425 lines
14 KiB
Python
425 lines
14 KiB
Python
"""
|
|
Copyright 2024, Zep Software, Inc.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
"""
|
|
|
|
import logging
|
|
from contextlib import suppress
|
|
from time import time
|
|
from typing import Any
|
|
from uuid import uuid4
|
|
|
|
import pydantic
|
|
from pydantic import BaseModel, Field
|
|
|
|
from graphiti_core.graphiti_types import GraphitiClients
|
|
from graphiti_core.helpers import MAX_REFLEXION_ITERATIONS, semaphore_gather
|
|
from graphiti_core.llm_client import LLMClient
|
|
from graphiti_core.llm_client.config import ModelSize
|
|
from graphiti_core.nodes import EntityNode, EpisodeType, EpisodicNode, create_entity_node_embeddings
|
|
from graphiti_core.prompts import prompt_library
|
|
from graphiti_core.prompts.dedupe_nodes import NodeResolutions
|
|
from graphiti_core.prompts.extract_nodes import (
|
|
ExtractedEntities,
|
|
ExtractedEntity,
|
|
MissedEntities,
|
|
)
|
|
from graphiti_core.search.search import search
|
|
from graphiti_core.search.search_config import SearchResults
|
|
from graphiti_core.search.search_config_recipes import NODE_HYBRID_SEARCH_RRF
|
|
from graphiti_core.search.search_filters import SearchFilters
|
|
from graphiti_core.utils.datetime_utils import utc_now
|
|
from graphiti_core.utils.maintenance.edge_operations import filter_existing_duplicate_of_edges
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
async def extract_nodes_reflexion(
|
|
llm_client: LLMClient,
|
|
episode: EpisodicNode,
|
|
previous_episodes: list[EpisodicNode],
|
|
node_names: list[str],
|
|
) -> list[str]:
|
|
# Prepare context for LLM
|
|
context = {
|
|
'episode_content': episode.content,
|
|
'previous_episodes': [ep.content for ep in previous_episodes],
|
|
'extracted_entities': node_names,
|
|
}
|
|
|
|
llm_response = await llm_client.generate_response(
|
|
prompt_library.extract_nodes.reflexion(context), MissedEntities
|
|
)
|
|
missed_entities = llm_response.get('missed_entities', [])
|
|
|
|
return missed_entities
|
|
|
|
|
|
async def extract_nodes(
|
|
clients: GraphitiClients,
|
|
episode: EpisodicNode,
|
|
previous_episodes: list[EpisodicNode],
|
|
entity_types: dict[str, BaseModel] | None = None,
|
|
excluded_entity_types: list[str] | None = None,
|
|
) -> list[EntityNode]:
|
|
start = time()
|
|
llm_client = clients.llm_client
|
|
llm_response = {}
|
|
custom_prompt = ''
|
|
entities_missed = True
|
|
reflexion_iterations = 0
|
|
|
|
entity_types_context = [
|
|
{
|
|
'entity_type_id': 0,
|
|
'entity_type_name': 'Entity',
|
|
'entity_type_description': 'Default entity classification. Use this entity type if the entity is not one of the other listed types.',
|
|
}
|
|
]
|
|
|
|
entity_types_context += (
|
|
[
|
|
{
|
|
'entity_type_id': i + 1,
|
|
'entity_type_name': type_name,
|
|
'entity_type_description': type_model.__doc__,
|
|
}
|
|
for i, (type_name, type_model) in enumerate(entity_types.items())
|
|
]
|
|
if entity_types is not None
|
|
else []
|
|
)
|
|
|
|
context = {
|
|
'episode_content': episode.content,
|
|
'episode_timestamp': episode.valid_at.isoformat(),
|
|
'previous_episodes': [ep.content for ep in previous_episodes],
|
|
'custom_prompt': custom_prompt,
|
|
'entity_types': entity_types_context,
|
|
'source_description': episode.source_description,
|
|
