* Add OpenTelemetry distributed tracing support - Add tracer abstraction with no-op and OpenTelemetry implementations - Instrument add_episode and add_episode_bulk with tracing spans - Instrument LLM client with cache-aware tracing - Add configurable span name prefix support - Refactor add_episode methods to improve code quality - Add OTEL_TRACING.md documentation 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * Fix linting errors in tracing implementation - Remove unused episodes_by_uuid variable - Fix tracer type annotations for context manager support - Replace isinstance tuple with union syntax - Use contextlib.suppress for exception handling - Fix import ordering and use AbstractContextManager 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * Address PR review feedback on tracing implementation Critical fixes: - Remove flawed error span creation in graphiti.py that created orphaned spans - Restructure LLM client tracing to create span once at start, eliminating code duplication - Initialize LLM client tracer to NoOpTracer by default to fix type checking Enhancements: - Add comprehensive span attributes to add_episode: reference_time, entity/edge type counts, previous episodes count, invalidated edge count, community count - Optimize isinstance check for better performance 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * Add prompt name tracking to OpenTelemetry tracing spans Add prompt_name parameter to all LLM client generate_response() methods and set it as a span attribute in the llm.generate span. This enables better observability by identifying which prompt template was used for each LLM call. Changes: - Add prompt_name parameter to LLMClient.generate_response() base method - Add prompt_name parameter and tracing to OpenAIBaseClient, AnthropicClient, GeminiClient, and OpenAIGenericClient - Update all 14 LLM call sites across maintenance operations to include prompt_name: - edge_operations.py: 4 calls - node_operations.py: 6 calls (note: 7 listed but only 6 unique) - temporal_operations.py: 2 calls - community_operations.py: 2 calls 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> * Fix exception handling in add_episode to record errors in OpenTelemetry span Moved try-except block inside the OpenTelemetry span context and added proper error recording with span.set_status() and span.record_exception(). This ensures exceptions are captured in the distributed trace, matching the pattern used in add_episode_bulk. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> --------- Co-authored-by: Claude <noreply@anthropic.com>
242 lines
8.5 KiB
Python
242 lines
8.5 KiB
Python
"""
|
|
Copyright 2024, Zep Software, Inc.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
"""
|
|
|
|
import hashlib
|
|
import json
|
|
import logging
|
|
import typing
|
|
from abc import ABC, abstractmethod
|
|
|
|
import httpx
|
|
from diskcache import Cache
|
|
from pydantic import BaseModel
|
|
from tenacity import retry, retry_if_exception, stop_after_attempt, wait_random_exponential
|
|
|
|
from ..prompts.models import Message
|
|
from ..tracer import NoOpTracer, Tracer
|
|
from .config import DEFAULT_MAX_TOKENS, LLMConfig, ModelSize
|
|
from .errors import RateLimitError
|
|
|
|
DEFAULT_TEMPERATURE = 0
|
|
DEFAULT_CACHE_DIR = './llm_cache'
|
|
|
|
|
|
def get_extraction_language_instruction(group_id: str | None = None) -> str:
|
|
"""Returns instruction for language extraction behavior.
|
|
|
|
Override this function to customize language extraction:
|
|
- Return empty string to disable multilingual instructions
|
|
- Return custom instructions for specific language requirements
|
|
- Use group_id to provide different instructions per group/partition
|
|
|
|
Args:
|
|
group_id: Optional partition identifier for the graph
|
|
|
|
Returns:
|
|
str: Language instruction to append to system messages
|
|
"""
|
|
return '\n\nAny extracted information should be returned in the same language as it was written in.'
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def is_server_or_retry_error(exception):
|
|
if isinstance(exception, RateLimitError | json.decoder.JSONDecodeError):
|
|
return True
|
|
|
|
return (
|
|
isinstance(exception, httpx.HTTPStatusError) and 500 <= exception.response.status_code < 600
|
|
)
|
|
|
|
|
|
class LLMClient(ABC):
|
|
def __init__(self, config: LLMConfig | None, cache: bool = False):
|
|
if config is None:
|
|
config = LLMConfig()
|
|
|
|
self.config = config
|
|
self.model = config.model
|
|
self.small_model = config.small_model
|
|
self.temperature = config.temperature
|
|
self.max_tokens = config.max_tokens
|
|
self.cache_enabled = cache
|
|
self.cache_dir = None
|
|
self.tracer: Tracer = NoOpTracer()
|
|
|
|
# Only create the cache directory if caching is enabled
|
|
if self.cache_enabled:
|
|
self.cache_dir = Cache(DEFAULT_CACHE_DIR)
|
|
|
|
def set_tracer(self, tracer: Tracer) -> None:
|
|
"""Set the tracer for this LLM client."""
|
|
self.tracer = tracer
|
|
|
|
def _clean_input(self, input: str) -> str:
|
|
"""Clean input string of invalid unicode and control characters.
|
|
|
|
Args:
|
|
input: Raw input string to be cleaned
|
|
|
|
Returns:
|
|
Cleaned string safe for LLM processing
|
|
"""
|
|
# Clean any invalid Unicode
|
|
cleaned = input.encode('utf-8', errors='ignore').decode('utf-8')
|
|
|
|
# Remove zero-width characters and other invisible unicode
|
|
zero_width = '\u200b\u200c\u200d\ufeff\u2060'
|
|
for char in zero_width:
|
|
cleaned = cleaned.replace(char, '')
|
|
|
|
# Remove control characters except newlines, returns, and tabs
|
|
cleaned = ''.join(char for char in cleaned if ord(char) >= 32 or char in '\n\r\t')
|
|
|
|
return cleaned
|
|
|
|
@retry(
|
|
stop=stop_after_attempt(4),
|
|
wait=wait_random_exponential(multiplier=10, min=5, max=120),
|
|
retry=retry_if_exception(is_server_or_retry_error),
|
|
after=lambda retry_state: logger.warning(
|
|
f'Retrying {retry_state.fn.__name__ if retry_state.fn else "function"} after {retry_state.attempt_number} attempts...'
