labels=['Entity'])
|
|
candidate2 = EntityNode(name='Johnny Appleseed', group_id='group', labels=['Entity'])
|
|
extracted = EntityNode(name='Johnny Appleseed', group_id='group', labels=['Entity'])
|
|
|
|
indexes = _build_candidate_indexes([candidate1, candidate2])
|
|
state = DedupResolutionState(resolved_nodes=[None], uuid_map={}, unresolved_indices=[])
|
|
|
|
_resolve_with_similarity([extracted], indexes, state)
|
|
|
|
assert state.resolved_nodes[0] is None
|
|
assert state.unresolved_indices == [0]
|
|
assert state.duplicate_pairs == []
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_resolve_with_llm_updates_unresolved(monkeypatch):
|
|
extracted = EntityNode(name='Dizzy', group_id='group', labels=['Entity'])
|
|
candidate = EntityNode(name='Dizzy Gillespie', group_id='group', labels=['Entity'])
|
|
|
|
indexes = _build_candidate_indexes([candidate])
|
|
state = DedupResolutionState(resolved_nodes=[None], uuid_map={}, unresolved_indices=[0])
|
|
|
|
captured_context = {}
|
|
|
|
def fake_prompt_nodes(context):
|
|
captured_context.update(context)
|
|
return ['prompt']
|
|
|
|
monkeypatch.setattr(
|
|
'graphiti_core.utils.maintenance.node_operations.prompt_library.dedupe_nodes.nodes',
|
|
fake_prompt_nodes,
|
|
)
|
|
|
|
async def fake_generate_response(*_, **__):
|
|
return {
|
|
'entity_resolutions': [
|
|
{
|
|
'id': 0,
|
|
'duplicate_idx': 0,
|
|
'name': 'Dizzy Gillespie',
|
|
'duplicates': [0],
|
|
}
|
|
]
|
|
}
|
|
|
|
llm_client = MagicMock()
|
|
llm_client.generate_response = AsyncMock(side_effect=fake_generate_response)
|
|
|
|
await _resolve_with_llm(
|
|
llm_client,
|
|
[extracted],
|
|
indexes,
|
|
state,
|
|
ensure_ascii=False,
|
|
episode=_make_episode(),
|
|
previous_episodes=[],
|
|
entity_types=None,
|
|
)
|
|
|
|
assert state.resolved_nodes[0].uuid == candidate.uuid
|
|
assert state.uuid_map[extracted.uuid] == candidate.uuid
|
|
assert captured_context['existing_nodes'][0]['idx'] == 0
|
|
assert isinstance(captured_context['existing_nodes'], list)
|
|
assert state.duplicate_pairs == [(extracted, candidate)]
|