}
|
|
|
|
while entities_missed and reflexion_iterations <= MAX_REFLEXION_ITERATIONS:
|
|
if episode.source == EpisodeType.message:
|
|
llm_response = await llm_client.generate_response(
|
|
prompt_library.extract_nodes.extract_message(context),
|
|
response_model=ExtractedEntities,
|
|
)
|
|
elif episode.source == EpisodeType.text:
|
|
llm_response = await llm_client.generate_response(
|
|
prompt_library.extract_nodes.extract_text(context), response_model=ExtractedEntities
|
|
)
|
|
elif episode.source == EpisodeType.json:
|
|
llm_response = await llm_client.generate_response(
|
|
prompt_library.extract_nodes.extract_json(context), response_model=ExtractedEntities
|
|
)
|
|
|
|
extracted_entities: list[ExtractedEntity] = [
|
|
ExtractedEntity(**entity_types_context)
|
|
for entity_types_context in llm_response.get('extracted_entities', [])
|
|
]
|
|
|
|
reflexion_iterations += 1
|
|
if reflexion_iterations < MAX_REFLEXION_ITERATIONS:
|
|
missing_entities = await extract_nodes_reflexion(
|
|
llm_client,
|
|
episode,
|
|
previous_episodes,
|
|
[entity.name for entity in extracted_entities],
|
|
)
|
|
|
|
entities_missed = len(missing_entities) != 0
|
|
|
|
custom_prompt = 'Make sure that the following entities are extracted: '
|
|
for entity in missing_entities:
|
|
custom_prompt += f'\n{entity},'
|
|
|
|
filtered_extracted_entities = [entity for entity in extracted_entities if entity.name.strip()]
|
|
end = time()
|
|
logger.debug(f'Extracted new nodes: {filtered_extracted_entities} in {(end - start) * 1000} ms')
|
|
# Convert the extracted data into EntityNode objects
|
|
extracted_nodes = []
|
|
for extracted_entity in filtered_extracted_entities:
|
|
entity_type_name = entity_types_context[extracted_entity.entity_type_id].get(
|
|
'entity_type_name'
|
|
)
|
|
|
|
# Check if this entity type should be excluded
|
|
if excluded_entity_types and entity_type_name in excluded_entity_types:
|
|
logger.debug(f'Excluding entity "{extracted_entity.name}" of type "{entity_type_name}"')
|
|
continue
|
|
|
|
labels: list[str] = list({'Entity', str(entity_type_name)})
|
|
|
|
new_node = EntityNode(
|
|
name=extracted_entity.name,
|
|
group_id=episode.group_id,
|
|
labels=labels,
|
|
summary='',
|
|
created_at=utc_now(),
|
|
)
|
|
extracted_nodes.append(new_node)
|
|
logger.debug(f'Created new node: {new_node.name} (UUID: {new_node.uuid})')
|
|
|
|
logger.debug(f'Extracted nodes: {[(n.name, n.uuid) for n in extracted_nodes]}')
|
|
return extracted_nodes
|
|
|
|
|
|
async def resolve_extracted_nodes(
|
|
clients: GraphitiClients,
|
|
extracted_nodes: list[EntityNode],
|
|
episode: EpisodicNode | None = None,
|
|
previous_episodes: list[EpisodicNode] | None = None,
|
|
entity_types: dict[str, BaseModel] | None = None,
|
|
existing_nodes_override: list[EntityNode] | None = None,
|
|
) -> tuple[list[EntityNode], dict[str, str], list[tuple[EntityNode, EntityNode]]]:
|
|
llm_client = clients.llm_client
|
|
driver = clients.driver
|
|
|
|
search_results: list[SearchResults] = await semaphore_gather(
|
|
*[
|
|
search(
|
|
clients=clients,
|
|
query=node.name,
|
|
group_ids=[node.group_id],
|
|
search_filter=SearchFilters(),
|
|
config=NODE_HYBRID_SEARCH_RRF,
|
|
)
|
|
for node in extracted_nodes
|
|
]
|
|
)
|
|
|
|
candidate_nodes: list[EntityNode] = (
|
|