|
|
)
|
|
if retry_state.attempt_number > 1
|
|
else None,
|
|
reraise=True,
|
|
)
|
|
async def _generate_response_with_retry(
|
|
self,
|
|
messages: list[Message],
|
|
response_model: type[BaseModel] | None = None,
|
|
max_tokens: int = DEFAULT_MAX_TOKENS,
|
|
model_size: ModelSize = ModelSize.medium,
|
|
) -> dict[str, typing.Any]:
|
|
try:
|
|
return await self._generate_response(messages, response_model, max_tokens, model_size)
|
|
except (httpx.HTTPStatusError, RateLimitError) as e:
|
|
raise e
|
|
|
|
@abstractmethod
|
|
async def _generate_response(
|
|
self,
|
|
messages: list[Message],
|
|
response_model: type[BaseModel] | None = None,
|
|
max_tokens: int = DEFAULT_MAX_TOKENS,
|
|
model_size: ModelSize = ModelSize.medium,
|
|
) -> dict[str, typing.Any]:
|
|
pass
|
|
|
|
def _get_cache_key(self, messages: list[Message]) -> str:
|
|
# Create a unique cache key based on the messages and model
|
|
message_str = json.dumps([m.model_dump() for m in messages], sort_keys=True)
|
|
key_str = f'{self.model}:{message_str}'
|
|
return hashlib.md5(key_str.encode()).hexdigest()
|
|
|
|
async def generate_response(
|
|
self,
|
|
messages: list[Message],
|
|
response_model: type[BaseModel] | None = None,
|
|
max_tokens: int | None = None,
|
|
model_size: ModelSize = ModelSize.medium,
|
|
group_id: str | None = None,
|
|
prompt_name: str | None = None,
|
|
) -> dict[str, typing.Any]:
|
|
if max_tokens is None:
|
|
max_tokens = self.max_tokens
|
|
|
|
if response_model is not None:
|
|
serialized_model = json.dumps(response_model.model_json_schema())
|
|
messages[
|
|
-1
|
|
].content += (
|
|
f'\n\nRespond with a JSON object in the following format:\n\n{serialized_model}'
|
|
)
|
|
|
|
# Add multilingual extraction instructions
|
|
messages[0].content += get_extraction_language_instruction(group_id)
|
|
|
|
for message in messages:
|
|
message.content = self._clean_input(message.content)
|
|
|
|
# Wrap entire operation in tracing span
|
|
with self.tracer.start_span('llm.generate') as span:
|
|
attributes = {
|
|
'llm.provider': self._get_provider_type(),
|
|
'model.size': model_size.value,
|
|
'max_tokens': max_tokens,
|
|
'cache.enabled': self.cache_enabled,
|
|
}
|
|
if prompt_name:
|
|
attributes['prompt.name'] = prompt_name
|
|
span.add_attributes(attributes)
|
|
|
|
# Check cache first
|
|
if self.cache_enabled and self.cache_dir is not None:
|
|
cache_key = self._get_cache_key(messages)
|
|
cached_response = self.cache_dir.get(cache_key)
|
|
if cached_response is not None:
|
|
logger.debug(f'Cache hit for {cache_key}')
|
|
span.add_attributes({'cache.hit': True})
|
|
return cached_response
|
|
|
|
span.add_attributes({'cache.hit': False})
|
|
|
|
# Execute LLM call
|
|
try:
|
|
response = await self._generate_response_with_retry(
|
|
messages, response_model, max_tokens, model_size
|
|
)
|
|
except Exception as e:
|
|
span.set_status('error', str(e))
|
|
span.record_exception(e)
|
|
raise
|
|
|
|
# Cache response if enabled
|
|
if self.cache_enabled and self.cache_dir is not None:
|
|
cache_key = self._get_cache_key(messages)
|
|
self.cache_dir.set(cache_key, response)
|
|
|
|
return response
|
|
|
|
def _get_provider_type(self) -> str:
|
|
"""Get provider type from class name."""
|
|
class_name = self.__class__.__name__.lower()
|
|
if 'openai' in class_name:
|
|
return 'openai'
|
|
elif 'anthropic' in class_name:
|
|
return 'anthropic'
|
|
elif 'gemini' in class_name:
|
|
return 'gemini'
|
|
elif 'groq' in class_name:
|
|
return 'groq'
|
|
else:
|
|
return 'unknown'
|
|
|
|
def _get_failed_generation_log(self, messages: list[Message], output: str | None) -> str:
|
|
"""
|
|
Log the full input messages, the raw output (if any), and the exception for debugging failed generations.
|
|
"""
|
|
log = ''
|
|
log += f'Input messages: {json.dumps([m.model_dump() for m in messages], indent=2)}\n'
|
|
if output is not None:
|
|
if len(output) > 4000:
|
|
log += f'Raw output: {output[:2000]}... (truncated) ...{output[-2000:]}\n'
|
|
else:
|
|
log += f'Raw output: {output}\n'
|
|
else:
|
|
log += 'No raw output available'
|
|
return log
|