No description
Find a file
Daniel Chalef 50da9d0f31
format and linting (#18)
* Makefile and format

* fix podcast stuff

* refactor: update import statement for transcript_parser in podcast_runner.py

* format and linting

* chore: Update import statements and remove unused code in maintenance module
2024-08-22 12:26:13 -07:00
.github Create dependabot.yml (#11) 2024-08-21 21:51:10 -07:00
core format and linting (#18) 2024-08-22 12:26:13 -07:00
examples/podcast format and linting (#18) 2024-08-22 12:26:13 -07:00
tests format and linting (#18) 2024-08-22 12:26:13 -07:00
.env.example add nodes and edges 2024-08-13 14:35:43 -04:00
.gitignore feat: Initial version of temporal invalidation + tests (#8) 2024-08-20 16:29:19 -04:00
conftest.py format and linting (#18) 2024-08-22 12:26:13 -07:00
Makefile format and linting (#18) 2024-08-22 12:26:13 -07:00
podcast_runner.py format and linting (#18) 2024-08-22 12:26:13 -07:00
podcast_transcript.txt Cleanup maintenance utilities + add podcast runner (#5) 2024-08-16 09:29:57 -04:00
poetry.lock format and linting (#18) 2024-08-22 12:26:13 -07:00
pyproject.toml format and linting (#18) 2024-08-22 12:26:13 -07:00
pytest.ini feat: Initial version of temporal invalidation + tests (#8) 2024-08-20 16:29:19 -04:00
README.md format and linting (#18) 2024-08-22 12:26:13 -07:00
runner.py format and linting (#18) 2024-08-22 12:26:13 -07:00
SECURITY.md format and linting (#18) 2024-08-22 12:26:13 -07:00

Graphiti (LLM generated readme)

Graphiti is a Python library for building and managing knowledge graphs using Neo4j and OpenAI's language models. It provides a flexible framework for processing episodes of information, extracting semantic nodes and edges, and maintaining a dynamic graph structure.

Features

  • Asynchronous interaction with Neo4j database
  • Integration with OpenAI's GPT models for natural language processing
  • Automatic extraction of semantic nodes and edges from episodic data
  • Temporal tracking of relationships and facts
  • Flexible schema management

Installation

(Add installation instructions here)

Quick Start

from graphiti import Graphiti

# Initialize Graphiti
graphiti = Graphiti("bolt://localhost:7687", "neo4j", "password")

# Process an episode
await graphiti.process_episode(
    name="Example Episode",
    episode_body="Alice met Bob at the coffee shop.",
    source_description="User input",
    reference_time=datetime.now()
)

# Retrieve recent episodes
recent_episodes = await graphiti.retrieve_episodes(last_n=5)

# Close the connection
graphiti.close()

Documentation

(Add link to full documentation when available)

Contributing

(Add contribution guidelines)

License

(Add license information)