[node for result in search_results for node in result.nodes]
|
|
if existing_nodes_override is None
|
|
else existing_nodes_override
|
|
)
|
|
|
|
existing_nodes_dict: dict[str, EntityNode] = {node.uuid: node for node in candidate_nodes}
|
|
|
|
existing_nodes: list[EntityNode] = list(existing_nodes_dict.values())
|
|
|
|
existing_nodes_context = (
|
|
[
|
|
{
|
|
**{
|
|
'idx': i,
|
|
'name': candidate.name,
|
|
'entity_types': candidate.labels,
|
|
},
|
|
**candidate.attributes,
|
|
}
|
|
for i, candidate in enumerate(existing_nodes)
|
|
],
|
|
)
|
|
|
|
entity_types_dict: dict[str, BaseModel] = entity_types if entity_types is not None else {}
|
|
|
|
# Prepare context for LLM
|
|
extracted_nodes_context = [
|
|
{
|
|
'id': i,
|
|
'name': node.name,
|
|
'entity_type': node.labels,
|
|
'entity_type_description': entity_types_dict.get(
|
|
next((item for item in node.labels if item != 'Entity'), '')
|
|
).__doc__
|
|
or 'Default Entity Type',
|
|
}
|
|
for i, node in enumerate(extracted_nodes)
|
|
]
|
|
|
|
context = {
|
|
'extracted_nodes': extracted_nodes_context,
|
|
'existing_nodes': existing_nodes_context,
|
|
'episode_content': episode.content if episode is not None else '',
|
|
'previous_episodes': [ep.content for ep in previous_episodes]
|
|
if previous_episodes is not None
|
|
else [],
|
|
}
|
|
|
|
llm_response = await llm_client.generate_response(
|
|
prompt_library.dedupe_nodes.nodes(context),
|
|
response_model=NodeResolutions,
|
|
)
|
|
|
|
node_resolutions: list = llm_response.get('entity_resolutions', [])
|
|
|
|
resolved_nodes: list[EntityNode] = []
|
|
uuid_map: dict[str, str] = {}
|
|
node_duplicates: list[tuple[EntityNode, EntityNode]] = []
|
|
for resolution in node_resolutions:
|
|
resolution_id: int = resolution.get('id', -1)
|
|
duplicate_idx: int = resolution.get('duplicate_idx', -1)
|
|
|
|
extracted_node = extracted_nodes[resolution_id]
|
|
|
|
resolved_node = (
|
|
existing_nodes[duplicate_idx]
|
|
if 0 <= duplicate_idx < len(existing_nodes)
|
|
else extracted_node
|
|
)
|
|
|
|
# resolved_node.name = resolution.get('name')
|
|
|
|
resolved_nodes.append(resolved_node)
|
|
uuid_map[extracted_node.uuid] = resolved_node.uuid
|
|
|
|
duplicates: list[int] = resolution.get('duplicates', [])
|
|
if duplicate_idx not in duplicates and duplicate_idx > -1:
|
|
duplicates.append(duplicate_idx)
|
|
for idx in duplicates:
|
|
existing_node = existing_nodes[idx] if idx < len(existing_nodes) else resolved_node
|
|
|
|
node_duplicates.append((extracted_node, existing_node))
|
|
|
|
logger.debug(f'Resolved nodes: {[(n.name, n.uuid) for n in resolved_nodes]}')
|
|
|
|
new_node_duplicates: list[
|
|
tuple[EntityNode, EntityNode]
|
|
] = await filter_existing_duplicate_of_edges(driver, node_duplicates)
|
|
|
|
return resolved_nodes, uuid_map, new_node_duplicates
|
|
|
|
|
|
async def extract_attributes_from_nodes(
|
|
clients: GraphitiClients,
|
|
nodes: list[EntityNode],
|
|
episode: EpisodicNode | None = None,
|
|
previous_episodes: list[EpisodicNode] | None = None,
|
|
entity_types: dict[str, BaseModel] | None = None,
|
|
) -> list[EntityNode]:
|
|
llm_client = clients.llm_client
|
|
embedder = clients.embedder
|
|
updated_nodes: list[EntityNode] = await semaphore_gather(
|
|
*[
|
|
extract_attributes_from_node(
|
|
llm_client,
|
|
node,
|
|
episode,
|
|
previous_episodes,
