graphiti/graphiti_core/llm_client/client.py
Daniel Chalef 189e45617f
Add group_id parameter to language extraction function (#952)
* Add group_id parameter to get_extraction_language_instruction

Enable consumers to provide group-specific language extraction
instructions by passing group_id through the call chain.

Changes:
- Add optional group_id parameter to get_extraction_language_instruction()
- Add group_id parameter to all LLMClient.generate_response() methods
- Pass group_id through to language instruction function
- Maintain backward compatibility with default None value

Users can now customize extraction per group:
```python
def custom_instruction(group_id: str | None = None) -> str:
    if group_id == 'spanish-users':
        return '\n\nExtract in Spanish.'
    return '\n\nExtract in original language.'

client.get_extraction_language_instruction = custom_instruction
```

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

* Pass group_id to generate_response in extraction operations

Thread group_id parameter through all extraction-related generate_response()
calls where it's naturally available (via episode.group_id or node.group_id).
This enables consumers to override get_extraction_language_instruction() with
group-specific language preferences.

Changes:
- edge_operations.py: Pass group_id in extract_edges()
- node_operations.py: Pass episode.group_id in extract_nodes() and
  node.group_id in extract_attributes_from_node()
- node_operations.py: Add group_id parameter to extract_nodes_reflexion()

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* Fix type inconsistency in extract_nodes_reflexion parameter

Change group_id parameter from str = '' to str | None = None to match
the pattern used throughout the codebase and align with the optional
nature of group_id in generate_response().

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* Remove ensure_ascii parameter and uv.lock file

* Reset uv.lock to main branch version

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-03 09:05:45 -07:00

199 lines
6.9 KiB
Python

"""
Copyright 2024, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import hashlib
import json
import logging
import typing
from abc import ABC, abstractmethod
import httpx
from diskcache import Cache
from pydantic import BaseModel
from tenacity import retry, retry_if_exception, stop_after_attempt, wait_random_exponential
from ..prompts.models import Message
from .config import DEFAULT_MAX_TOKENS, LLMConfig, ModelSize
from .errors import RateLimitError
DEFAULT_TEMPERATURE = 0
DEFAULT_CACHE_DIR = './llm_cache'
def get_extraction_language_instruction(group_id: str | None = None) -> str:
"""Returns instruction for language extraction behavior.
Override this function to customize language extraction:
- Return empty string to disable multilingual instructions
- Return custom instructions for specific language requirements
- Use group_id to provide different instructions per group/partition
Args:
group_id: Optional partition identifier for the graph
Returns:
str: Language instruction to append to system messages
"""
return '\n\nAny extracted information should be returned in the same language as it was written in.'
logger = logging.getLogger(__name__)
def is_server_or_retry_error(exception):
if isinstance(exception, RateLimitError | json.decoder.JSONDecodeError):
return True
return (
isinstance(exception, httpx.HTTPStatusError) and 500 <= exception.response.status_code < 600
)
class LLMClient(ABC):
def __init__(self, config: LLMConfig | None, cache: bool = False):
if config is None:
config = LLMConfig()
self.config = config
self.model = config.model
self.small_model = config.small_model
self.temperature = config.temperature
self.max_tokens = config.max_tokens
self.cache_enabled = cache
self.cache_dir = None
# Only create the cache directory if caching is enabled
if self.cache_enabled:
self.cache_dir = Cache(DEFAULT_CACHE_DIR)
def _clean_input(self, input: str) -> str:
"""Clean input string of invalid unicode and control characters.
Args:
input: Raw input string to be cleaned
Returns:
Cleaned string safe for LLM processing
"""
# Clean any invalid Unicode
cleaned = input.encode('utf-8', errors='ignore').decode('utf-8')
# Remove zero-width characters and other invisible unicode
zero_width = '\u200b\u200c\u200d\ufeff\u2060'
for char in zero_width:
cleaned = cleaned.replace(char, '')
# Remove control characters except newlines, returns, and tabs
cleaned = ''.join(char for char in cleaned if ord(char) >= 32 or char in '\n\r\t')
return cleaned
@retry(
stop=stop_after_attempt(4),
wait=wait_random_exponential(multiplier=10, min=5, max=120),
retry=retry_if_exception(is_server_or_retry_error),
after=lambda retry_state: logger.warning(
f'Retrying {retry_state.fn.__name__ if retry_state.fn else "function"} after {retry_state.attempt_number} attempts...'
)
if retry_state.attempt_number > 1
else None,
reraise=True,
)
async def _generate_response_with_retry(
self,
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int = DEFAULT_MAX_TOKENS,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
try:
return await self._generate_response(messages, response_model, max_tokens, model_size)
except (httpx.HTTPStatusError, RateLimitError) as e:
raise e
@abstractmethod
async def _generate_response(
self,
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int = DEFAULT_MAX_TOKENS,
model_size: ModelSize = ModelSize.medium,
) -> dict[str, typing.Any]:
pass
def _get_cache_key(self, messages: list[Message]) -> str:
# Create a unique cache key based on the messages and model
message_str = json.dumps([m.model_dump() for m in messages], sort_keys=True)
key_str = f'{self.model}:{message_str}'
return hashlib.md5(key_str.encode()).hexdigest()
async def generate_response(
self,
messages: list[Message],
response_model: type[BaseModel] | None = None,
max_tokens: int | None = None,
model_size: ModelSize = ModelSize.medium,
group_id: str | None = None,
) -> dict[str, typing.Any]:
if max_tokens is None:
max_tokens = self.max_tokens
if response_model is not None:
serialized_model = json.dumps(response_model.model_json_schema())
messages[
-1
].content += (
f'\n\nRespond with a JSON object in the following format:\n\n{serialized_model}'
)
# Add multilingual extraction instructions
messages[0].content += get_extraction_language_instruction(group_id)
if self.cache_enabled and self.cache_dir is not None:
cache_key = self._get_cache_key(messages)
cached_response = self.cache_dir.get(cache_key)
if cached_response is not None:
logger.debug(f'Cache hit for {cache_key}')
return cached_response
for message in messages:
message.content = self._clean_input(message.content)
response = await self._generate_response_with_retry(
messages, response_model, max_tokens, model_size
)
if self.cache_enabled and self.cache_dir is not None:
cache_key = self._get_cache_key(messages)
self.cache_dir.set(cache_key, response)
return response
def _get_failed_generation_log(self, messages: list[Message], output: str | None) -> str:
"""
Log the full input messages, the raw output (if any), and the exception for debugging failed generations.
"""
log = ''
log += f'Input messages: {json.dumps([m.model_dump() for m in messages], indent=2)}\n'
if output is not None:
if len(output) > 4000:
log += f'Raw output: {output[:2000]}... (truncated) ...{output[-2000:]}\n'
else:
log += f'Raw output: {output}\n'
else:
log += 'No raw output available'
return log