|
|
entity_types.get(next((item for item in node.labels if item != 'Entity'), ''))
|
|
if entity_types is not None
|
|
else None,
|
|
)
|
|
for node in nodes
|
|
]
|
|
)
|
|
|
|
await create_entity_node_embeddings(embedder, updated_nodes)
|
|
|
|
return updated_nodes
|
|
|
|
|
|
async def extract_attributes_from_node(
|
|
llm_client: LLMClient,
|
|
node: EntityNode,
|
|
episode: EpisodicNode | None = None,
|
|
previous_episodes: list[EpisodicNode] | None = None,
|
|
entity_type: BaseModel | None = None,
|
|
) -> EntityNode:
|
|
node_context: dict[str, Any] = {
|
|
'name': node.name,
|
|
'summary': node.summary,
|
|
'entity_types': node.labels,
|
|
'attributes': node.attributes,
|
|
}
|
|
|
|
attributes_definitions: dict[str, Any] = {
|
|
'summary': (
|
|
str,
|
|
Field(
|
|
description='Summary containing the important information about the entity. Under 250 words',
|
|
),
|
|
)
|
|
}
|
|
|
|
if entity_type is not None:
|
|
for field_name, field_info in entity_type.model_fields.items():
|
|
attributes_definitions[field_name] = (
|
|
field_info.annotation,
|
|
Field(description=field_info.description),
|
|
)
|
|
|
|
unique_model_name = f'EntityAttributes_{uuid4().hex}'
|
|
entity_attributes_model = pydantic.create_model(unique_model_name, **attributes_definitions)
|
|
|
|
summary_context: dict[str, Any] = {
|
|
'node': node_context,
|
|
'episode_content': episode.content if episode is not None else '',
|
|
'previous_episodes': [ep.content for ep in previous_episodes]
|
|
if previous_episodes is not None
|
|
else [],
|
|
}
|
|
|
|
llm_response = await llm_client.generate_response(
|
|
prompt_library.extract_nodes.extract_attributes(summary_context),
|
|
response_model=entity_attributes_model,
|
|
model_size=ModelSize.small,
|
|
)
|
|
|
|
node.summary = llm_response.get('summary', node.summary)
|
|
node_attributes = {key: value for key, value in llm_response.items()}
|
|
|
|
with suppress(KeyError):
|
|
del node_attributes['summary']
|
|
|
|
node.attributes.update(node_attributes)
|
|
|
|
return node
|
|
|
|
|
|
async def dedupe_node_list(
|
|
llm_client: LLMClient,
|
|
nodes: list[EntityNode],
|
|
) -> tuple[list[EntityNode], dict[str, str]]:
|
|
start = time()
|
|
|
|
# build node map
|
|
node_map = {}
|
|
for node in nodes:
|
|
node_map[node.uuid] = node
|
|
|
|
# Prepare context for LLM
|
|
nodes_context = [{'uuid': node.uuid, 'name': node.name, **node.attributes} for node in nodes]
|
|
|
|
context = {
|
|
'nodes': nodes_context,
|
|
}
|
|
|
|
llm_response = await llm_client.generate_response(
|
|
prompt_library.dedupe_nodes.node_list(context)
|
|
)
|
|
|
|
nodes_data = llm_response.get('nodes', [])
|
|
|
|
end = time()
|
|
logger.debug(f'Deduplicated nodes: {nodes_data} in {(end - start) * 1000} ms')
|
|
|
|
# Get full node data
|
|
unique_nodes = []
|
|
uuid_map: dict[str, str] = {}
|
|
for node_data in nodes_data:
|
|
node_instance: EntityNode | None = node_map.get(node_data['uuids'][0])
|
|
if node_instance is None:
|
|
logger.warning(f'Node {node_data["uuids"][0]} not found in node map')
|
|
continue
|
|
node_instance.summary = node_data['summary']
|
|
unique_nodes.append(node_instance)
|
|
|
|
for uuid in node_data['uuids'][1:]:
|
|
uuid_value = node_map[node_data['uuids'][0]].uuid
|
|
uuid_map[uuid] = uuid_value
|
|
|
|
return unique_nodes, uuid_map
|